
Domain-Dependent Parameter Selection of Search-based Algorithms
Compatible with User Performance Criteria

Biplav Srivastava and Anupam Mediratta
IBM India Research Lab

Block 1, Indian Institute of Technology
Hauz khas, Delhi 110016, India

Email: {sbiplav,anupamme}@in.ibm.com

Abstract

Search-based algorithms, like planners, schedulers and satis-
fiability solvers, are notorious for having numerous parame-
ters with a wide choice of values that can affect their perfor-
mance drastically. As a result, the users of these algorithms,
who may not be search experts, spend a significant time in
tuning the values of the parameters to get acceptable perfor-
mance on their particular problem domains. In this paper,
we present a learning-based approach for automatic tuning of
search-based algorithms to help such users. The benefit of our
methodology is that it handles diverse parameter types, per-
forms effectively for a broad range of systematic as well as
non-systematic search based solvers (the selected parameters
could make the algorithms solve up to 100% problems while
the bad parameters would lead to none being solved), incor-
porates user-specified performance criteria (φ) and is easy to
implement. Moreover, the selected parameter will satisfyφ in
the first try or the ranked candidates can be used along withφ
to minimize the number of times the parameter settings need
to be adjusted until a problem is solved.

Introduction
Search is the basis for problem solving in some of the hard-
est problems in AI like planning, scheduling and satisfia-
bility. But the search-based algorithms for these problems
are notorious for having numerous parameters, many with
a wide choice of values, that can affect their performance
drastically. For example, the Walksat satisfiability (SAT)
solver has one parameter for heuristic strategies with 9 pos-
sible values, a second parameter for noise which can take
any fractional value from 0 to 1 and a third parameter for
number of times to restart the search which can take any
whole number. The Blackbox planner uses Walksat as one
of its SAT solvers and provides its own additional parame-
ters (e.g., -noexcl) for user customization that can affectits
performance.

Having enormous flexibility in parameter settings may
seem like a good algorithm design principle intuitively be-
cause the algorithm can adapt to problem characteristics.
But in practice, it is a problem not only for the developers of
the algorithms, who must now spend significant time in tun-
ing the values of the parameters to get acceptable/optimal

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

performance of the algorithm on a particular problem do-
main, but a major reason for inaccessibility of the search
algorithms to other informed users who want to use the algo-
rithms in their applications but are not search experts. In the
case of Blackbox, based on first-hand experience and from
some reports in literature(Howeet al. 1999), we can say that
hardly anyone who uses Blackbox for comparative study of
planners explores its various parameter settings, preferring
to use the default settings in most cases. An illustration of
the variation of the performance with parameter setting is
shown in Figure 1. TheX axis shows the different possi-
ble settings while theY axis shows the number of problems
solved. The multi-dimensional parameters are mapped to
a single dimension for the viewing convenience. Note that
though Blackbox is known to perform well in Logistics, still
it cannot solve a single problem in it for half of the parameter
settings, where ’NoExcl’ is enabled.

Figure 1: Performance of Blackbox and Walksat across their
different parameter settings.

The problem gets compounded when the user is not a sub-
ject matter expert. For example, we are building a fam-
ily of planners in Java based on a common core of pro-
grammatic interfaces and common implementation that is
meant for a wide-variety of applications. The currently im-
plemented planners are a classical (heuristic search space)
planner, a metric planner, a contingent planner and an Hier-
archical Task Network planner. At the last count, 8 different
types of users wanted to use the same family of planners.
In the planning application of web services composition, the
user wants to select a simple type of planning initially (e.g.,
classical planning) but would like to easily switch to a more

AAAI-05 / 1386

complex form (e.g., contingent planning) as they gain expe-
rience with planning methods. Another type of user wants
to explore planning in system self-management, a.k.a. auto-
nomic computing. Yet another user wants to explore plan-
ning for data transformation while collecting sensor data.
The users want to use the planners but do not want to un-
derstand the rich choice of parameter settings like search di-
rection, heuristic function, weight, that each type of planner
comes with.

