
Learning to Prevent Failure States
for a Dynamically Balancing Robot

Jeremy Searock ad Brett Browning
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA
jsearock@andrew.cmu.edu, brettb@cs.cmu.edu∗

Abstract

To achieve robust autonomy, robots must avoid getting
stuck in states from which they cannot recover without
external aid. While this is the role of the robot’s con-
trol algorithms, these are often imperfect. We examine
how to detect failures by observing the robot’s internal
sensors over time. For such cases, triggering a response
when detecting the onset of a failure can increase the
operational range of the robot. Concretely, we explore
the use of supervised learning techniques to create a
classifier that can detect a potential failure and trigger a
response for a dynamically balancing robot. We present
a fully implemented system, where the results clearly
demonstrate an improved safety margin for the robot.

Introduction
Many potential robotics applications require a robot to op-
erate autonomously in complex environments where human
intervention is either not possible or expensive. Most robot
control algorithms, however, are imperfect and can drive the
robot into states from which it cannot recover by itself. Typ-
ically, such situations arise from imperfect external sens-
ing, perception, or modeling algorithms. For some robots,
these situations can be detected through observation of the
robot’s internal, or kinesthetic sensors. Information derived
from wheel encoders, pitch sensors, motor current sensors,
and so on, can indicate that the robot is about to fail.

In this paper, we explore how internal sensors can be
exploited to prevent failures. We seek to develop a safety
mechanism that allows a robot to perform its normal behav-
ior, except when a failure is imminent as indicated by its in-
ternal sensors. In such situations, the safety mechanism can
trigger a conservative control policy with the primary goal
of removing the robot from danger. We believe that such a
mechanism can greatly improve the operational range of a
robot, and thereby reduce the rate for human intervention.

∗This work was supported by United States Department of the
Interior under Grant No. NBCH-1040007. The content of the in-
formation in this publication does not necessarily reflect the posi-
tion or policy of the Defense Advanced Research Projects Agency
(DARPA), US Department of Interior, US Government, and no of-
ficial endorsement should be inferred.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we contribute an approach that makes use
of a trained classifier to detect potential failure states from
the robot’s internal sensors. Upon detecting dangerous situ-
ations, the classifier triggers a conservative safety response
behavior. We have fully implemented this approach on a dy-
namically balancing robot, the Segway RMP. Due to its dy-
namic balancing, it is relatively easy for the robot to fall over
should it collide with obstacles. Our results show that the
safety response mechanism, which requires relatively small
amounts of training data and developer time, enable the
robot to safely detect collisions with obstacles and to extri-
cate itself from all but the worst high-speed collisions. Thus,
the approach greatly increases the robustness, and therefore
the operational range of the robot.

The paper is structured as follows. In the following sec-
tion, we introduce the concepts that underlie our approach
using a Markov Decision Process (MDP) framework. Then,
we present an implementation on the Segway RMP, fol-
lowed by the performance results of this implementation un-
der various conditions. Finally, we present the relevant re-
lated work and then conclude the paper.

An Approach to Failure Prevention
For an autonomous robot to operate effectively, it must avoid
unrecoverable failures. That is, it must avoid situations from
which it cannot recover without external aid. For a dynami-
cally balancing robot for example, this means it must avoid
collisions that lead to falling over (e.g. figure 3). While this
is possible with the right control policy, finding this policy
is often hard and imperfections in perception compound the
problem. In this paper, we propose an alternative method,
whereby the robot executes its nominal policy which is aug-
mented by a fixed, simple failure prevention policy that is
executed only when a failure is considered likely. We as-
sume the underlying model of the robot is a Markov Deci-
sion Process(MDP) (Puterman 1994).

Definitions
We phrase the problem within an MDP framework. Let, S
be the state space of the robot, which the robot transitions
through over time as s1, . . . , st. Let A be the set of possi-
ble actions the robot can choose to execute and P be the
stochastic transition function P : S × A × S → [0, 1], that
describes how the robot transitions from state to state given

AAAI-05 / 1312



its action choices. Finally, we assume the robot has a control
policy πnorm : S → A for selecting actions given the state.
We call this the normal control policy.

For the Segway RMP, the state space can be observed by
the internal sensors of the robot (e.g. pitch, pitch rate, wheel
speeds, and so on), the actions are the forward and turn ve-
locity commands. The control policy is the algorithm for
commanding the robot to achieve the robot’s goals, be it to
kick a ball or some other task.

