
External-Memory Pattern Databases Using Structured Duplicate Detection

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

{rzhou,hansen}@cse.msstate.edu

Abstract

A pattern database is a lookup table that stores an exact
evaluation function for a relaxed search problem, which
provides an admissible heuristic for the original search
problem. In general, the larger the pattern database, the
more accurate the heuristic function. We consider how
to build large pattern databases that are stored in exter-
nal memory, such as disk, and how to use an external-
memory pattern database efficiently in heuristic search.
To limit the number of slow disk I/O operations needed
to construct and query an external-memory pattern data-
base, we adapt an approach to external-memory graph
search called structured duplicate detection that local-
izes memory references by leveraging an abstraction
of the state space. We present results that show this
approach increases the scalability of heuristic search
by allowing larger and more accurate pattern database
heuristics.

Introduction
Pattern databases are lookup tables that store exact solu-
tions to relaxed problems. Because they account for com-
plex interactions among multiple sub-goals of a search prob-
lem, pattern databases can provide very accurate admissible
heuristics that significantly improve the scalability of heuris-
tic search. Their effectiveness has been established in solv-
ing a variety of search problems, including sliding-tile puz-
zles (Culberson & Schaeffer 1998; Korf & Felner 2002); Ru-
bik’s Cube (Korf 1997); 4-Peg Towers of Hanoi (Felner et
al. 2004); heuristic-search planning (Edelkamp 2001); and
guided model checking (Qian & Nymeyer 2004). Pattern
database heuristics are also closely related to large table-
based heuristics used in multiple sequence alignment (Mc-
Naughton et al. 2002; Zhou & Hansen 2004b).

In general, the larger the pattern database, the more accu-
rate the heuristic. As a result, the bottleneck in building and
using large pattern databases is their memory requirements.
There has been some recent work on improving the memory
efficiency of pattern databases. Felner et al. (2004) describe
an approach to compressing pattern databases by merging
adjacent entries with similar values, in order to allow larger
pattern databases to fit in memory in their compressed form.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Holte et al. (2004) show how to improve the accuracy of a
pattern database without increasing its size, by using mul-
tiple smaller pattern databases. Zhou and Hansen (2004b)
show how to use the start and goal states of a problem in-
stance to restrict the region of the state space for which a
pattern database needs to be computed. But in all of these
techniques, the size of the pattern database is still limited
by the size of internal memory. In this paper, we consider
how to build larger and more accurate pattern databases us-
ing external memory, and how to make efficient use of these
external-memory pattern databases in heuristic search.

There is increasing interest in using external memory,
such as disk storage, to improve the scalability of heuris-
tic search. Recent work uses external memory to store al-
ready explored nodes in order to detect duplicates and pre-
vent node re-generation in graph search. Korf (2004) and
Edelkamp (2004) use a technique called delayed duplicate
detection that is also used by theoretical computer scien-
tists to analyze the complexity of external-memory graph
search (Munagala & Ranade 1999; Mehlhorn & Meyer
2002). In keeping with its use in worst-case complexity
analysis, delayed duplicate detection makes no assumptions
about the structure of the search graph (except that it is
undirected). Zhou and Hansen (2004c) introduce a technique
called structured duplicate detection that assumes the search
graph has local structure that can be revealed in an abstract
state space. For graphs with sufficient local structure, struc-
tured duplicate detection has advantages over delayed du-
plicate detection. It never generates duplicates, unlike de-
layed duplicate detection, and thus has lower overhead and
reduced complexity. We adopt structured duplicate detection
as an approach to creating and using external-memory pat-
tern databases, in part for these advantages, and in part, be-
cause the kind of state abstraction used in structured dupli-
cate detection is the same kind of state abstraction used in
pattern databases. This makes the two techniques a good fit
for each other, and ensures that whenever it is possible to use
one, it is possible to use the other.

Background

We begin with a review of pattern database heuristics and the
technique of structured duplicate detection. In the rest of the
paper, we show how these two techniques can be combined.