As the above examples show, search-based techniques
currently require the potentially large users to know more
about them in order to set good algorithm parameters for
their applications. In most of the usage scenarios, the user
may not be interested in finding the most optimal parameter
setting specific to a problem but a parameter setting which
solves most of the problemsin their domain of interest,
within some performance criteria. In this paper, we try to
take parameter customization away from the users with a
Machine Learning (ML) based approach for automatic pa-
rameter selection that is easy to implement and quite ef-
fective. We assume that the algorithm can solve some of
the problems from the domain under the given performance
constraints. The parameter selection procedure is based on
learning of parameters by using ML classifiers viz. Decision
Tree, Naive Based Learning. In a classification problem, the
data available for learning is divided into Training Data and
Test Data. The training data is used by the classifier to learn
a hypothesis function that can be used to label the test data.

In our solution, we classify the different parameter set-
tings into positive and negative examples with respect to
the performance criteria and available training data, and use
positive part of the learnt model in conjunction with ranking
functions to derive candidate parameter settings. The ben-
efit of our methodology is that it finds a parameter setting
that will satisfy the performance criteria in the first try or
uses the ranked candidates to minimize the number of times
the parameter settings need to be adjusted until a problem is
solved. We have tested this approach on two types of search
algorithms: sat solvers and planners, and found the proposed
methodology to be very effective - on many problem distrib-
utions, there are parameter settings which would cause little
or no solution being found while the proposed method would
automatically find settings that could solve up to 100% of its
problems within the performance criteria.

The contributions of the papers are:

1. We formulate a domain specific, parameter setting selec-
tion problem for search-based algorithms.

2. We present a solution that is effective for a broad category
of systematic and non-systematic solvers, and is easy to
implement.

3. The approach can work with diverse parameter types - nu-
meric, categorical and ordinal.

4. The approach allows user to provide performance criteria
that is used to derive parameter settings.

5. The approach is independent of any specific classifier
though we use decision tree for illustration.

Symbol Description
~i ∈ X A problem instance ofA.
o ∈ Y The output ofA on a problem instance.
θ ∈ Θ A vector of parameters forA.
A(~i, θ) A search-based algorithm,A. Input: a

problem instance~i and parameter vectorθ.
Output:o.

Ap(~i, θ) The runtime performance ofA(~i, θ). It is a
metric about the performance ofA on a
problem instance. E.g. 2 min runtime and
5 MB memory.

φ A boolean expression specifying the user
criteria of acceptable performance. E.g.
≺ 5 min runtime and≺ 20 MB memory.

l ∈ L The label assigned toA’s performance.
L = [True, False].

h ∈ H A hypothesis function mapping parameter
instances to labels. h:X × Θ → L.

h’ ∈ H′ A hypothesis function mapping parameter
instances,in a problem domain, to labels.
h’: Θ → L.

f ′(Ap(., θ), φ) A problem-domain specific function
labeling the performance ofA with respect
to φ. Input: Runtime performance of
A(~i, θ) andφ Output: a label,l ∈ L.

T ∈ T A training set. T ={(θ, l)|θ ∈ Θ, l ∈ L)}.
T ′ Model Data: A learnable subset ofT . T ′ ⊆ T

M(T ′) A classification algorithm for parameters
in a problem domain. Input: a learnable
training set. Output: A hypothesis function.
M : T ′ → H′.

N(θ, T) A function which maps theθ to] problems
solved (withinφ)in the data set T.

rank A function which assigns a number to everyθ

∈ h′ based on its performance onT . Input:h′

andT . Output:<. rank : H′ × T → <

Table 1: Notation used in the paper.

In the next section, we formalize the problem of automatic
tuning of parameters. Then we present our ML based so-
lution and demonstrate its effectiveness empirically across
Blackbox and Planner4J planning systems, and the Walk-
sat SAT solver. Next, we discuss related work, put our ap-
proach’s perspective and conclude.

Domain-specific Parameter Selection Problem
The outputo of a search-based algorithmA depends on its
input~i and the parameter vectorθ (see Table 1). The run-
time performance ofA is indicated by the metricAp and it
depends on both~i andθ.