Figure 1: A schematic of the three types of states and the
transition relationship between them. Dashed lines indicate
lower probabilities.

A failure, in the context of this paper, is when the robot
encounters a situation from which it cannot extricate itself
without external aid. We concentrate on preventing one Seg-
way RMP failure, falling over. Other failures could be motor
failures or other mechanical faults. Using this as a starting
point, we now categorize states into three separate types, as:
• Failure F : No control policy the robot can execute will

enable it to recover from a failure without external aid.
• Caution C: The robot has a high probability of reaching

failure state by following πnorm.
• Normal N : The robot can follow its normal control policy

πnorm with relative safety.
Thus, we partition the state space into F,C,N , where F are
the failure states, C are the caution states, and N are normal
states which consists of the remainder of the state space (i.e.
N = S − (F ∪ C)). We will refer to (C ∪ F ) as abnormal
states. For the Segway RMP using only internal sensors, F
corresponds to when the robot is irretrievably falling over, C
to the states when it has collided with an object and cannot
continue its prior behavior, and N to the normal driving con-
ditions. By definition once in F the robot cannot return to C
or N . States in C are able to transition to N but have a high
probability of transitioning to F given the control policy(see
figure 1).

We define the caution states C as those states that are near
F , in terms of the probability of a failure in the near-term
future when acting under the control policy πnorm(s). Ad-
ditionally, we require that C is defined such that there is no
direct transition from N to F . In our approach, we do not
explicitly identify C, but learn a classifier from labeled data
that identifies between N and and abnormal states, (C ∪F ).
If an abnormal state is identified quickly enough, the robot
will be in a caution state.

Our goal therefore is to detect when the robot is in a cau-
tion state by quick detection of abnormal sensor data. When

it is, the robot should activate its safety reflex (πsafety(s))
to recover from the potential failure.

Overview of Failure Prevention Method
As sold by Segway LLC, the RMP’s control systems and
dynamics are unknown. As a result, an accurate model is
not readily attainable. Therefore, we decided to use a non
model-based method. We propose that learning methods
such as C4.5 can be used to obtain classifiers capable of
quickly distinguishing between normal (N ) and abnormal
(C ∪ F ) states. With such a classifier, caution states can be
identified, allowing time for a robot to prevent a failure.

Our approach contains several steps that lead to robust
failure prevention. These are:

1. Identify Failure States: First, the types of failure
F1 . . . Fn must be identified. Through the course of exper-
imentation with a robot, certain unrecoverable failure states
will occur. When they do, the type of failure and situation
which lead to the failure can be categorized.

2. Label Synchronized Internal Sensor Data: With the
dangerous situations known, we record the internal sensor
data of the robot as it transitions from a normal state, through
a caution state, to a failure state. This data originates from a
state observation vector z sent from the robot reporting each
sensors current reading. A log can be collected recording the
state vector over time :z1 . . . zt. Two different methods can
be used to identify within the log when a transition begins
from a normal state to a caution state. While recording the
log, we can watch the robot and mark when the robot enters
a dangerous situation. Alternatively, we can observe the state
transitions by plotting each time-series log of the state vector
and marking the time steps in which a transition took place
between a normal to abnormal state.

3. Develop a Classifier: With labeled data, methods in-
cluding learning techniques can be used to obtain classifiers
that are capable of autonomously detecting abnormal states,
i.e. caution states and failure states. Since no actions will
result in a transition from a failure state to a normal state,
the classifiers must be able to detect abnormal data quickly
so that a caution state is identified. Caution state detection
allows time for actions to prevent failure.

4. Take Preventative Actions: Once a caution state is de-
tected, the robot needs to change its control policy to prevent
failure. These policies will vary across different platforms
and environments. The success of the policy also depends
on the speed of the detection.

Preventing Failures for a Segway RMP
The Segway RMP is a large dynamically balancing robot.
Its weight of just over 100kg means that preventing failures,
in this case preventing it from falling over, considerably ex-
tends the operational capabilities of the robot and reduces
the need for human intervention. Therefore, it is an ideal
test case for failure prevention techniques. In this section,
we describe an implementation of our approach on a Seg-
way RMP. We begin our discussion by describing the RMP
platform.

