
Speeding Up Learning in Real-time Search via Automatic State Abstraction∗

Vadim Bulitko and Nathan Sturtevant and Maryia Kazakevich
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{bulitko|nathanst|maryia}@cs.ualberta.ca

Abstract

Situated agents which use learning real-time search are well
poised to address challenges of real-time path-finding in
robotic and computer game applications. They interleave a
local lookahead search with movement execution, explore an
initially unknown map, and converge to better paths over re-
peated experiences. In this paper, we first investigate how
three known extensions of the most popular learning real-
time search algorithm (LRTA*) influence its performance in
a path-finding domain. Then, we combine automatic state ab-
straction with learning real-time search. Our scheme of dy-
namically building a state abstraction allows us to generalize
updates to the heuristic function, thereby speeding up learn-
ing. The novel algorithm converges up to 80 times faster than
LRTA* with only one fifth of the response time of A*.

Introduction
In this paper, we consider a simultaneous planning and
learning problem. More specifically, we require an agent to
navigate on an initially unknown map under real-time con-
straints. As an example, consider a robot driving to work
every morning. Imagine the robot to be a newcomer to the
town. The first route the robot finds may not be optimal be-
cause the traffic jams, road conditions, and other factors are
initially unknown. With a passage of time, the robot con-
tinues to learn and eventually converges to a nearly optimal
commute. Note that planning and learning happen while the
robot is driving and therefore are subject to time constraints.

Present-day mobile robots are often plagued by localiza-
tion problems and power limitations, but simulation counter-
parts already allow researchers to focus on the planning and
learning problem. For instance, the RoboCup Rescue simu-
lation (Kitano et al. 1999) requires real-time planning and
learning with multiple agents mapping out unknown terrain.

Similarly, many current-generation real-time strategy
games employ a priori known maps. Full knowledge of the
maps enables complete search methods such as A*. Prior
availability of the maps allows path-finding engines to pre-
compute data (e.g., visibility maps) to speed up on-line nav-
igation. Neither technique will be applicable in forthcoming
generations of commercial and academic games (Buro 2002)

∗We appreciate funding from NSERC, iCORE, and AICML.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

which will require the agent to cope with the initially un-
known maps via exploration and learning during the game.

To compound the problem, the dynamic A* (D*) (Stenz
1995) and D* Lite (Koenig & Likhachev 2002), frequently
used in robotics, work well when the robot’s movements are
slow with respect to its planning speed. In real-time strat-
egy games, however, the AI engine can be responsible for
hundreds to thousands of agents traversing the map simulta-
neously and the planning cost becomes a major factor. We
thus discuss the following three questions.

First, how planning time per move and, particularly the
first-move delay, can be minimized so that each agent moves
smoothly and responds to user requests nearly instantly.
Second, given the local nature of the agent’s reasoning and
the initially unknown terrain, how the agent can learn a bet-
ter global path. Third, how learning can be accelerated so
that only a few repeated path-finding experiences are needed
before converging to a near-optimal path.

In the rest of the paper, we first make the problem settings
concrete and derive specific performance metrics based on
the questions above. Then we discuss the challenges that
incremental heuristic search faces when applied to real-time
path-finding. As an alternative, we will review a family of
learning real-time search algorithms which are well poised
for use by situated agents. Starting with the most popu-
lar real-time search algorithm, LRTA*, we make our initial
contribution by evaluating three known complementary ex-
tensions in the context of real-time path-finding. The re-
sulting algorithm, LRTS, exhibits a 46-fold speed-up in the
travel until convergence while having one sixth of the first-
move delay of an A* agent. Despite the improvements, the
learning and search still happen on a large ground-level map.
Thus, all states are considered distinct and no generalization
is used in learning. We then make the primary contribution
by introducing an effective mechanism for building and re-
pairing a hierarchical abstraction of the map. This allows us
to constrain the search space, reduce the amount of learning
required for convergence, and generalize learning in each in-
dividual state onto neighboring states. The novel algorithm,
PR-LRTS, is then empirically evaluated.