The domain-independent parameter setting selection
problem is to find a parameter vectorθ in Θ by learning
in the hypothesis spaceH to find h that satisfies a perfor-
mance criteriaφ. We are interested in the domain-specific
parameter selection problem (see Figure 2). We wish to find
a parameter settingθ∗ which solves most of the problems,
in a domain of interest, within some performance criteriaφ.
Hence, we learn in the hypothesis spaceH ′ to findh′ which
depends only onΘ. Formally,θ∗ satisfies

θ∗ =
argmax

θ ∈ Θ rank(M(T ′), T) (1)

In equation 1,rank assigns a real number to eachθ based
on their performance on training data setT . And then the
best rankedθ(s) are selected. Now, based on whetherT is
available up front or problem instances in the domain ap-
pear one by one (which will be collected and used to build
T), the parameter selection problem is offline or online, re-
spectively. To estimate the maximum gain we get by using

AAAI-05 / 1387

θ∗, we definelift :

lift(θ∗, T) = N(θ∗,T)−N(θ⊥,T)
N(θ∗,T) * 100

That is,lift is the increase in the number of problems solved
in T by the setting of a methodology compared to the worst
performing setting , expressed as a percentage. Lift of 100%
means thatθ⊥ cannot solve a single problem and 0% means
that it can solve as many problems asθ∗.

Problem 1,2,...[Online]
Training Data [Offline]

Parameter Description
(attributes and values)

Performance Criteria
(e.g., time < 5 minutes)

Input
Problem

Parameter
Setting

(e.g., SAT solver)
Search Algorithm Setting

Good Parameter

Algorithm
Output

Figure 2: The Problem Setting for Automatic Tuning of
Search Algorithms.

Solution Approach
We first discuss how the method works in the offline scenario
and how the method can be used to minimize the number of
parameter adjustments needed to solve a given problem (as-
suming a parameter setting will solve it). Then, we present
the online scenario. In our running example, we will use
the Planner4J classical planner as the algorithm whose para-
meters are to be configured and the problem domain will be
Transport(Helmert 2001). This is not a single planning do-
main but a collection of domains which involve transporta-
tion of things or people like Gripper, Logistics, Miconic, etc.

Offline Parameter Selection:
In the offline scenario, the training dataT is available up-
front. While classifying parameters, just like any other clas-
sification task, one needs both positive and negative exam-
ples (Lerman & Minton 2000). We call a problem instance
learnable if it has both examples forΘ.

Choosing model data (T ′): We select the learnable
problem instances fromT to formT ′ as shown in Figure 3.
The parameter selection results vary slightly with the differ-
ent relative % of the examples but it depends significantly
on whether both the types of examples are present or not.

For Planner4J, the parameters which affect its search per-
formance are heuristic, heuristic weight and search direc-
tion. We experimented with every possible combination of
heuristic (0-6), weight (1 - 5) and direction (Forward, Back-
ward). The performance criterion (φ) we used was: if a plan
was found in5 mins then the parameter setting is positive
otherwise, it is negative. For Transport domain, the training
data consisted of problems from domains elevator and grip-
per. Total number of problems inT was30 out of which
only 20 were learnable.

Generating Parameters: We have a three step solution
approach (Figure 4). First, we select a classification method
(e.g., decision tree, neural networks, bayesian approach)and
use model dataT ′ to build a classifier (hypothesis function

Include in
Model DataSet

Sample Experiment Data
{Parameter-Configuration,
Algorithm-Performance-Compared-to-Criteria}

Is Data
Learnable?

Include in
Rank DataSet

Complete

Begin

No

Yes

Figure 3: Processing offline sample data into model and
ranking data.

Select Classification
Method & Build Result

Classification Model

Select Ranking Function &
Rank Positive Sub-model

(e.g., branches in decision tree)

Generate Parameter
Setting(s)

Model DataSet

Rank DataSet

Begin

Complete

Learnt Model

Ranked Positive models

1 or K top
parameter settings

Figure 4: Outline of method to generate parameter settings.

h′). This classifier classifies the complete space of parame-
ter settingsΘ into positive and negative instances. The pos-
itively classified instances are then ranked on training/rank
dataT .

We chose the J48 decision tree implemented in Weka1 as
the classifier for our experiments. In a decision tree, the clas-
sification model output is a tree like structure. In our case,
every node of the tree corresponds to a parameter and the
branches resulting from that node are owing to different val-
ues that the parameter can take. Each leaf node corresponds
to a group ofθ′s (a branch) and if its label isTRUE, then
it is positive else it is negative. Figure 5 shows the deci-
sion tree we got in the case of our running example. Against
every label, there are two numbers in the form(X ′/Y ′),
whereX ′ is the number of instances that reach to that leaf
and Y ′ is the incorrectly classified instances for that leaf
node (if Y ′ is absent, it means thatY ′ is 0). As X ′ and
Y ′ are calculated onT ′, X andY have the similar meaning
but are calculated onT .