AAAI-05 / 1313



The Segway Robot Mobility Platform (RMP)
The Segway RMP, with its zero turning radius, speeds of up
to 12.8km.h−1, and indoor-outdoor capabilities, is a versa-
tile platform for building a robot base (Nguyen et al. 2004).
A computer can communicate with the Segway RMP’s on-
board controllers via a CAN Bus interface. This commu-
nication takes two forms: commands can be sent to the
Segway RMP, and up-to-date state information can be read
back from the Segway. The on-board controllers maintain
the balance of the platform while attempting to achieve
the forward and rotational velocity commands vcmd, ωcmd,
which may be modified on our robot at 30Hz. The Segway
state information may be read at the same rate. The inter-
nal sensors, as relevant to this paper, consist of: Pitch an-
gle and rate (θp, θ̇p), wheel velocities (vL, vR), motor cur-
rents (IL, IR), forward displacement (So), and the sent ve-
locity command (vcmd, ωcmd). The displacement is the path
length travelled by the robot since it was started ie. by inte-
grating the average wheel rotations. Thus, in the framework
discussed in approach section, the sensor state is given by
z(θp, θ̇p, vL, vR, IL, IR, So, vcmd)T .

Dynamic balancing control means that the dynamics of
the RMP are unique. To accelerate in a direction, the robot
must tilt its center of gravity relative to the wheel axles
towards that direction. It must then ’catch up’ to itself to
prevent falling over. The more extreme the acceleration the
greater the tilt angle. As a result, when accelerating from
standstill requires that the wheels first roll backwards to cre-
ate the tilt, before rolling forwards to catch up (see figure 2).

(a) (b)

Figure 2: (a) The RMP’s velocity and pitch angle for starting
and stopping (b) The RMP’s pose definitions.

While the Segway RMP’s controllers are capable, they
assume that the robot is free to move, meaning there is
sufficient free space to drive and maintain balance. If the
robot hits an obstacle (e.g. because it fails to detect it), a
crash usually results. When driving into an obstacle, the
robot’s velocity drops causing the controllers to command
increased torque to correct the increased error between the
commanded velocity and the actual velocity. This becomes
a positive feedback loop with more torque causing more er-
ror and greater tilt angles. If the obstacle does not give way,
the robot will eventually reach its angle limits of about±30◦
and fall over. The force and weight of the robot make the re-
sulting crash spectacular and can cause damage to the robot

and anything in the surrounding area.

Identifying Failure States
We focus on the failures caused by running into obstacles. In
our work with the Segway RMP, we have noticed that obsta-
cles can be categorized into two classes based on their size.
Large obstacles, such as walls, humans, tables, and other
robots, cause the robot to pitch forward eventually reaching
its angle limits as described above. We will call these type
of failures, FL.

Small obstacles, on the other hand, tend to interfere with
just one wheel or side of the robot. Typically, the robot will
wedge itself up on top of the obstacle whereupon it spins out
of control as the rotational velocity error builds up. As our
main use of the Segway RMP is for robot soccer (Browning
et al. 2004), this can cause serious difficulties. We will call
these type of failures, FS . Figure 3 shows two sequences of
both FS and FL failures.

FL Large Obstacle Failure

(a) (b)
FS Small Obstacle Failure

(a) (b)

Figure 3: Images gathered from live video showing (a) Cau-
tion state (b) Failure state

Labeling the RMP’s Sensor Data
We have the ability to record a stream of the Segway RMP’s
sensor data, z1, . . . , zT , into a log file using our control soft-
ware. This allows a user to record the sensor data stream
while teleoperating the RMP into a particular failure state.
The recording/teleoperating procedure can be repeated as
desired to obtain data for describing the failure states. Fig-
ure 4 shows an example data stream for an FL failure.

With these plots, a human operator can label where the
data stream transitions from normal behavior, through a cau-
tion state to a failure.

The key in labeling when the transition began is the abil-
ity to observe sensor data from before, during, and after the
caution state. The entire sequence is observable and pick-
ing out the transition is made simple. For example, when
the RMP runs into a wall or other large obstacle, its overall
displacement stops increasing. This one sensor stream alone
is sufficient in identifying when the transition began. When
capturing the logs, we knew that we would be moving for-
ward before driving into the obstacle. This prior knowledge

AAAI-05 / 1314



Figure 4: Plots of 8 RMP Internal Sensor Streams of an FL

Failure

and the limited time length of the log allows hand-labeling
to become simpler.