AAAI-05 / 1398



Pattern databases

A pattern database is an admissible heuristic that is com-
puted by projecting a search problem into an abstract state
space, solving the search problem for all of the abstract
states, and storing the optimal evaluation function in a
lookup table (Culberson & Schaeffer 1998). Typically, the
projection corresponds to a partial specification of the state.
For example, if the state is defined by an assignment of val-
ues to state variables, an abstract state corresponds to an as-
signment of values to a subset of the state variables. Each
projected (or abstract) state is called a pattern; the variables
used in the projection are called the pattern variables; and
the projected (or abstract) state space is called the pattern
space. The table in which a pattern database is stored has
one entry for each pattern, and the value stored in each entry
provides an admissible heuristic for any state in the original
state space that maps to this pattern. The size of a pattern
database is the number of patterns, and, naturally, different
projection functions result in pattern databases of different
size. As a rule, the larger the pattern database (i.e., the finer-
grained the abstraction), the more accurate the heuristic, and
there is evidence that the speed of search is inversely re-
lated to the size of the pattern database (Hernádvölgyi &
Holte 2000). Although a single pattern database can be use-
ful, more informed heuristics can be obtained by combining
several pattern databases based on different projections. For
example, pattern databases are disjoint if the set of pattern
variables considered in each projected problem is disjoint
from the others and each operator only affects one of the
projected problems, which ensures that the sum of the pat-
tern costs is admissible (Korf & Felner 2002).

Structured duplicate detection

Structured duplicate detection (Zhou & Hansen 2004c) is
an approach to external-memory graph search that uses a
state-space projection function that is similar to the projec-
tion function used to create a pattern database, but uses it
to leverage the local structure of a search graph in checking
stored nodes for duplicates. As in a pattern database, the pro-
jection function is created by ignoring some state variables.
We refer to the state variables used in the projection func-
tion of structured duplicate detection as duplicate-detection
variables, to distinguish them from pattern variables.

The state-space projection function creates an abstract
state-space graph in which an abstract node y′ is a successor
of an abstract node y if and only if there exist two nodes x′

and x in the original state-space graph, such that (a) x′ is a
successor of x, and (b) x′ and x map to y′ and y, respectively,
under the projection function. Figure 1 shows an example of
a very simple abstract state-space graph for the Eight Puz-
zle. An abstract state-space graph reveals local structure in a
search problem if the number of successors of any abstract
node is small relative to the total number of abstract nodes.

In structured duplicate detection, stored nodes in the orig-
inal search graph are divided into “nblocks” with each
nblock corresponding to a set of nodes that maps to the same
abstract node. Given this partition of stored nodes, structured
duplicate detection uses the concept of duplicate-detection

Figure 1: Panel (a) shows the goal state of the Eight Puzzle.
Panel (b) shows an abstract state-space graph that is created
by the simple projection function that considers the posi-
tion of the “blank” only. The duplicate-detection scope of
the goal state includes nodes that map to abstract nodes B1

or B3, and only these nodes need to be stored in internal
memory when expanding the goal state.

scope to localize memory references in duplicate detection.
The duplicate-detection scope of a node x in the original
search graph is defined as all stored nodes (or equivalently,
all nblocks) that map to the successors of the abstract node
y that is the image of node x under the projection function.
The concept of duplicate-detection scope allows a search
algorithm to check duplicates against a fraction of stored
nodes, and still guarantee that all duplicates are found. As
a result, an external-memory graph search algorithm can use
RAM to store nblocks within the current duplicate-detection
scope, and use disk to store other nblocks when RAM is full.

Structured duplicate detection is designed to be used
with a search algorithm that expands a set of nodes at a
time, where the order in which the nodes in this set are
expanded can be adjusted to minimize disk I/O. This in-
cludes A* (for search problems with many ties), breadth-first
search, breadth-first branch-and-bound search, and related
algorithms (Zhou & Hansen 2004a). The order of node ex-
pansions is chosen to ensure locality of memory references.
Several rules can help achieve this. Expanding nodes in the
same nblock together, i.e., consecutively, results in reference
locality because all nodes in the same nblock have the same
duplicate-detection scope. Expanding nblocks with similar
duplicate-detection scopes consecutively also tends to result
in reference locality. When RAM is full, nblocks outside the
current duplicate-detection scope are flushed to disk. Writ-
ing the least-recently used nblocks to disk is one way to se-
lect which nblocks to write to disk. When expanding nodes
in a different nblock, any nblocks in its duplicate-detection
scope that are stored on disk are swapped into RAM.

Unlike delayed duplicate detection, structured duplicate
detection has a minimum internal-memory requirement,
which is the size of the largest duplicate-detection scope.
However, this is rarely an issue in practice because it can
be controlled by changing the granularity of the state-space
projection function. A finer-grained state-space projec-
tion function usually results in smaller duplicate-detection
scopes, and thus, lower internal-memory requirements.