In the example tree, the root node is the parameterdirec-
tion and two branches originating from it are corresponding
to the value forward and backward. The leaves in the tree
are labeled fromR1 to R8. Among the rules, the positively
classified rules are:R1, R3, R5 andR6. We have formu-
lated two ranking functions which we use to rank the pos-
itively classified rules onT or T ′. The ranking functions

1http://www.cs.waikato.ac.nz/ml/weka/

AAAI-05 / 1388

Direction = Forward
| Hvalue = 0: TRUE (100.0/33.0)→ R1
| Hvalue = 1: FALSE (100.0/35.0)→ R2
| Hvalue = 2: TRUE (100.0/22.0)→ R3
| Hvalue = 3: FALSE (100.0/35.0)→ R4
| Hvalue = 4: TRUE (100.0/23.0)→ R5
| Hvalue = 5: TRUE (96.0/20.0)→ R6
| Hvalue = 6: FALSE (90.0/37.0)→ R7
Direction = Backward: FALSE (700.0/26.0)→ R8

Figure 5:Decision Tree (P4J in Transport).

are2:

1. ∀θ ∈ Θ, Rf1(h
′, T ′) = (X ′

θ − Y ′

θ)/X ′

θ

2. ∀θ ∈ Θ, Rf2(h
′, T) = ((X ′

θ − Y ′

θ) + ∆θ) / (X ′

θ + ∆θ)

3. ∀θ ∈ Θ, Rf3(h
′, T ′) = (X ′

θ − Y ′

θ) /
∑

∀θ(X
′

θ − Y ′

θ)

Rf1 estimates the probability of success forθ based on
T ′. Rf2 differs fromRf1 since the ranking is done based on
the non-learnable data set (∆θ) also. Since all parameters
of the latter were positive (or negative), a constant factoris
added to both sides of the fraction.Rf3 differs from Rf1

due to the change in the denominator which is the sum of
the total number of instances inT ′ that are labeled asTRUE.
While Rf1 (andRf2) give more weightage to absolute ac-
curacy of the branch,Rf3 values accuracy relative to other
branches in the model.

To illustrate, suppose T consists of 3 problem instance
on 100 parameter configuration of which 2 problems were
learnable (T’ and T are of sizes 200 and 300, respectively).
Suppose there are 2 positive and 3 negative branches in the
model: one positive branch has accuracy (4) and another
has accuracy (100/5). ByRf1, their ranked values are 1
((4-0)/4) and 0.95 ((100-5)/100), respectively, while byRf3,
they are 0.04 ((4-0)/(4+95)) and 0.96((100-5)/(4+95)). The
Rf2 values, assuming there are 2 and 50θs of unlearnable
data in each of the positive branches, respectively, would be
1 (4+2/4+2) and 0.97 (95+50/100+50).

The branch for which the value is higher is better ranked.
Since a branch contains multipleθ, we can randomly pick
oneθ from the branch. To find topK θ′s, we select topK
ranked branches and randomly pick aθ from each of them.

For the running example, selectedθ′s by the application
of Rf2 are shown in Table 2. When we applyRf3, the
top three branches are:R6, R3andR5. We randomly pick
oneθ from each of them and they are shown in the Table.
Note that we are illustrating the approach with specific clas-
sifiers/ranking functions but it can be easily extended to the
new ones as desired by the user of the approach.

Minimizing Parameter Adjustments
By using the above methodology, we find theθ which either
solves the problem within performance constrain on the first
try or minimizes the number of times we have to adjust theθ
to get the problem solved. Figure 7 shows the performance
(] solved problems) for eachθ for the running example. The
X axis shows all the possibleθ′s and theY axis shows the
] solved problems corresponding to eachθ. If we consider

2Though the functions are defined for aθ, they can be naturally
extended to a branch (classifier dependent concept) of the model.

