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Abstract

This paper describes a learning framework for a central
pattern generator based biped locomotion controller us-
ing a policy gradient method. Our goals in this study are
to achieve biped walking with a 3D hardware humanoid,
and to develop an efficient learning algorithm with CPG
by reducing the dimensionality of the state space used
for learning. We demonstrate that an appropriate feed-
back controller can be acquired within a thousand tri-
als by numerical simulations and the obtained controller
in numerical simulation achieves stable walking with a
physical robot in the real world. Numerical simulations
and hardware experiments evaluated walking velocity
and stability. Furthermore, we present the possibility of
an additional online learning using a hardware robot to
improve the controller within 200 iterations.

Introduction
Humanoid research and development has made remarkable
progress during the past 10 years. Most of presented hu-
manoids utilize a pre-planned nominal trajectory designed in
a known environment. Despite our best effort, it seems that
we cannot consider every possible situation in advance when
designing a controller. Thus learning capability to acquire or
improve a walking pattern is essential for broad range of hu-
manoid application in an unknown environment.

Our goals in this paper are to acquire a successful walking
pattern through learning and to achieve walking with a hard-
ware 3D full-body humanoid robot (Fig. 1). While many
attempts have been made to investigate learning algorithms
for simulated biped walking, there are only a few successful
implementation on real hardware, for example (Benbrahim
& Franklin 1997; Tedrake, Zhang, & Seung 2004). To the
best of our knowledge, Tedrake et al. (Tedrake, Zhang, &
Seung 2004) is the only example of an implementation of
learning algorithm on a 3D hardware robot. They imple-
mented a learning algorithm on a simple physical 3D biped
robot possessing basic properties of passive dynamic walk,
and successfully obtained appropriate feedback controller
for ankle roll joints via online learning. With the help of
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Figure 1: Entertainment Robot QRIO (SDR-4X II)

their specific mechanical design to embed an intrinsic walk-
ing pattern with the passive dynamics, the state space for
learning was drastically reduced from 18 to 2 in spite of
the complexity of the 3D biped model, which usually suf-
fers from dimensionality explosion. From a learning point
of view, the dimensionality reduction is an important issue
in practice. However, developing a specific humanoid hard-
ware with uni-functionality, for example walking, may lose
an important feature of humanoid robot such as versatility
and capability of achieving various tasks.

Therefore, instead of gait implementation by mechani-
cal design, we introduce the idea of using a Central Pat-
tern Generator (CPG), which has been hypothesized to exist
in the central nervous system of animals (Cohen 2003). It
is demonstrated that the CPG can generate a robust biped
walking pattern with appropriate feedback signals by using
entrainment property even in an unpredictable environment
in numerical simulations (Taga 1995). However, designing
appropriate feedback pathways of neural oscillators often re-
quires much effort to manually tune the parameters of the os-
cillator. Thus, a genetic algorithm (Hase & Yamazaki 1998)
and reinforcement learning (Mori et al. 2004) were applied
to optimize the open parameters of the CPG for biped loco-
motion. However, these methods often require a large num-
ber of iteration to obtain a solution due to the large dimen-
sionality of the state space used for optimization. In this
paper, our primary goals are to achieve biped walking with
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learning for a 3D full-body humanoid hardware, which is
not designed for a specific walking purpose, and to develop
an efficient learning algorithm which can be implemented
on a hardware robot for an additional online learning to im-
prove a controller. In a physical robot, we can not accurately
observe all states of the system due to limited number of
equipped sensors and measurement noise in practice. Thus,
we find it natural to postulate the learning problem as a par-
tially observable Markov decision problem (POMDP). In the
proposed learning system, we use a policy gradient method
which can be applied to POMDP (Kimura & Kobayashi
1998). In POMDP, it is generally known that a large
amount of iteration would be required for learning compared
with learning in MDP because lack of information yields
large variance of the estimated gradient of expected reward
with respect to the policy parameters (Sutton et al. 2000;
Konda & Tsitsiklis 2003). However, in the proposed frame-
work, when the CPG and the mechanical system of the
robot converge to a periodic trajectory due to the entrain-
ment property, the internal states of the CPG and the states
of the robot will be synchronized. Thus, by using the state
space only composed of the observable reduced number of
states, efficient learning can be possible to achieve steady
periodic biped locomotion even in the POMDP.