A method used to reduce error in hand labeling was iden-
tifying two time steps corresponding to the transition. The
first time step, tN , signifies that all data before this time was
definitively normal data. The second time step, tF , signi-
fies that all data after this time should be labeled as abnor-
mal. It is difficult to know the exact time at which a caution
state begins, but it is much easier to identify a small window
where the transition began. This gives the labeler flexibility
to choose a range which helps to ensure that the labeled data
is correct.

Learning a Classifier
With hand labeled sensor data, it is possible to develop a
decision tree by hand to identify caution states. However,
hand-coding a decision tree for vectors of many dimensions
is both a time consuming and error prone process. Indeed,
we found that developing a hand coded decision tree pro-
duces a low-quality classifier at best. The difficulty arises
in determining the right combination of sensors and exact
threshold values needed to identify a caution state while not
falsely classifying normal data as abnormal. This is where
hand coded rules fail. They identify abnormal situations cor-
rectly, but they tend to falsely identify normal driving as ab-
normal at a much higher rate than the rules generated from
learning. It is simply very difficult for a human to consider
all the factors that go into recognizing a caution state.

There is a huge body of literature on classifiers with a
plethora of different techniques available that can be learned
from labeled data. We chose to use decision trees trained
using the C4.5 algorithm (Quinlan 1993), an extension of
ID3. C4.5 is able to learn compact pruned decision trees ac-
counting for unavailable values, continuous attribute inputs,
and avoids over fitting. We chose decision trees due to their
fast run-time execution. This enables the use of the classi-
fier at the lowest control levels of the robot running at 30Hz
with minimal overhead costs. Secondly, C4.5 is able to learn
useful trees from relatively small amounts of training data.

Given the effort required to capture logs of robot failures,
this is a very desirable feature.

From our knowledge of the domain and dynamics of the
RMP, we modified the sensor state used for the classifier to
be: z = (θp, θ̇p, vavg, IL, IR, vcmd)T . Here, the pitch angle
and rate (θp, θ̇p), motor currents (IL, IR), and sent veloc-
ity command (vcmd), are as before. Instead of the individ-
ual wheel velocities we use the average forward speed (i.e.
vavg = 1/2(vL + vR)) as this reflects the information that
is useful for detecting collisions. To avoid false-positives
due to noise, a simple first order filter is applied to the data
stream to smooth it out. Concretely, this filter is given as:

ẑt = α ∗ zt−1 + (1− α) ẑt−1 (1)

Where α = 0.25 was the nominal value used. During opera-
tion, the filter output ẑt is fed into the classifier and the result
determines if the robot is in a dangerous situation. This filter
is applied to the data used in training and to the the real-time
data being classified. The filter introduces a lag in the re-
sponse of the system. This can be described by a first order
pole with a time constant of Tdelay = T

α = 0.133s. Where T
is the time period between updates. For the segway updates
are run at 30Hz.

To create the training data for the classifier, the data
stream was filtered into definitely normal, and definitely fail-
ure data sets. That is, the definitely normal data set was la-
beled as normal DN = z1 . . . ztN

while the definitely failed
data set DF = ztF

. . . zT was labeled as abnormal. The re-
maining data, where labeling accuracy is uncertain, was not
used for training. This data was then provided to the C4.5
learning algorithm to produce a pruned decision tree. The
resulting pruned decision tree is converted into C++ code
and incorporated into the robot’s control loop.

Twenty logs of the RMP running into a large obstacle and
falling over were used along with approximately three min-
utes of normal driving data to obtain the large obstacle clas-
sifier. Fourteen logs of the RMP running into a soccer ball
and falling over along with approximately 3 minutes of nor-
mal driving data were used to obtain the small obstacle clas-
sifier. Furthermore, the amount of time spent collecting this
data and labeling was only approximately two hours. The
resulting classifier was well worth the minimal time com-
mitment.

Taking Preventative Actions
When an impending failure is detected a safety response
mechanism must be triggered. As this paper considers fail-
ures when the Segway RMP runs into an obstacle, the safety
response mechanism reverses the direction of travel for a
short time, before waiting for further commands. This re-
sponse mechanism is simplistic, and certainly not foolproof,
but is sufficient for the experiments described below. To be
precise, the response behavior sends a command speed of
2m.s−1 with the sign set to the opposite of the last com-
mand sent to the robot before the failure. The robot reverses
for a duration of 0.5s and then halts for 5s before switching
back to normal operation. This speed command causes the
robot to pitch backwards aggressively, pulling itself off the
obstacle, but without traveling very far.