Domain/ Heuristic Weight Direction Ranked Lift Comb.
Ranking fn value (%) Succ.(%)
Transport/ 0 5 Forward 0.97 99.47 96.66

Rf2 2 2 Forward 0.87 99.38
2 3 Forward 0.87 99.38

Transport/ 5 1 Forward 0.79 100 80
Rf3 2 1 Forward 0.78 100

4 1 Forward 0.77 100
Blocksworld/ 0 5 Forward 0.93 99.83 93.33

Rf2 0 4 Forward 0.93 99.83
0 3 Forward 0.93 99.83

Blocksworld/ 0 3 Forward 0.87 100 93.33
Rf3 0 2 Forward 0.87 100

0 1 Forward 0.87 100
Movie/ 0 1 Forward 1.0 100 100
Rf2 0 2 Forward 1.0 100

0 3 Forward 1.0 100
Movie/ 0 1 Forward 1.0 100 100
Rf3 2 1 Backward 1.0 100

4 1 Backward 1.0 100

Table 2: Ranking, lift and combined problems solved for
Planner4J for selectedθ′s.

θ′s36 to 70, which correspond to direction backward and the
other two parameters are ’don’t care’, we would try 35 pos-
sible values ofθ and still would be able to solve only 18 out
of 30 problem instances inT (60% success). Alternatively,
if we use our methodology, we try at most 3 values ofθ for
each problem instance and are able to achieve 96.66% (Rf1)
or 80% (Rf2) success with respect toφ.

Another advantage of our methodology is that when we
are using aθ which violatesφ, we need not wait for the
search algorithmA to terminate to try another setting. In-
stead, we can stop the execution wheneverφ gets violated.
E.g., in a particular scenario, if we need to tryK θ′s to find
an acceptableθ andφ is say≺ 5 min runtime, then the max-
imum time we would need is5 × K mins.

Online Parameter Selection
This method is for the scenario where no training dataT is
available upfront. Whenever a problem instances~i arrive,
we follow the procedure laid out in Figure 6. Every~i is
added inT and if it is learnable then it is included inT ′.
If T ′ is not empty, then we follow the parameter generation
part of the offline procedure, else a default parameter setting
is output. The parameter selection may proceed until the
selection has stabilized or it may continuously run with a
constant size of problem instances seen on the past. We omit
examples due to space constraints.

Default Parameter Selection: Here is one way to gen-
erate the default setting: on all the problem instances col-
lected, run the search algorithmA for all possibleθ′s and
classify each instance as positive or negative according to
φ. Then for each parameter, we select that value (among all
values the parameter can take), for which the number of pos-
itive instances is maximum. The values of all the parameters
is the defaultθ.

Experiments
We want to check that the proposed method works for algo-
rithms based on systematic and non-systematic search, with
different types of parameters and yet is effective (highlift).

Experimental Setting: We have tested our methodology
on two planners: Planner4J and Blackbox and a sat solver:

AAAI-05 / 1389

Include in
Model and Rank

DataSet

Sample Experiment Data
{Parameter-Configuration,
Algorithm-Performance-Compared-to-Criteria}

Is Data
Learnable?

Include in
Rank DataSet

Begin

No

Yes

Invoke
GenParam()

Invoke
DefaultParam()

Any
Learnable

Data
Seen?

Complete

No
Yes

Figure 6: Processing online sample data and generating pa-
rameters.

Walksat. Parameters of Planner4J have been stated in earlier
section; parameters for Walksat we considered are heuristic
and noise. In Walksat, there are9 different heuristics: ran-
dom, best, tabu 1-5 (5), novelty, rnovelty; noise varies from
1 to 100 and we discretized it with a step of10. Planner
Blackbox converts the planning problem into a sat encoding
and then uses a sat solver to find if the plan exists. In our
experiments, the Blackbox parameter which affects its per-
formance is ”noexcl” which controls the set of exclusiveness
relationships created in the encoding and the parameters of
Walksat sat solver. The domains used for each of the solvers
are:

1. Planner4J: Transport, Blocksworld, Movie3.

2. Blackbox: Logistics, Blocksworld

3. Walksat: Controlled Backbone Models (CBS), Graph
Colouring (GC)4

Planner4J: Its performance on Transport is already dis-
cussed in solution approach. Results for rest of the domains
follows. Blocksworld: In this domain, the task is to find a
plan to arrange blocks in a goal configurations starting from
an initial arrangement. The sampleT consisted of data cor-
responding to 15 problem instances andT ′ consisted of data
corresponding to 12 problem instances (learnable).Movie:
In this domain, the task is to get items like popcorns, chips
and rewind the movie. In the training data, we had17 prob-
lem instances off which all satisfied the criteria to be in
model data.