Problem Formulation
In this paper, we focus on a particular real-time path-finding
task. Specifically, we will assume that the agent is tasked to

AAAI-05 / 1349

travel from the start state (xs, ys) to the goal state (xg, yg).
The coordinates are on a two-dimensional rectangular grid.
In each state, up to eight moves are available leading to the
eight immediate neighbors. Each straight move (i.e., north,
south, west, east) has the travel cost of 1 while each diago-
nal move has the travel cost of

√
2. Each state on the map

can be passable or occupied by a wall. In the latter case, the
agent is unable to move into it. Initially, the map in its en-
tirety is unknown to the agent. In each state (x, y) the agent
can see the status (occupied/free) of the neighborhood of the
visibility radius v: {(x, y) | |x−x| ≤ v & |y−y| ≤ v}.
The agent can choose to remember the observed parts of the
map and use that information in subsequent planning.

A trial is defined as a finite sequence of moves the agent
takes to travel from the start to the goal state. Once the goal
state is reached, the agent is reset to the start state and the
next trial begins. A convergence run is defined as the first se-
quence of trials such that the agent does not learn or explore
anything new on the subsequent trials.

Each problem instance is fully specified by the map and
start and goal coordinates. We then run the agent until
convergence and measure the cumulative travel cost of all
moves (convergence travel), the average delay before the
first move (first-move lag), and the length of the path found
on the final trial (final solution length). The last measure
is used to compute the amount of suboptimality defined as
percentage of the length excess.

Incremental Search
Classical A* search is inapplicable due to an initially un-
known map. Specifically, it is impossible for the agent to
plan its path through state (x, y) unless it is either positioned
within the visibility radius of the state or has visited this state
on a prior trial.

A simple solution to this problem is to generate the ini-
tial path under the assumption that the unknown areas of
the map contain no occupied states (the free space assump-
tion (Koenig, Tovey, & Y. 2003)). With the octile distance1

as the heuristic, the initial path is close to the straight line
since the map is assumed empty. The agent follows the ex-
isting path until it runs into an occupied state. During the
travel, it updates the explored portion of the map in its mem-
ory. Once the current path is blocked, A* is invoked again
to generate a new complete path from the current position to
the goal. The process repeats until the agent arrives at the
goal. It is then reset to the start state and a new trial begins.
The convergence run ends when no new states are seen.

To increase efficiency, several methods of re-using infor-
mation over subsequent planning episodes have been sug-
gested. The two popular versions are D* (Stenz 1995) and
D* Lite (Koenig & Likhachev 2002). Unfortunately, these
enhancements do not reduce the first-move lag time. Specif-
ically, after the agent is given the destination coordinates,
it has to conduct an A* search from its position to the des-
tination before it can move. Even on small maps, this de-

1Octile distance is a natural adaptation of Euclidian distance
to the case of the eight discrete moves and can be computed in a
closed form.

goal state

start state

Figure 1: A sample map from a BioWare’s game.

lay can be substantial. Consider, for instance, a map from
BioWare’s game “Baldur’s Gate” shown in Figure 1. Before
an A*-controlled agent can make its first move, a complete
path from start to goal state has to be generated. This is in
contrast to LRTA* (Korf 1990), which only performs a small
local search to select the first move. As a result, several or-
ders of magnitude more agents can calculate and make their
first move in the time it takes one A* agent.

A thorough comparison between D* Lite and an extended
version of LRTA* is found in (Koenig 2004). It investi-
gates the conditions under which real-time search outper-
form incremental search. Since our paper focuses on real-
time search and uses incremental search only as a reference
point and because D*/D* Lite does not reduce the first-move
lag on the final trial, we use the simpler incremental A* in
our experiments.

Real-time Search
Real-time search was pioneered by (Korf 1990) with the
presentation of RTA* and LRTA* algorithms. Unlike A*,
which can freely traverse its open list, each RTA*/LRTA*
search assumes the agent to be in a single current state that
can be changed only by taking moves and, thereby, incur-
ring travel cost. From its state, the agent conducts a full-
width fixed-depth local forward search (called lookahead)
and, similarly to minimax game-playing agents, uses its
heuristic h to evaluate the frontier states. It then takes the
first move towards the most promising frontier state (i.e., the
state with the lowest g + h value where g is the cost of trav-
eling from the current state to the frontier state) and repeats
the cycle. The initial heuristic is set to the octile distance.
On every move, the heuristic value of the current state is in-
creased to the g + h value of the most promising state.2 As
discussed in (Barto, Bradtke, & Singh 1995), this operation
is analogous to the “backup” step used in value iteration re-
inforcement learning agents with the learning rate α = 1
and no discounting. LRTA* will refine an initial admissible
heuristic to the perfect heuristic along a shortest path. This
constitutes a convergence run. The updates to the heuristic
also guarantee that LRTA* will not get trapped in infinite
cycles. We now make the first contribution of this paper by

2As (Shimbo & Ishida 2003), we do not decrement h of any
state. Convergence to optimal paths is still possible as the initial
heuristic is admissible but the convergence is accelerated.