AAAI-05 / 1315



The failure detection mechanism was implemented at the
low-level of the control architecture between the interface
with the Segway RMP itself. In this way it can effectively
block off commands when the robot is in danger and needs
to execute the recovery. In the next section, we examine the
performance of this approach on the Segway RMP.

Experimental Results
The following are the results of the implementation of our
method on the Segway RMP for both large and small obsta-
cle failures.

Classification Performance
We started with classifying the failure in which the RMP
runs into a wall or other large obstacle, i.e. FL. We hypothe-
sized that this would be the easier of the two failures to clas-
sify. We thought with successful results on this failure, the
smaller obstacle failure would be possible to prevent with
the same procedure.

We determined that most of the error resulted from sen-
sor data that was not explicitly classified as either normal or
abnormal by the decision tree. This data by default is classi-
fied as normal. As a result, some of the data that was more
extreme than the training data was classified as normal. This
error is fixed by training on more data which contains most
of the situations that will be experienced. Using this infor-
mation, we obtained more logs and trained a final working
classifier. The results of this classifier using 10-fold cross
validation are shown in Figure 5 under Final FL Results.

Normal Abnormal
Correct Correct

FL Results 92.6% 97.7%
FS Results 91.5% 97.9%

Figure 5: Percentage correct classification for normal and
abnormal cases for large and small obstacles.

With successful detection of FL, we used the same ap-
proach to classify FS . Figure 5 shows the results of the FS

classifier using 10-fold cross validation.

Failure Prevention Results
In implementation, we used the trained classifiers described
in the previous section to continuously identify whether the
robot was in a normal state or not.

If abnormal data was recognized a caution state was iden-
tified and the Segway RMP triggers the safety response be-
havior described earlier. Additionally, it became necessary
in practice to filter the output of the classifier to require
a small number of sequential abnormal classifications be-
fore triggering the safety behavior. Five sequential abnormal
classifications were required to trigger the response. This fi-
nal filtering was required to prevent undue misfires of the
safety mechanism from single false-positive classifications.
For example when the robot accelerates quickly from rest,
the classifier can sometimes report one or two frames of ab-
normal behavior but not a long stream of abnormal behavior.

The final number was obtained through experimentation to
eliminate false positives in extensive testing. With this fil-
tering mechanism no misfires of the safety behavior were
observed as reported below.

For a dynamically balancing robot, speed of detection is
critical to being able to avoid the impending failure. As ex-
plained earlier, it is very difficult to identify exactly when the
RMP transitions from a normal state to an abnormal state. In
hand labeling, two transitions were identified, the first signi-
fies that all data before was normal while the second signi-
fies that all data afterwards is abnormal. We conducted tests
to characterize the speed of the detection by determining the
time in which the classifier identifies an abnormal state rel-
ative to the second hand-labeled step (i.e. to tF ).

We performed 10-fold cross validations on both failure
types. Figure 6 shows a histogram of the detection speeds
for each type of failure, FL and FS respectively. The results
show the distribution over time of the autonomous caution
state detection relative to the second label. A negative de-
tection time corresponds to the classifier detecting the im-
pending failure faster than compared to the human-labeled
transition. As seen, both classifiers on average perform bet-
ter than human labeling.

(a) (b)

Figure 6: (a)Large Obstacle Detection Time Results, FL (b)
Small Obstacle Detection Time Results, FS

Tests were also conducted to evaluate the overall effec-
tiveness of failure prevention for the Segway RMP driving
in a flat, but cluttered environment, as shown in figures 3
and 7. We teleoperated the robot, with the failure preven-
tion system running, into a soccer ball obstacle 30 times and
a large obstacle an additional 30 times. This test also in-
cluded considerable driving in free space to observe in any
false-positives misfires would occur. For the total 60 colli-
sions, the safety response behavior triggered correctly and
prevented the robot from falling in each case. The robot
would hit the obstacle, the failure mechanism would activate
and drive the robot backwards out of the situation. Addition-
ally, no false-positive misfires were observed during driving
in free space. As a result, the robot could be driven around at
random without fear of falling over. Figure 7 shows an im-
age sequence of the working RMP failure prevention. The
RMP drives into an obstacle, recognizes the obstacle, and
safely backs away.