On these problems, we apply our methodology and show
the results in Table 2. We find that we can solve up to 100%
problems with the top-3 settings while there exist extreme
settings which would not solve any problem in the givenφ.
Figure 7 shows the contrast in the performance of different
θ′s. The methodology is able to discover all the peaks. The
results carry over to unseen problems (test data) as well. For
example, in Blocksworld, we tested the parameter selections
on randomly generated new problems. The combined suc-
cess ofθ′s obtained fromRf2 was 75% and that ofRf3 was
62.5%.

3http://cs.toronto.edu/aips2000/.
4

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html

System/Domain/ Heuristic Noise No Ranked Lift Comb.
Ranking fn Excl value (%) Succ. (%)
Blackbox/ tabu 1 10 No 0.67 100 88.89
Logistics/ tabu 1 20 No 0.67 100

Rf2 best 30 No 0.67 100
Blackbox/ rnovelty 60 No 0.86 100 55.56
Logistics/ tabu 4 20 No 0.79 100

Rf3 tabu 1 50 No 0.77 100
Blackbox/ novelty 50 No 0.40 100 40

Blocksworld/ novelty 60 No 0.40 100
Rf2 tabu 2 10 No 0.40 100

Blackbox/ tabu 2 10 No 1.0 100 40
Blocksworld/ novelty 40 No 0.92 100

Rf3 rnovelty 60 No 0.81 100
Walksat/ best 50 - 1.0 99.91 100

CBS/ best 20 - 1.0 99.91
Rf2 best 30 - 1.0 99.91

Walksat/ tabu 1 10 - 1.0 100 100
CBS/ tabu 4 10 - 1.0 100
Rf3 tabu 3 10 - 0.99 100

Walksat/ tabu 4 10 - 0.99 99.81 98.75
GC/ novelty 50 - 0.88 99.81
Rf2 novelty 60 - 0.76 99.81

Walksat/ tabu 1 60 - 0.97 100 95
GC/ tabu 2 60 - 0.91 100
Rf3 best 80 - 0.89 100

Table 3: Ranking, lift and combined problems solved for
selectedθ′s for Blackbox and Walksat.

We also tested the methodology by changing the defin-
ition of learnable data. We defined a problem instance as
learnable if at leastk% of parameters instances were of both
positive and negative examples. The higher thek, the more
discriminating is the problem instance. We found that in
Blocksworld, withk as 24%, 5 problems were inT ′ and
the selected parameters could still achieve the same perfor-
mance. We do not explorek further.

Figure 7: Performance of various settings of Planner4J
across different domains.

Blackbox: We tested this planner on two domains: Lo-
gistics and Blocksworld. Number of problems inT and
T ′ for Logistics were9 and7 respectively. The same for
Blocksworld were10 and4 respectively. The selected para-
meter settings for both of the domains by both of the rank-
ing functions and their performance are shown in Table 3.
Blocksworld is known to be a hard domain for Blackbox and
still, we are able to solve 40% of the problems (the maxi-
mum possible with any parameter setting) by parameter dis-
covery.

The results again carry over to unseen problems. In Lo-
gistics, on the unseen data,Rf2 gives success of 81.81% and
Rf3 is successful on 88.89% of data.

AAAI-05 / 1390

Walksat: We tested the Walksat sat solver on two do-
mains: CBS and GC. In CBS,T andT’ contain 24 and 22
problems, respectively. In GC,T andT’ contain 80 and 67
problems, respectively. Table 3 shows the selectedθ′s and
performance for both of the domains. In CBS, settings pro-
duced by both ranking functions give 100% success on the
sampleT . In GC, the settings gave 98.75% and 95% suc-
cess, respectively.

Summary: We have shown that the methodology is ef-
fective across different planners and sat solvers (in termson
number of problems solved and % lift on training data (T)
and unseen data). Since Planner4J employsA∗ search (sys-
tematic) and Walksat employs a local search method (non-
systematic), we can say that the methodology is effective
on both kind of searches. Second, for a search algorithm,
acceptable parameter settings vary across domains so a do-
main dependent methodology indeed is helpful to a focused
user. Third, the performance difference between the selected
θ∗ and the worst performingθ⊥ is significant in most of the
domains, so there is a need of parameter tuning in the kind
of search algorithms we have considered.