AAAI-05 / 1350

Table 1: Top: Effects of the lookahead depth d on deliberation
time per unit of distance and average travel per trial in LRTA*.
Middle: Effects of the optimality weight γ on suboptimality of the
final solution and total travel in LRTA* (d = 1). Bottom: Effects
of learning quota T on amount of first trial and total travel.

d Deliberation per move (ms) Travel per trial
1 0.0087 661.5
3 0.0215 241.8
5 0.0360 193.3
7 0.0514 114.9
9 0.0715 105.8

γ Suboptimality Convergence travel
0.1 6.19% 9,300
0.3 4.92% 8,751
0.5 2.41% 9,435
0.7 1.23% 13,862
0.9 0.20% 25,507
1.0 0.00% 31,336

T First trial travel Convergence travel
0 434 457
10 413 487
50 398 592

1,000 390 810
5,000 235 935

evaluating the effects of three known complementary exten-
sions in the context of real-time path-finding.

First, increasing lookahead depth increases the amount of
deliberation per move but, on average, causes the agent to
take better moves, thereby finding shorter paths. This effect
is demonstrated in Table 1 with averages of 50 convergence
runs over 10 different maps. Hence, the lookahead depth can
be selected dynamically depending on the amount of CPU
time available per move and the ratio between the planning
and moving speeds (Koenig 2004).

Second, the distance from the current state to the state
on the frontier (the g-function) can be weighted by the
γ ∈ (0, 1]. This allows us to trade-off the quality of the
final solution and the convergence travel. This extension of
LRTA* is equivalent to scaling the initial heuristic by the
constant factor of 1+ε = 1/γ (Shimbo & Ishida 2003). Bu-
litko (2004) proved that γ-weighted LRTA* will converge to
a solution no worse than 1/γ of optimal. In practice, much
better paths are found (Table 1). A similar effect is observed
in weighted A*: increasing the weight of h (i.e., decreasing
the relative weight of g) dramatically reduces the number of
states generated, at the cost of longer solutions (Korf 1993).

Third, backtracking within LRTA* was first proposed
in (Shue & Zamani 1993). Their SLA* algorithm used the
lookahead of one and the same update rule as LRTA*. How-
ever, upon updating (i.e., increasing) the heuristic value in
a state, the agent moved (i.e., backtracked) to its previous
state. Backtracking increases travel on the first trial but re-
duces the convergence travel (Table 1). Note that backtrack-
ing does not need to happen after every update to the heuris-
tic function. SLA*T, introduced in (Shue, Li, & Zamani
2001), backtracks only after the cumulative amount of up-
dates to the heuristic function made on a trial exceeds the
learning quota (T). We will use an adjusted implementation

LRTS(d, γ, T)
1 initialize: h← h0, s← sstart, u← 0
2 while s 6= sgoal do
3 expand children i moves away, i = 1 . . . d
4 on level i, find state si with the lowest f = γ · g + h
5 update h(s)← max1≤i≤d f(si)
6 increase amount of learning u by |∆h|
7 if u ≤ T then
8 execute d moves to get to sd

9 else
10 execute d moves to backtrack to previous s, set u = T
11 end if
12 end while

Figure 2: LRTS algorithm unifies LRTA*, ε-LRTA*, and SLA*T.

of this idea which enables us to bound the length of the path
found on the first trial by (h∗(sstart) + T)/γ where h∗(sstart)
is the actual shortest distance between the start and goal.

An algorithm combining all three extensions (lookahead
d, optimality weight γ, and backtracking control T) operates
as follows. In the current state s, it conducts a lookahead
search of depth d (line 3 in Figure 2). At each ply, it finds
the most promising state (line 4). Assuming that the ini-
tial heuristic h0 is admissible, we can safely increase h(s)
to the maximum among the f -values of promising states for
all plies (line 5). If the total learning amount u exceeds the
learning quota T , the agent backtracks to the previous state
(lines 7, 10). Otherwise, it executes d moves forward to-
wards the most promising frontier state (line 8). In the rest
of the paper, we will refer to this combination of three ex-
tensions as LRTS (learning real-time search).