AAAI-05 / 1399



External-memory pattern databases
We now begin to discuss how to use structured duplicate de-
tection to limit disk I/O in creating and using an external-
memory pattern database. Our approach assumes the pat-
tern database is used inside a search algorithm that also uses
structured duplicate detection to limit the internal-memory
requirements of graph search. The initial idea is simple: just
as structured duplicate detection can localize memory ref-
erences to nodes stored for duplicate detection, it can be
used to localize memory references to patterns in a pattern
database. However, it must localize memory references in
pattern-database lookups in a way that exploits the shared
local structure in both the abstract state space used for du-
plicate detection and the pattern space. Since the two are ab-
stractions of the same state space, they usually have shared
local structure.

Pattern-space projection function

Our approach to external-memory pattern databases extends
the idea of structured duplicate detection from the state
space to the pattern space. It relies on a pattern-space pro-
jection function that partitions the pattern space in much the
same way that the state-space projection function used in
structured duplicate detection partitions the state space. A
pattern-space projection function is a many-to-one mapping
from a pattern space P to an abstract pattern space P̃ , in
which each abstract pattern corresponds to a set of patterns
in the original pattern space. If a pattern p is mapped to an
abstract pattern p̃, then p̃ is called the image of p, and p is
called the pre-image of p̃. A pattern-space projection func-
tion can be defined by ignoring some pattern variables in the
encoding of a relaxed problem. We call the set of pattern
variables used in the pattern-space projection function the
abstract pattern variables.

However, the above definition of the pattern-space pro-
jection function is incomplete because it does not consider
how to integrate an external-memory pattern database with
structured duplicate detection. To integrate memory refer-
ences to nodes stored for duplicate detection with mem-
ory references to patterns in a pattern database, we add
the further restriction that abstract pattern variables must
also be duplicate-detection variables. In other words, the ab-
stract pattern variables must be selected from the intersec-
tion of the set of pattern variables and the set of duplicate-
detection variables. (This entails that one must choose the
set of duplicate-detection variables carefully so that their in-
tersection with the set of pattern variables is non-empty.)
The reason for this additional restriction is that structured
duplicate detection partitions nodes stored in the Open and
Closed lists into nblocks such that nodes in the same nblock
share the same value for the duplicate-detection variables.
With this restriction on the abstract pattern variables, we can
guarantee that nodes in the same nblock map to the same ab-
stract pattern, and that storing only the pre-images of a few
of these abstract patterns in RAM is sufficient to answer all
pattern-database queries when generating the successors of
these nodes. We discuss the details of this idea next. Since
a pattern-space projection function partitions a pattern data-

base into groups of patterns, with each group corresponding
to one abstract pattern, we introduce the term “pblock” to re-
fer to a set (or “block”) of patterns in the pattern space that
are pre-images of an abstract pattern.

The relationship between the pattern-space projection
function and the state-space projection function used in
structured duplicate detection, as well as the relationships
between various abstractions of the state space, are illus-
trated in Figure 2. We adopt the following notation. Let S
denote the original state space, let S̃ denote the abstract state
space used in structured duplicate detection, and let ΠS̃ de-
note the state-space projection function. Let P denote the
pattern space that is formed in creating a pattern database, let
P̃ denote the abstract pattern space, and let ΠP̃ denote the
pattern-space projection function. Using this notation and
with these distinctions in mind, we can define the central
concept of pattern-lookup scope, which determines which
pblocks must be stored in RAM and which can be stored on
disk only, at any point in the search process.

Pattern-lookup scope
Let x denote the node that is being expanded, let abstract
node y = Π

S̃
(x) be the image of node x under the state-

space projection function used for structured duplicate de-
tection, and let successors(y) be the set of successor ab-
stract nodes of y in the corresponding abstract state-space
graph.

Definition 1 The pattern-lookup scope of node x with re-
spect to an abstract pattern space P̃ is the union of sets of
patterns that are pre-images of an abstract pattern p̃ such
that an abstract node y′ ∈ successors(y) maps to the ab-
stract pattern p̃ under the pattern-space projection function
ΠP̃ , or equivalently,

⋃

y′∈ successors(y)

Π−1

P̃
(p̃)

where p̃ = ΠP̃ (y′) and Π−1

P̃
(·) is a function that takes as

input an abstract pattern in the abstract pattern space P̃ and
returns the set of patterns that are pre-images of the abstract
pattern.

The following theorem follows from the definition.

Theorem 1 The pattern-lookup scope of a node contains all
the patterns that can be queried when generating the succes-
sors of the node.