CPG Control Architecture
In our initial work, we explored CPG-based control with
the policy gradient method for a planar biped model (Mat-
subara et al. 2005), suggesting that the policy gradient
method is a promising way to acquire biped locomotion
within a reasonable numbers of iteration. In this sec-
tion, we extend our previous work to a 3D full-body hu-
manoid robot, QRIO (Ishida, Kuroki, & Yamaguchi 2003;
Ishida & Kuroki 2004).

Neural Oscillator Model
We use the neural oscillator model proposed by Matsuoka
(Matsuoka 1985), which is widely used as a CPG in robotic
applications (Kimura, Fukuoka, & Cohen 2003; Williamson
1998):

τCPGżj = −zj −
6∑

j=1

wijqj − γz′j + c + aj , (1)

τ ′
CPGż′j = −zj + qj , (2)

qj = max(0, zj), (3)

where i is the index of the neurons, τCPG, τ ′
CPG are time

constants for the internal states zj and z′j . c is a bias and γ is
an adaptation constant. wij is a inhibitory synaptic weight
from the j-th neuron to the i-th neuron. qj is an output of
each neural unit and aj is a feedback signal which will be
defined in the following section.

CPG Arrangement
In many of the previous applications of neural oscillator
based locomotion studies, an oscillator is allocated at each
joint and its output is used as a joint torque command to the

robot (Taga 1995). However, it is difficult to obtain appro-
priate feedback pathways for all the oscillators to achieve the
desired behavior with the increase of the number of degrees
of freedom of the robot because neural oscillators are intrin-
sically nonlinear. Moreover, precise torque control of each
joints is also difficult to be realized for a hardware robot in
practice. In this paper, to simplify the problem, we propose
a new oscillator arrangement with respect to the position of
the tip of the leg in the Cartesian coordinate system, which
is reasonably considered as the task coordinates for walk-
ing. We allocate only 6 neural units exploiting symmetry of
the walking pattern between the legs. We decompose over-
all walking motion into stepping motion in place produced
in the frontal plane and propulsive motion generated in the
sagittal plane.

Fig. 2 illustrates the proposed neural arrangement for the
stepping motion in place in the frontal plane. We employ
two neurons to form a coupled oscillator connected by a mu-
tual inhibition (w12 = w21 = 2.0) and allocate it to control
the position of both legs pl

z , pr
z along the Z (vertical) direc-

tion in a symmetrical manner with π rad phase difference:

pl
z = Z0 − Az (q1 − q2), (4)

pr
z = Z0 + Az (q1 − q2), (5)

where Z0 is a position offset and Az is the amplitude scaling
factor.

For a propulsive motion in the sagittal plane, we introduce
a quad-element neural oscillator to produce coordinated leg
movements with stepping motion based on the following in-
tuition: as illustrated in Fig. 3, when the robot is walking for-
ward, the leg trajectory with respect to the body coordinates
in the sagittal plane can be roughly approximated by the
shape of an ellipsoid. Suppose the output trajectories of the
oscillators can be approximated as pl

x = Ax cos(ωt + αx)
and pl

z = Az cos(ωt + αz), respectively. Then, to form the
ellipsoidal trajectory on the X-Z plane, pl

x and pl
z need to

satisfy the relationship pl
x = Ax cosφ and pl

z = Az sin φ,
where φ is the angle defined in Fig. 3. Thus, the desired
phase difference between vertical and horizontal oscillation

Figure 2: Neural oscillator allocation and biologically in-
spired feedback pathways for a stepping motion in place
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should be αx−αz = π/2. To embed this phase difference as
an intrinsic property, we install a quad-element neural oscil-
lator with uni-directional circular inhibitions (w34 = w43 =
w56 = w65 = 2.0, w35 = w63 = w46 = w54 = 0.5).
It generates inherent phase difference of π/2 between two
coupled oscillators, (q3−q4) and (q5−q6) (Matsuoka 1985).
Therefore, if (q3 − q4) is entrained to the vertical leg move-
ments, then an appropriate horizontal oscillation with de-
sired phase difference is achieved by (q5 − q6).

Similar to the Z direction, the neural output (q5 − q6) is
allocated to control the position of both legs pl

x, pr
x along the

X (forward) direction in the sagittal plane:

pl
x = X0 − Ax (q5 − q6), (6)

pr
x = X0 + Ax (q5 − q6), (7)

where X0 is an offset and Ax is the amplitude scaling factor.
This framework provides us with a basic walking pattern

which can be modulated by feedback signals aj .