LRTS with domain-tuned parameters converges two or-
ders of magnitude faster than LRTA* while finding paths
within 3% of optimal. At the same time, LRTS is about five
times faster on the first move than incremental A* as shown
in Table 2. Despite the improvements, LRTS takes hundreds
of moves before convergence is achieved, even on smaller
maps with only a few thousand states.

Novel Method: Path-refinement LRTS
The problem with LRTA* and LRTS described in the pre-
vious section stems from the fact that the heuristic is learnt
in a tabular form. Each entry in the table corresponds to
a single state and no generalization is attempted. Conse-
quently, thousands of heuristic values have to be incremen-
tally computed via individual updates – one per move of the
agent. Thus, significant traveling costs are incurred before
the heuristic function converges. This is not the way humans
and animals appear to learn a map. We do not learn at the
micro-level of individual states but rather reason over areas

Table 2: Incremental A*, LRTA*, LRTS averaged over 50 runs
on 10 maps. The average solution length is 59.5. LRTA* is with
the lookahead of 1. LRTS is with d = 10, γ = 0.5, T = 0. All
timings are taken on a dual G5, 2.0GHz with gcc 3.3.

Algorithm 1st move time Conv. travel Suboptimality
A* 5.01 ms 186 0.0%

LRTA* 0.02 ms 25,868 0.0%
LRTS 0.93 ms 555 2.07%

AAAI-05 / 1351

A B

KC

J

H

E

F

G

D

I

Group 1 Group 2

Group 4

1

4

2

3

Group 3

Figure 3: The process of abstracting a graph.

of the map as if they were single entities. Thus, the primary
contribution of this paper is extension of learning real-time
heuristic search with a state abstraction mechanism.

Building a State Abstraction
State abstraction has been studied extensively in reinforce-
ment learning (Barto & Mahadevan 2003). While our
approach is fully automatic, many algorithms, such as
MAXQ (Dietterich 1998), rely on manually engineered hi-
erarchical representation of the space.

Automatic state abstraction has precedents in heuris-
tic search and path-finding. For instance, Hierarchical
A* (Holte et al. 1995) and AltO (Holte et al. 1996) used
abstraction to speed up classical search algorithms. Our ap-
proach to automatically building abstractions from the un-
derlying state representation is similar to Hierarchical A*.

We demonstrate the abstraction procedure on a hand-
traceable micro-example in Figure 3. Shown on the left is
the original graph of 11 states. In general, we can use a
variety of techniques to abstract the map, and we can also
process the states in any order. Some methods and orderings
may, however, work better in specific domains. In this paper,
we look for cliques in the graph.

For this example, we begin with the state labeled A,
adding it and its neighbors, B and C, to abstract group 1,
because they are fully connected. Their group becomes a
single state in the abstract graph. Next we consider state D,
adding its neighbor, E, to group 2. We do not add H because
it is not connected to D. We continue to state F, adding its
neighbor, G, to group 3. States H, I, and J are fully con-
nected, so they become group 4. Because state K can only
be reached via state H, we add it to group 4 with H. If all
neighbors of a state have already been abstracted, that state
will become a single state in the abstract graph. As states
are abstracted, we add edges between existing groups. Since

Figure 4: Abstraction levels 0, 1, and 2 of a toy map. The number
of states is 206, 57, and 23 correspondingly.

there is an edge between B and E, and they are in different
groups, we add an edge between groups 1 and 2 in the ab-
stract graph. We proceed similarly for the remaining inter-
group edges. The resulting abstracted graph of 4 states is
shown in the right portion of the figure.

We repeat the process iteratively, building an abstraction
hierarchy until there are no edges left in the graph. If the
original graph is connected, we will end up with a single
state at the highest abstraction level, otherwise we will have
multiple disconnected states. Assuming a sparse graph of V
vertices, the size of all abstractions is at most O(V), because
we are reducing the size of each abstraction level by at least a
factor of two. The cost of building the abstractions is O(V).
Figure 4 shows a micro example.

Because the graph is sparse, we represent it with a list of
states and edges as opposed to an adjacency matrix. When
abstracting an entire map, we first build its connectivity
graph and then abstract this graph in two passes. Our ab-
stractions are most uniform if we remove 4-cliques in a first
pass, and then abstract the remaining states in a second pass.