The concept of pattern-lookup scope provides the founda-
tion for external-memory pattern databases because it allows
a search algorithm to use internal memory to store patterns
within the pattern-lookup scope of a set of expanding nodes,
and use external memory to store any or all of the other pat-
terns, when internal memory is full. That is, only the pblocks
in the pattern-lookup scope need to be stored in RAM.

The concept of pattern-lookup scope is analogous to the
concept of duplicate-detection scope in structured duplicate
detection, and there is a close correspondence between the
two. For each duplicate-detection scope, there is a single
pattern-lookup scope, and the pattern-lookup scope can only

AAAI-05 / 1400



Figure 2: The diagram shows the four different spaces involved in external-memory pattern databases: the original state space
S, the abstract state space S̃ used for structured duplicate detection, the pattern space P , and the abstract pattern space P̃ .
Solid arrows represent projection functions that transform one space into another. The dashed arrow represents the influence of
the abstract state space on the choice of pattern-space projection function. In each space, a sample state of the Eight Puzzle is
shown in which shaded tiles represent ignored state variables.

change when the duplicate-detection scope changes. But the
pattern-lookup scope does not necessarily change when the
duplicate-detection scope changes, since the same pattern-
lookup scope can correspond to more than one duplicate-
detection scope. Note that the largest pattern-lookup scope
establishes a minimum internal-memory requirement for the
external-memory pattern database.

Creating external-memory pattern databases
Pattern databases are typically created by a complete
breadth-first traversal of the pattern space, in the backward
direction from the goal pattern. Because we are interested
in creating very large pattern databases that cannot fit in
RAM, and since a breadth-first search algorithm that cre-
ates such a large pattern database usually cannot store all the
nodes it visits in RAM, we create an external-memory pat-
tern database by using structured duplicate detection inside
a memory-efficient implementation of breadth-first search,
such as breadth-first frontier search (Korf 2004).

Completion of the breadth-first search is not necessarily
the last step in creating a pattern database. For efficient ac-
cess to a pattern database, it is important to arrange patterns
in a systematic way such that a unique index into the pat-
tern database can be easily computed for each pattern. We
refer to this pattern-arrangement process as compilation of
a pattern database. Compiling an external-memory pattern
database is challenging because one cannot take the ordi-
nary approach of storing in RAM an array that maps each
node to its unique index, since such an array would be as big
as the entire pattern database. But since one can easily fit an
entire pblock in RAM, this suggests another way to compile
an external-memory pattern database. When the breadth-first
search algorithm expands a pattern, it finds the abstract pat-
tern to which it maps, and then writes the pattern’s abstract

encoding and the cost of the shortest path to it from the goal
pattern to a disk file associated with the abstract pattern. Be-
cause each abstract pattern corresponds to a file stored on
disk, the algorithm needs to store in RAM an array of file
descriptors, one for each abstract pattern. (Note that this ar-
ray is the size of the abstract pattern space, which is usually
exponentially smaller than the pattern space.) Once a com-
plete breadth-first search is finished, each of these files is
processed by a pattern-database compilation algorithm that
sequentially reads in one pattern at a time, computes its
unique index in the pblock based on its pattern-space en-
coding, writes its cost to the corresponding position in the
pblock stored in RAM, and, if there are no more patterns
left in the file, writes the entire pblock to a pattern-database
file stored on disk. This completes the compilation process
for one pblock, and the construction of the entire external-
memory pattern database is completed when every pblock
has been compiled. Note that in a compiled pblock, only the
cost of a pattern is stored, because its encoding can be com-
puted based on its position in the pblock.

Compressing external-memory pattern databases
Like regular pattern databases, external-memory pattern
databases can also be compressed, but in a different way.
Recall that compressing pattern databases involves finding
cliques in the pattern space such that the cost of patterns
in the same clique differs by at most one (or a small con-
stant). Unlike regular pattern databases, in which cliques of-
ten occur at adjacent positions (Felner et al. 2004), cliques
in external-memory pattern databases usually do not occur at
adjacent positions in the same pblock, because each pblock
is an abstraction (and thus, a distortion) of the original pat-
tern space. In fact, patterns that map to the same position in
different pblocks tend to form cliques, because they may be

AAAI-05 / 1401



closer in the original pattern space.
We introduce an algorithm for compressing an external-

memory pattern database. First, the algorithm finds C ab-
stract patterns that form a clique in the abstract pattern space,
where C is a compression ratio that usually depends on
the domain as well as the pattern-space projection function.
Then, it reads the cost of the first pattern from each of the C
pblocks that correspond to these abstract patterns and writes
their minimum cost to a file that serves as the compressed
pblock. Next, the algorithm reads the cost of the second pat-
tern from each of these C pblocks, writes their minimum
cost to the compressed pblock, and so on, until there is no
pattern left in each input pblock. It is interesting to note that
after compression, the size of a pblock does not change, but
the number of pblocks is reduced by a factor of C.