Sensory Feedback
With an assumption of symmetric leg movements, feedback
signals to the oscillator eqn.(1) can be expressed as

a2m = −a2m−1, (m = 1, 2, 3). (8)

As a first step of this study, we focus on acquiring a feed-
back controller (a5) for the propulsive leg movement in the
X direction. Thus, we explicitly design sensory feedback
pathways for stepping motion in place (a1) motivated by bi-
ological observations (Fig.2). We introduce Extensor Re-
sponse and Vestibulo-spinal Reflex (Kimura, Fukuoka, &
Cohen 2003). Both sensory feedback pathways generate re-
covery motion by adjusting leg length according to the ver-
tical reaction force or the inclination of the body.

a1 = hER (f r
z − f l

z) / mg + hV SR θroll, (9)

where (f r
z − f l

z) are right/left vertical reaction force differ-
ences normalized by total body weight mg. hER, hV SR are
scaling factors. Stepping motion robustness against pertur-
bation was experimentally discussed in (Endo et al. 2005)
and we chose hER = 0.4, hV SR = 1.8.

Figure 3: A quad-element neural oscillator for a propulsive
motion in the sagittal plane

The same feedback signal is fed back to a quad-element
neural oscillator for the propulsive motion, a3 = a1, to in-
duce a cooperative leg movement with π/2 phase difference
between the Z and X direction (Fig.3).

For the propulsive leg movements in the X direction,
the feedback signal aj are represented by a policy gradient
method.

aj(t) = amax
j g(vj(t)), (10)

where g(x) = 2
π arctan

(
π
2 x

)
, vj is sampled from a stochas-

tic policy defined by a probability distribution πw(x, vj) =
P (vj |x;wµ,wσ):

πw(x, vj)

=
1√

2πσj(wσ)
exp

(
−(vj−µj(x;wµ))2

2σ2
j (wσ)

)
, (11)

where x denotes the state of the robot, and wµ,wσ are pa-
rameter vectors of the policy. We can equivalently represent
vj by

vj(t) = µj(x(t);wµ) + σj(wσ)nj(t), (12)
where, nj(t) ∼ N(0, 1). N(0, 1) is a normal distribution
which has a mean µ of 0 and a variance σ2 of 1. In the
next section, we discuss the learning algorithm to acquire a
feedback controller aj=5 for the propulsive motion.

Learning the sensory feedback controller
Previous studies have demonstrated promising results to ap-
ply a policy gradient method for POMDP on biped walk-
ing tasks(Tedrake, Zhang, & Seung 2004; Matsubara et al.
2005). We use it for acquisition of a policy of the sensory
feedback controller to the neural oscillator model.

To describe the representative motion of the robot, we
consider the states of the pelvis of the robot where gyro sen-
sors are located, which also roughly approximates the loca-
tion of the center of mass (COM) of the system. We chose
the pelvis angular velocity x = (θ̇roll, θ̇pitch)T as the input
states to the learning algorithm. Therefore, we can conceive
that the rest of the state of the pelvis such as inclinations
with respect to the world coordinates as well as the internal
variables in the neural oscillator model in equations (1)(2)
are hidden variables for the learning algorithm. We show
that we can acquire a policy of the sensory feedback aj(x)
in (10) by using a policy gradient method even with consid-
erable numbers of hidden variables.

In the following section, we introduce the definition of
the value function in continuous time and space to derive
the temporal difference error (TD error)(Doya 2000). Then
we discuss the learning method of a policy for the sensory
feedback controller.

Learning the value function
Consider the continuous-time and continuous-states system

dx(t)
dt

= f(x(t),u(t)), (13)

where x ∈ X ⊂ �n is the state and u ∈ U ⊂ �m is the
control input. We denote the immediate reward for the state
and action as

r(t) = r(x(t),u(t)). (14)
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The value function of state x(t) based on a policy π(u(t) |
x(t)) is defined as

V π(x(t))=E

{∫ ∞

t

e−
s−t

τ r(x(s),u(s))ds
∣∣∣π

}
, (15)

where τ is a time constant for discounting future rewards.
A consistency condition for the value function is given by
differentiating the definition (15) by t as

dV π(x(t))
dt

=
1
τ

V π(x(t)) − r(t). (16)

We denote the current estimate of the value function as
V (x(t)) = V (x(t);wc), where wc is the parameter of the
function approximator. If the current estimate V̂ of the value
function is perfect, it should satisfy the consistency condi-
tion (16). If this condition is not satisfied, the prediction
should be adjusted to decrease the inconsistency,