Repairing Abstraction During Exploration
A new map is initially unknown to the agent. Under the free
space assumption, the unknown areas are assumed empty
and connected. As the map is explored, obstacles are found
and the initial abstraction hierarchy needs to be repaired to
reflect these changes. This is done with four operations:
remove-state, remove-edge, add-state, and add-edge. We
describe the first two in detail here.

In the abstraction, each edge either abstracts into another
edge in the parent graph, or becomes internal to a state in
the parent graph. Thus, each abstract edge must maintain
a count of how many edges it is abstracting from the lower
level. When remove-edge removes an edge, it decrements
the count of edges abstracted by the parent edge, and recur-
sively removes the parent if the count falls to zero. If an
edge is abstracted into a state in the parent graph, we add
that state to a repair queue to be handled later. The remove-
state operation is similar. It decrements the number of states
abstracted by the parent, removing the parent recursively if
needed, and then adds the parent state to a repair queue. This
operation also removes any edges incident to the state.

When updating larger areas of the map in one pass, us-
ing a repair queue allows us to share the cost of the addi-
tional steps required to perform further repairs in the graph.
Namely, there is no need to completely repair the abstraction
if we know we are going to make other changes. The repair
queue is sorted by abstraction level in the graph to ensure
that repairs do not conflict.

In a graph with n states, the remove-state and remove-
edge operations can, in the worst case, take O(log n) time.
However, their time is directly linked to how many states
are affected by the operation. If there is one edge that cuts
the entire graph, then removing it will take O(log n) time.
However, in practice, most removal operations have a local
influence and take time O(1). Handling states in the repair
queue is an O(log n) time operation in the worst case, but
again, we only pay this cost when we are making changes
that affect the connectivity of the entire map. In practice,

AAAI-05 / 1352

K

J

H F

G
I

Group 4
Group 3

K

J

H F

G
I

Group 4
Group 3

4 3
(2) -> (1)

4 3

Figure 5: Repairing abstractions.

there will be many states for which we only need to verify
their internal connectivity.

Figure 5 illustrates the repair process. Shown on the left is
a subgraph of the 11-state graph from Figure 3. When in the
process of exploration it is found that state H is not reach-
able from G, the edge (H,G) will be removed (hence shown
with a dashed line). Thus, the abstraction hierarchy needs to
be repaired. The corresponding abstracted edge (4,3) repre-
sents two edges: (G,H) and (G,I). When (G,H) is removed,
the edge count of (4,3) is decremented from 2 to 1.

Suppose it is subsequently discovered that edge (F,G) is
also blocked. This edge is internal to the states abstracted
by group 3 and so we add group 3 to the repair queue. When
we handle the repair queue, we see that states abstracted by
group 3 are no longer connected. Because state G has only
a single neighbor, we can merge it into group 4, and leave
F as the only state in group 3. When we merge state G into
group 4, we also delete the edge between groups 3 and 4 in
the abstract graph (right part of Figure 5).

Abstraction in Learning Real-time Search
Given the efficient on-line mechanism for building state ab-
straction, we propose, implement, and evaluate a new algo-
rithm called PR-LRTS (Path-Refining Learning Real-Time
Search). A PR-LRTS agent operates at several levels of ab-
straction. Each level from 0 (the ground level) to N ≥ 0 is
“populated” with A* or LRTS. At higher abstract levels, the
heuristic distance between any two states is Euclidian dis-
tance between them, where the location of a state is the av-
erage location of the states it abstracts. This heuristic is not
admissible with respect to the actual map. Octile distance is
used as the heuristic at level 0.

At the beginning of each trial, no path has been con-
structed at any level. Thus, the algorithm at level N is in-
voked. It works at the level N and produces the path pN .
In the case of A*, pN is a complete path from the N -level
parent of the current state to the N -level parent of the goal
state. In the case of LRTS, pN is the first d steps towards the
abstracted goal state at level N . The process now repeats at
level N −1 resulting in path pN−1. But, when we repeat the
process, we restrict any planning process at level N − 1 to a
corridor induced by the abstract path at level N . Formally,
the corridor cN−1 is the set of all states which are abstracted
by states in pN . To give more leeway for movement and
learning, the corridor can also be expanded to include any
states abstracted by the k–step neighbors of pN . In this pa-