Using external-memory pattern databases
We next describe how to use an external-memory pattern
database in a heuristic search algorithm. Because our ap-
proach relies on structured duplicate detection, it must be
used as part of a search algorithm that expands a set of nodes
at a time, where the order in which the nodes in this set
are expanded can be determined entirely by structured du-
plicate detection. Except for depth-first search, this assump-
tion holds quite broadly in many search algorithms, includ-
ing breadth-first search, A* (for search problems with many
ties), and related algorithms.

Our approach allows the user to specify the maximum
number of pblocks that can be stored in RAM. When the
search algorithm expands nodes in a different nblock, it
must check if the pblocks that form the pattern-lookup scope
of the nodes in the nblock are stored in RAM, and, if not,
read them from disk. If the search algorithm already stores
the maximum number of pblocks in RAM, it must remove
from internal memory one or more pblocks that do not be-
long to the current pattern-lookup scope. Unlike structured
duplicate detection, which needs to write nblocks to disk
when RAM is full, our approach does not need to write any
pblock to disk at all, because each and every pblock is stored
on disk before the search begins.

When the part of internal memory reserved for pblocks
is full, the search algorithm must decide which pblocks to
remove from internal memory. We adopt the least-recently
used strategy (Sleator & Tarjan 1985), because it is easy to
implement and performs reasonably well. In our implemen-
tation, each pblock has a time stamp that keeps track of the
most recent access to it. That way, the algorithm can remove
the pblock that has not been accessed for the longest time.

External-memory disjoint pattern databases
To create multiple pattern databases, one needs to define
multiple pattern-space projection functions, one for each
pattern database. For multiple pattern databases, the pattern-
lookup scope of a node is defined as the union of the node’s
pattern-lookup scopes for all pattern databases. It is straight-
forward to show that Theorem 1 still holds in this case.

Disjoint pattern databases are a special case of multiple
pattern databases in which the set of pattern variables for

#d Sol Int Mem Ext Mem Exp Secs
18 225 529K 0 20,890,457 20
19 257 12,011K 0 379,977,147 505
20 289 20,000K 52,005K 2,786,693,382 8,163
21 321 20,000K 366,297K 13,926,234,207 57,559

Table 1: Results for the 4-peg Towers of Hanoi problem.
Columns show the number of disks (#d), solution length
(Sol), peak number of nodes stored in RAM in thousands
(Int Mem), peak number of nodes stored on disk in thou-
sands (Ext Mem), number of node expansions (Exp), and
running time in CPU seconds (Secs).

each pattern database is disjoint from the pattern variables of
all other pattern databases. In disjoint pattern databases, one
must choose the set of duplicate-detection variables care-
fully so that it overlaps with the set of pattern variables for
each external-memory pattern database. The reason for this
is that the abstract pattern variables used in a pattern-space
projection function must be duplicate-detection variables as
well. If the two sets of variables do not overlap, then the
pattern-space projection function trivially maps all patterns
to a single abstract pattern, the pblock for this abstract pat-
tern is the entire pattern database, and there is no way to use
external memory to store part of the pattern database.

As a design guideline, the larger the pattern database, the
more its pattern variables should overlap with duplicate-
detection variables. This creates a finer-grained pattern-
space projection function that reduces the size of each
pblock by increasing the number of abstract patterns.

Computational results
We tested our approach to external-memory pattern data-
bases in three domains, and summarize our results below.
While the results show the effectiveness of our approach,
they do not fully illustrate its potential, as it is possible to
compute much larger pattern databases than these using this
approach. All experiments were performed on a Pentium IV
3.2 GHz processer with 1 GB of RAM, 512 KB of L2 cache,
and a 7200RPM Seagate disk with 400 GB of storage.