δ(t) = r(t) − 1
τ
V (t) + V̇ (t). (17)

This is the continuous-time counterpart of TD error (Doya
2000). The update laws for the parameter of the policy wc

i
and the eligibility trace ei

c of wc
i are defined respectively as

ėc
i(t) = − 1

κc
ec

i(t) +
∂Vwc

∂wc
i

, (18)

ẇc
i (t) = αδ(t)ec

i (t), (19)

where α is the learning rate and κc is the time constant of
the eligibility trace. In this study, we select the learning pa-
rameters as τ = 1.0, α = 78, κc = 0.5.

Learning a policy of the sensory feedback
controller
We can estimate the gradient of the expected total reward
V (t) with respect to the policy parameter wa:

∂

∂wa
i

E { V (t) | πwa} = E{δ(t)ea
i (t)}, (20)

where wa
i is the parameter of policy πw and ea

i (t) is the
eligibility trace of the parameter wa

i . The update law for the
parameter of the policy wa

i and the eligibility trace ea
i (t) are

derived respectively as

ėa
i (t) = − 1

κa
ea

i (t) +
∂ ln πwa

∂wa
i

, (21)

ẇa
i (t) = βδ(t)ea

i (t), (22)

where β is the learning rate and κa is the time constant of
the eligibility trace. The definition (20) implies that by using
δ(t) and ea

i (t), we can calculate the unbiased estimator of
the gradient of the value function with respect to the param-
eter wa

i . We set the learning parameters as βµ = βσ = 195,
κµ = 1.0, κσ = 0.1.

Numerical Simulation Setup
Function Approximator for the Value Function and
the Policy
We use a normalized Gaussian network (NGnet) (Doya
2000) to model the value function and the mean of the pol-
icy. The variance of the policy is modelled by a sigmoidal
function (Kimura & Kobayashi 1998; Peters, Vijayakumar,
& Schaal 2003). The value function is represented by the
NGnet:

V (x;wc) =
K∑

k=1

wc
kbk(x), (23)

where

bk(x) =
φk(x)

∑K
l=1 φl(x)

, φk(x) = e−‖sT
k (x−ck)‖, (24)

k is the number of the basis functions. The vectors ck and sk

characterize the center and the size of the k-th basis function,
respectively. The mean µ and the variance σ of the policy are
represented by the NGnet and the sigmoidal function:

µj =
K∑

i=1

wµ
ijbi(x), (25)

and
σj =

1
1 + exp(−wσ

j )
, (26)

respectively. We locate basis functions φk(x) at even in-
tervals in each dimension of the input space (−2.0 ≤
θ̇roll, θ̇pitch ≤ 2.0). We used 225(= 15 × 15) basis func-
tions for approximating the value function and the policy
respectively.

Rewards
We used a reward function:

r(x) = kH (h1 − h′) + kS vx, (27)

where h1 is the pelvis height of the robot, h′ is a thresh-
old parameter for h1 and vx is forward velocity with respect
to the ground. The reward function is designed to keep the
height of the pelvis by the first term, and at the same time to
achieve forward progress by the second term. In this study,
the parameters are chosen as kS = 0.0 − 10.0, kH = 10.0,
h′ = 0.272. The robot receives a punishment (negative re-
ward) r = −1 if it falls over.

Experiments
Simulation Results and Hardware Verifications
The learning sequence is as follows: at the beginning of each
trial, we utilize a hand-designed feedback controller to initi-
ate walking gait for several steps. Then we switch the feed-
back controller for the learning algorithm at random in order
to generate various initial state input. Each trial is terminated
in the case where the immediate reward is less than -1 or the
robot walks for 20 sec. The learning process is considered
as success when the robot does not fall over in 20 successive
trials.
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Figure 6: Snapshots of straight steady walking with acquired feedback controller (Ax =
0.015 m, Az = 0.005 m, vx = 0.077 m/s. Photos were captured every 0.1 sec.)