PR LRTS
1 assign A*/LRTS to abstraction levels 0, . . . , N
2 initialize the heuristic for all LRTS-levels
3 reset the current state: s← sstart
4 reset abstraction level ` = 0
5 while s 6= sgoal do
6 if algorithm at level ` reached the end of corridor c` then
7 if we are at the top level ` = N then
8 run algorithm at level N
9 generate path pN and corridor cN−1

10 go down abstraction level: ` = `− 1
11 else
12 go up abstraction level: ` = ` + 1
13 end if
14 else
15 run algorithm at level ` within corridor c`

16 generate path p` and corridor c`−1

17 if ` = 0 then execute path p0

18 else continue refinement: ` = `− 1
19 end if
20 end while

Figure 7: Path refinement learning real-time search.

per, we choose k = 1. While executing p0, new areas of the
map may be seen. The state abstraction hierarchy will be re-
paired as previously described. This path-refining approach,
summarized in Figure 7, benefits path-finding in three ways.

First, algorithms running at the higher levels of abstrac-
tion reason over a much smaller (abstracted) search space
(e.g., Figure 4). Consequently, the number of states ex-
panded by A* is smaller and the execution is faster.

Second, when LRTS learns at a higher abstraction level, it
maintains the heuristic at that level. Thus, a single update to
the heuristic function effectively influences the agent’s be-
havior on a set of ground-level states. Such a generalization
via state abstraction reduces the convergence time.

Third, algorithms operating at lower levels are restricted
to the corridors ci. This focuses their operation on more
promising areas of the state space and speeds up search (in
the case of A*) and convergence (in the case of LRTS).

Empirical Evaluation
We evaluated the benefits of state abstraction in learning
real-time heuristic search by running PR-LRTS against the
incremental A* search, LRTA*, and LRTS for path-finding
on 9 maps from Bioware’s “Baulder’s Gate” game. The
maps ranged in size from 64 × 60 to 144 × 148 cells, av-
eraging 3212 passable states. Each state had up to 8 pass-
able neighbors and the agent’s visibility radius was set to
10. LRTS and PR-LRTS have been run with a number of
parameters and a representative example is found in Ta-
ble 3. Starting from the top entry in the table: incremen-
tal A* shows an impressive convergence travel (only three
times longer than the shortest path) but has a substantial
first-move lag of 5.01 ms. LRTA* with the lookahead of
1 is about 250 times faster but travels 140 times more be-
fore convergence. LRTS(d = 10, γ = 0.5, T = 0) has
less than 20% of A*’s first-move lag and does only 2% of
LRTA*’s travel. State abstraction in PR-LRTS (with A* at
level 0 and LRTS(5,0.5,0.0) at level 1) reduces the conver-

AAAI-05 / 1353

0 20 40 60 80
0

2

4

6

8

Solution Length

Fi
rs

t M
ov

e
La

g
(m

s) A*
LRTA*
LRTS
PR−LRTS

0 20 40 60 80
0

1

2

3

4
x 104

Solution Length

Co
nv

er
ge

nc
e

Tr
av

el

0 20 40 60 80
0

1

2

3

Solution Length

Su
bo

pt
im

al
ity

 (%
)

Figure 6: First-move lag, convergence travel, and final solution suboptimality over the optimal solution length.

gence travel by an additional 40% while preserving the lag
time of LRTS. Figure 6 plots the performance measures over
the optimal solution length. PR-LRTS appears to scale well
and its advantages over the other algorithms become more
pronounced on more difficult problems.

Conclusions and Future Work
We have considered some of the challenges imposed by real-
time path-finding as faced by mobile robots in unknown ter-
rain and characters in computer games. Such situated agents
must react quickly to the commands of the user while at the
same time exhibiting reasonable behavior. As the first result,
combining three complementary extensions of the most pop-
ular real-time search algorithm, LRTA*, yielded substan-
tially faster convergence for path-finding tasks. We then in-
troduced state abstraction for learning real-time search. The
dynamically built abstraction levels of the map increase per-
formance by: (i) constraining the search space, (ii) reduc-
ing the amount of updates made to the heuristic function,
thereby accelerating convergence, and (iii) generalizing the
results of learning over neighboring states.