Discussion and Related Work
Literature on parameter setting selection fall under two cat-
egory: (a) techniques that tune arbitrary algorithms and (b)
techniques that tune specific algorithms. Our focus is on tun-
ing search-based algorithms and this category covers much
of the harder and practical problem solving in areas like
scheduling, satisfiability, planning and optimization.

Calibra(Adenso-Diaz & Laguna 2004) is a system that
falls under category (a). It is a design-of-experiment based
approach where Taguchi’s fractional factorial experiment
designs coupled with a local search procedure are used to
select parameters. It can optimise up to five numeric para-
meters and the best values are not guaranteed to be optimal.

In category (b), we are not aware of any method for search
algorithms that works with every type of parameters. Auto-
Walksat(Patterson & Kautz 2001) is a algorithm which au-
tomatically tunes any variant of the Walksat family of sto-
chastic satisfiability solvers. It employs a heuristic search to
find the optimal value of the parameter. The results show
that it works well for these kind of solvers which generally
have one search parameter that is noise. In (Kohavi & John
1995), an approach is presented to automatically select pa-
rameters of learning algorithms by searching the space of
parameter configurations with an aim to get optimum learn-
ing accuracy. In (Consenset al. 2005), the authors talk about
how cumulative frequency curves can be used to rank data-
base configuration techniques but they do not cover how the
configurations are generated. In (Kohavi & John 1998), the
wrapper method is developed for searching for feature sub-
sets that still maintains or improves classification accuracy.
We can use their techniques during the classification step.
There has been work on automatic tuning of web servers like
Apache based on control theory (Parekhet al. 2001). The
problem is seen as designing a controller by first construct-
ing a transfer function which relates past and present input
values to past and present output values, and the controller

is used to predict behavior. The methods work on numeric
parameters only and do not scale.

There has been some work on meta-algorithms for search
problem which can be seen as related to parameter selec-
tion. In (Howeet al. 1999), the authors compare 6 planners
on different planning problems and use regression to learn
problem features that could be used to predict the planner
performance. They note that either a planner can quickly
solve a problem in a domain or it generally fares very poorly
on the domain. Our results validate this observation and
finds it to be true for general search algorithms because our
learning-based method is able to select very good parameter
settings with very little sample problem instances.

Conclusion
We presented a general method for domain-dependent para-
meter selection of search-based algorithms that can handles
diverse parameter types, performs effectively for a broad
range of solvers, incorporates user-specified performance
criteria (φ) and is easy to implement. It can be used for
acceptable parameter selection, minimizing parameter ad-
justments and improving runtime performance.

References
Adenso-Diaz, B., and Laguna, M. 2004. Fine
tuning of algorithms using fractional experimen-
tal designs and local search. Inhttp://leeds-
faculty.colorado.edu/laguna/articles/finetune.pdf.
Consens, M. P.; Barbosa, D.; Teisanu, A. M.; and Mignet,
L. 2005. Goals and benchmarks for autonomic configura-
tion recommenders. InProc. SIGMOD Conference.
Helmert, M. 2001. On the complexity of planning in trans-
portation domains. InProceedings of the 6th European
Conference on Planning (ECP’01), 349–360.
Howe, A. E.; Dahlman, E.; Hansen, C.; Scheetz, M.; and
Mayrhauser, A. 1999. Exploiting competitive planner per-
formance. InProc. ECP, Durham, U.K.
Kohavi, R., and John, G. H. 1995. Automatic parame-
ter selection by minimizing estimated error. InProc. 12th
International Conference on Machine Learning.
Kohavi, R., and John, G. H. 1998. The wrapper approach.
In Feature Selection for KDD. H. Liu and H. Motoda (eds.),
Kluwer Acad. Pub., pp33-50.
Lerman, K., and Minton, S. 2000. Learning the common
structure of data. InProc. 17th AAAI, 609–614. AAAI
Press / The MIT Press.
Parekh, S.; Hellerstein, J.; Jayram, T.; Gandhi, N.; Tilbury,
D.; and Bigus, J. 2001. Using control theory to achieve ser-
vice level objective in performance management. InProc.
IM, Seattle, WA, May.
Patterson, D. J., and Kautz, H. 2001. Auto-walksat: A
self-tuning implementation of walksat. InProceedings of
SAT2001: Workshop on Theory and Application of Satisfi-
ability Testing, volume 9. Elsevier.

AAAI-05 / 1391