Num. of Num. of Achievements
ks Exp. Sim.(trials) Hard.(trials)

0.0 4 1 (2385) 0 ( - )
1.0 3 3 (528) 3 (1600)
2.0 3 3 (195) 1 (800)
3.0 4 4 (464) 2 (1500)
4.0 3 2 (192) 2 (350)
5.0 5 2 (1011) 1 (600)

10.0 5 5 (95) 5 (460)
Sum(Ave.) 27 20 (696) 14 (885)

Table 1: Achievements of acquisition
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Figure 4: Typical learning curve
Figure 5: Learned pol-
icy

At the beginning of a learning process, the robot imme-
diately fell over within a few steps as expected. The policy
gradually increased the output amplitude of feedback con-
troller to improve walking motion as the learning proceeded.
We did 27 experiments with various velocity reward, ks, and
walking motion was successfully acquired in 20 experiments
(Table. 1). Typically, it took 20 hours to run one simulation
for 1000 trials and the policy was acquired after 696 trials
on average. Fig. 4 and Fig. 5 show a typical example of
accumulated reward at each trial and an acquired policy, re-
spectively. In Fig.5, while θ̇roll dominates the policy output,
θ̇pitch does not have much influence. The reason would be
that θ̇roll is always generating by stepping motion in the Z
direction regardless of the propulsive motion, thus the policy
tries to utilize θ̇roll to generate cooperative leg movements.
On the other hand, θ̇pitch is suppressed by the reward func-
tion not to decrease the pelvis height by a pitching oscilla-
tion which usually cause falling.

We implemented the acquired 20 feedback controllers in
Table. 1 on the hardware and confirmed that 14 of them suc-
cessfully achieved steady walking on the carpet floor with

slight undulation. Fig. 6 shows snapshots of acquired walk-
ing pattern. Also, we carried out walking experiments on a
slope and the acquired policy achieved steady walking in the
range of +3 to -4 deg inclination, suggesting enough walk-
ing stability.

We also verified improvements of the policy by imple-
menting the policies with different trials with the same learn-
ing process. With the policy on the early stage of a learn-
ing process, the robot exhibited back and forth stepping then
immediately fell over. With the policy on the intermediate
stage, the robot performed unsteady forward walking and
occasional stepping on the spot. With policy after substan-
tial trials, the robot finally achieved steady walking.

On average, additional 189 trials in the numerical simula-
tion were required for the policy to achieve walking in the
physical environment. This result suggests the learning pro-
cess successfully improves robustness against perturbation
by using entrainment property.

Velocity Control
To control walking velocity, we investigated the relationship
between the reward function and the acquired velocity. We
set the parameters in eqn.(1)(2) as τCPG = 0.105, τ ′

CPG =
0.132, c = 2.08, γ = 2.5 to generate an inherent oscillation
where amplitude and period are 1.0 and 0.8, respectively.
Since we set Ax=0.015m, expected walking velocity with
intrinsic oscillation is 0.075m/s.

We measured average walking velocity both in numerical
simulations and hardware experiments with various ks in the
0.0 to 5.0 range (Fig. 7). The resultant walking velocity in
the simulation increased as we increased ks and hardware
experiments demonstrated similar tendency.

This result shows the reward function works appropriately
to obtain a desirable feedback policy, which is difficult for a
hand-designed controller to achieve. Also, it would be possi-
ble to acquire different feedback controllers with some other
criteria such as energy efficiency or walking direction by us-
ing the same scheme.

Stability Analysis
To quantify the stability of an acquired walking controller,
we consider the periodic walking motion as discrete dynam-
ics and analyze the local stability around a fix point using a
return map. We perturbed target trajectory on (q5 − q6) to
change step length at random timing during steady walking,
and captured the states of the robot when left leg touched
down. We measured two steps, right after the perturbation
(xn) and the next step (xn+1). If acquired walking motion is
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Figure 9: An example of additional on-
line learning using the physical robot.

locally stable, absolute eigenvalue of the return map should
be less than 1.

Fig.8 shows the return map with 50 data points and a
white dot indicates a fix point derived by averaging 100
steps without perturbation. The estimated eigenvalue is -
0.0101 calculated by a least squares fit. The results suggests
that even if step length was reduced to half of the nominal
step length by perturbation, for example pushed forward, the
feedback controller quickly converges to the steady walking
pattern within one step.

Additional online learning
As shown in Table. 1, 6 policies obtained in numerical sim-
ulations could not achieve walking with the physical robot
in the real environment. Even in this case, we could make
online additional learning using a real hardware because a
calculation cost of the numerical simulation is mainly due
to the dynamics calculation, not to the learning algorithm
itself. In this section, we attempt to improve the obtained
policies in numerical simulations which could not originally
produce steady walking in the hardware experiments.