Related Work
Failure detection is a rich field (e.g. (Gertler 1998)). For mo-
bile robots, most approaches focus on model-based meth-
ods where a model of the robot is used to predict how it

AAAI-05 / 1316



FL Large Obstacle Failure

(a) (b)
FS Small Obstacle Failure

(a) (b)

Figure 7: Images gathered from live video showing (a) Cau-
tion state (b) Successful failure prevention

transitions in the world (i.e. P (s′, a, s) in the MDP – see
the approach section). Using this model, predictions can be
made about behavior of the robot which can be compared
against sensor readings to determine a residual. The residual
can then be classified to determine if the robot is failing.

Generally, four methods for residual generation have
been explored in the literature. These include: parameter
estimation, Kalman filters, diagnostic observer, and par-
ity relation (Gertler 1998; Yan 2003). Parameter estima-
tion techniques vary but include the use of neural net-
works (Yan 2003) as classifiers and function approximation
methods (Polycarpou & Vemuri 1995), additionally particle
filter based methods have become recently popular (Dearden
et al. 2004; Dearden & Clancy 2002).

Model-based approaches differ from our method, where
no model is required, although one is assumed to exist. The
requirement for a detailed model can be limiting when no
such models are available. For many commercial robots,
such as the Segway RMP and Sony AIBO, no detailed model
exists. Additionally, as the models are a function of the en-
vironment, changes in the environment that are poorly ac-
counted for in the model degrades its accuracy and useful-
ness.

There are a number of related model-free techniques in
the literature. In particular, (Vail & Veloso 2004) makes use
of C4.5 to learn state classifications for the Sony AIBO robot
using accelerometer data. This work uses a classifier to de-
termine the walking surface of the robot and whether or not
the AIBO has fallen over (Vail & Veloso 2004). Thus, this
work is an extension of this idea to include failure preven-
tion rather than recovery. State classification by other means
is also possible, as in (Lenser & Veloso 2004), and this con-
stitutes a future direction for our research.

Future Work
Future work will concentrate on eliminating the need for a
human to label the internal sensor data. The data can be con-
tinually logged and data relating to a bad situation such as
running into a wall can be identified when compared to nor-

mal driving. This can then be used to obtain a classifier to
identify the onset of future failure states. With this infras-
tructure, the classifier can be continually updated leading to
a better classifier over time.

Conclusions
This paper has contributed a novel approach to detect fail-
ures from internal sensor information for an autonomous
robot. Our approach utilizes a decision-rule classifier,
trained from a small set of hand labeled data. The classi-
fier detects states that are potentially dangerous and triggers
a failure prevention mechanism. We fully implemented this
approach on a dynamically balancing Segway RMP robot
to prevent it from falling when it collides with external ob-
stacles. The procedure takes minimal time to implement
and the results clearly demonstrate the usefulness of the ap-
proach in improving the robustness of the robot.

References
Browning, B.; Rybski, P.; Searock, J.; and Veloso, M. 2004.
Development of a soccer-playing dynamically balancing
mobile robot. In Proceedings of ICRA.
Dearden, R., and Clancy, D. 2002. Particle filters for real-
time fault detection in planetary rovers. In Proceedings of
the International Workshop on Principles of Diagnosis.
Dearden, R.; Huttner, F.; Simmons, R.; Verma, V.; Thurn,
S.; and Willeke, T. 2004. Real-time fault detection and
situational awareness for rovers: Report on the mars tech-
nology program task. In Proceedings of IEEE Aerospace
Conference.
Gertler, J. 1998. Fault Detection and Diagnosis in Engi-
neering Systems. NY: Marcel Dekker, Inc.
Lenser, S., and Veloso, M. 2004. State identification from
robot sensors using non-parametric statistics. In Proceed-
ings of the International Conference on Intelligent Robots
and Systems.
Nguyen, H.; Morrell, J.; Mullens, K.; Burmeister, A.;
Miles, S.; Farrington, N.; Thomas, K.; and Gage, D. 2004.
Segway robotic mobility platform. In SPIE Proc. 5609:
Mobile Robots XVII.
Polycarpou, M., and Vemuri, A. 1995. Learning method-
ology for failure detection and accommodation. Control
Systems Magazine, IEEE 15(3):16–24.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley Interscience.
Quinlan, J. 1993. Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann.
Vail, D., and Veloso, M. 2004. Learning from accelerom-
eter data on a legged robot. In Proceedings of the 5th
IFAC/EURON Symposium on Intelligent Autonomous Ve-
hicles.
Yan, W. 2003. Fault detection and multi-classifier fusion
for unmanned aerial vehicles (uavs). In GE Global Re-
search Technical Report.

AAAI-05 / 1317