Future research will investigate if the savings in memory
gained by learning at a higher abstraction level will afford
application of PR-LRTS to moving target search. The pre-
viously suggested MTS algorithm (Ishida & Korf 1991) re-
quires learning O(n2) heuristic values which can be pro-
hibitive even for present-day commercial maps. Addition-
ally, we are planning to investigate how the A* component
of PR-LRTS compares with the incremental updates to the
routing table in Trailblazer search (Chimura & Tokoro 1994)
and its hierarchical abstract map sequel (Sasaki, Chimura,
& Tokoro 1995). Finally, we will investigate sensitivity of
PR-LRTS to the control parameters as well as the different
abstraction schemes in path-finding and other domains.

References
Barto, A. G., and Mahadevan, S. 2003. Recent advances in hier-
archical reinforcement learning. DEDS 13:341 – 379.

Table 3: Typical results averaged over 50 convergence runs on 10
maps. The average shortest path length is 59.6.

Algorithm 1st move time Conv. travel Suboptimality
A* 5.01 ms 186 0.0%

LRTA* 0.02 ms 25,868 0.0%
LRTS 0.93 ms 555 2.07%

PR-LRTS 0.95 ms 345 2.19%

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to
act using real-time dynamic programming. AIJ 72(1):81–138.
Bulitko, V. 2004. Learning for adaptive real-time search. Techni-
cal Report http://arxiv.org/abs/cs.AI/0407016, Computer Science
Research Repository (CoRR).
Buro, M. 2002. ORTS: A hack-free RTS game environment. In
Proceedings of Int. Computers and Games Conference, 12.
Chimura, F., and Tokoro, M. 1994. The Trailblazer search: A new
method for searching and capturing moving targets. In Proceed-
ings of the National Conf. on Artificial Intelligence, 1347–1352.
Dietterich, T. G. 1998. The MAXQ method for hierarchical rein-
forcement learning. In Proceedings of the International Confer-
ence on Machine Learning, 118–126.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A. 1995. Hi-
erarchical A*: Searching abstraction hierarchies efficiently. Tech-
nical Report tr-95-18, U. of Ottawa.
Holte, R.; Mkadmi, T.; Zimmer, R. M.; and MacDonald, A. J.
1996. Speeding up problem solving by abstraction: A graph ori-
ented approach. Artificial Intelligence 85(1-2):321–361.
Ishida, T., and Korf, R. 1991. Moving target search. In Proceed-
ings of the Int. Joint Conf. on Artificial Intelligence, 204–210.
Kitano, H.; Tadokoro, S.; Noda, I.; Matsubara, H.; Takahashi, T.;
Shinjou, A.; and Shimada, S. 1999. Robocup rescue: Search and
rescue in large-scale disasters as a domain for autonomous agents
research. In IEEE Conf. on Man, Systems, and Cybernetics.
Koenig, S., and Likhachev, M. 2002. D* Lite. In Proceedings of
the National Conference on Artificial Intelligence, 476–483.
Koenig, S.; Tovey, C.; and Y., S. 2003. Performance bounds for
planning in unknown terrain. Artificial Intelligence 147:253–279.
Koenig, S. 2004. A comparison of fast search methods for real-
time situated agents. In Proceedings of the 3rd Int. Joint Conf. on
Autonomous Agents and Multiagent Systems - vol. 2, 864 – 871.
Korf, R. 1990. Real-time heuristic search. AIJ 42(2-3):189–211.
Korf, R. 1993. Linear-space best-first search. AIJ 62:41–78.
Sasaki, T.; Chimura, F.; and Tokoro, M. 1995. The Trailblazer
search with a hierarchical abstract map. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, 259–265.
Shimbo, M., and Ishida, T. 2003. Controlling the learning process
of real-time heuristic search. AIJ 146(1):1–41.
Shue, L.-Y., and Zamani, R. 1993. An admissible heuristic search
algorithm. In Proceedings of the 7th Int. Symp. on Methodologies
for Intel. Systems (ISMIS-93), volume 689 of LNAI, 69–75.
Shue, L.-Y.; Li, S.-T.; and Zamani, R. 2001. An intelligent heuris-
tic algorithm for project scheduling problems. In Proceedings of
the 32nd Annual Meeting of the Decision Sciences Institute.
Stenz, A. 1995. The focussed D* algorithm for real-time replan-
ning. In Proceed. of the Int. Conf. on Artificial Intel., 1652–1659.

AAAI-05 / 1354