For the reward function, walking velocity was calculated
by the relative velocity of the stance leg with respect to the
pelvis and the body height was measured by the the joint
angles of the stance leg and the absolute body inclination
derived from integration of gyration sensor. We introduced
digital filters to cut off the measurement noise. Note that we
did not introduce any external sensor for this experiment.

Despite delayed and inaccurate reward information, the
online learning algorithm successfully improved the ini-
tial policy and performed steady walking within 200 trials
(which took us 2.5 hours to do). Fig. 9 shows an example of
online additional learning where ks = 4.0, kh = 10.0 and
h′ = 0.275. (Note that the value of the accumulated reward
differs from the simulated result in Fig. 4 due to different
time duration 16sec for one trial.) The gray line indicates
running average of accumulated reward for 20 trials.

Discussion
In this section, we would like to discuss our motivation of
the proposed framework.

Most of the existing humanoids utilize a pre-planned
nominal trajectory and requires precise modeling and pre-
cise joint actuation with high joint control gains to track the

nominal trajectory in order to accomplish successful loco-
motion. However, it is not possible to design the nominal
trajectory for every possible situation in advance. Thus,
these model-based approaches may not be desirable in an
unpredictable or dynamically changing environment.

Learning can be one of the alternative approaches, as it
has the potential capability of adapting to environmental
changes and modeling error. Moreover, learning may pro-
vide us with an efficient way of producing various walking
patterns by simply introducing different higher level crite-
ria such as walking velocity and energy efficiency without
changing the learning framework itself.

However, humanoid robots have many degrees of free-
dom, we cannot directly apply conventional reinforcement
learning methods to the robots. To cope with this large-
scale problem, Tedrake et al. exploited inherent passive dy-
namics. The question is whether we can easily extend their
approach to a general humanoid robot. They used the de-
sired state on the return map taken from the gait of the robot
walking down on a slope without actuation in order to de-
fine the reward function for reinforcement learning. Their
learning algorithm owes much to the intrinsic passive dy-
namical characteristics of the robot that can walk down a
slope without actuation. However, their approach cannot be
directly applied to general humanoid robots that are not me-
chanically designed with specific dynamical characteristics
for only walking.

Therefore, in this study, instead of making use of passive
dynamics of the system, we proposed to use CPGs to gener-
ate basic periodic motions and reduce the number of dimen-
sions of the state space for the learning system exploiting
entrainment of neural oscillators for biped locomotion for
a full-body humanoid robot. As a result, we only consid-
ered 2-dimensional state space for learning. This is a drastic
reduction of the state space from the total 36 dimensions in-
cluding the robot and CPG dynamics if we would treat this
as an MDP assuming that all the states are measurable.

Since we only considered low-dimensional state space,
we had to treat our learning problem as a POMDP. Although
it is computationally infeasible to calculate the optimal value
function for the POMDP by using dynamic programming in
high-dimensional state space (Kaelbling, Littman, & Cas-
sandra 1998), we can still attempt to find a locally opti-
mal policy by using policy gradient methods (Kimura &
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Kobayashi 1998; Jaakkola, Singh, & Jordan 1995; Sutton et
al. 2000). We succeeded to acquire the biped walking con-
troller by using the policy gradient method with the CPG
controller within a feasible numbers of trials. One of impor-
tant factors to have the successful result was selection of the
input states. Inappropriate selection of the input states may
cause large variance of the gradient estimation and may lead
to the large number of trials. Though we manually selected
θ̇roll and θ̇pitch as the input states for our learning system,
development of a method to automatically select input states
forms part of our future work.

Conclusion
In this paper, we proposed an efficient learning framework
for CPG-based biped locomotion controller using the policy
gradient method. We decomposed a walking motion into a
stepping motion in place, and propulsive motion and feed-
back pathways for the propulsive motion were acquired us-
ing the policy gradient method. Despite considerable num-
ber of hidden variables, the proposed framework success-
fully obtained a walking pattern within 1000 trials on av-
erage in the simulator. Acquired feedback controllers were
implemented on a 3D hardware robot and demonstrated ro-
bust walking in the physical environment. We discuss ve-
locity control and stability as well as a possibility of online
additional learning with the hardware robot.

We plan to investigate energy efficiency and robustness
against perturbation using the same scheme as well as the ac-
quisition of the policy for stepping motion. Also, we plan to
implement the proposed framework on a different platform
to demonstrate sufficient capability to handle configuration
changes. We will introduce additional neurons to generate
more natural walking.
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