4-peg Towers of Hanoi
For the 4-peg Towers of Hanoi problem (TOH4), unlike the
well-known 3-peg problem, the only way to find a prov-
ably optimal solution is by systematic search. Previously, the
largest pattern database built for this problem contains 16
disks (Felner et al. 2004), because the algorithm that creates
the pattern database only needs a bit array of size 416 = 4
gigabits (or 512 megabytes) of RAM to keep track of all pat-
terns visited in the breadth-first search. It is not possible to
create a 17-disk pattern database using the same method, be-
cause it would require a bit array of size 417 = 16 gigabits
(or 2 gigabytes) to search the 17-disk pattern space, and our
machine only has 1 gigabyte of RAM.

We used breadth-first frontier search with structured du-
plicate detection to create a 17-disk external-memory pat-
tern database, which contains 17,179,869,184 patterns and
has a size of 16 gigabytes. To the best of our knowledge,

AAAI-05 / 1402



this is the largest pattern database ever built. (Note that
our approach would allow us to build much larger pattern
databases than this without using more RAM.) In creating
this pattern database, the search algorithm used less than
0.7 gigabytes of RAM and approximately 120 gigabytes of
disk storage. We then compressed the 17-disk pattern data-
base using the external-memory compression algorithm de-
scribed previously. The compression ratio C used is 64,
which reduces the size of the entire 17-disk pattern database
to 256 megabytes. The maximum loss of accuracy due to
compression is 5 (the number of steps for solving the 3-disk
problem), because the positions of the three smallest disks
are ignored when querying each compressed pblock.

Using the 17-disk compressed pattern database and
breadth-first heuristic search (Zhou & Hansen 2004a), we
can solve larger instances of TOH4 than the previous state-
of-the-art. Table 1 shows the results. Not only were we able
to solve both the 18-disk problem (the largest previously-
solvable problem) and the 19-disk problem in RAM, we also
solved the 20- and 21-disk problems in external memory, us-
ing structured duplicate detection.

Note that for the standard start state in which all disks are
placed on a single peg, one only needs to search half as deep
due to symmetry. Korf’s (2004) breadth-first frontier search
(with delayed duplicate detection) exploits this symmetry to
solve TOH4 with up to 24 disks. But this symmetry only
applies to fixed start and goal states. For any other start state,
one has to use a complete search to find a shortest path to the
goal state, as our algorithm does.

Fifteen Puzzle
To solve the Fifteen Puzzle, we use structured duplicate
detection inside an algorithm called breadth-first iterative-
deepening A*, or BFIDA* (Zhou & Hansen 2004a). The
algorithm is the same as breadth-first branch-and-bound
search, except that it uses an iterative-deepening upper
bound (similar to Korf’s IDA*) and divide-and-conquer so-
lution reconstruction to reduce its memory requirements.
To guide the search, we created a disjoint pattern database
heuristic that is based on two external-memory pattern data-
bases, one for a group of 7 tiles and one for a group of 8
tiles. The 7-tile group contains tiles 1, 4, 5, 8, 9, 12, and 13.
The 8-tile group contains the rest of the tiles.

The set of duplicate-detection variables considers the po-
sition of tiles 3, 5, 10, 12, and 15, plus the “blank.” Note
that tiles 5 and 12 belong to the 7-tile group, and tiles
3, 10, 15 belong to the 8-tile group. This creates an ab-
stract pattern space with 16 · 15 = 240 abstract patterns
for the 7-tile group, and an abstract pattern space with
16 · 15 · 14 = 3360 abstract patterns for the 8-tile group.
Hence a pblock for the 7-tile group contains (16!/9!)/240 =
240240 patterns, and a pblock for the 8-tile group contains
(16!/8!)/3360 = 154440 patterns. The algorithm stores a
maximum number of 100 pblocks for each external-memory
pattern database. Thus, the peak internal-memory require-
ment is (240240+154440)·100 = 39, 468, 000 bytes, which
is 15 times less than the internal-memory requirement of dis-
joint pattern databases based on these two groups of tiles that
are stored entirely in RAM.

Name Cost Int PDB Ext PDB Exp Secs
1amk 33,960 6,918 487,851 12,893K 148
1tis 37,581 5,963 453,733 10,249K 165
actin 52,117 14,469 1,814,077 88,657K 1,309
1ton 32,707 30,383 2,078,950 218,533K 2,826
1gtr 58,010 48,846 4,725,039 360,697K 5,885
2cba 34,294 46,371 3,729,917 666,682K 16,292
S52 35,713 37,555 4,545,352 1,074,340K 19,877
1bco 23,703 62,513 4,440,847 2,699,068K 98,236

Table 2: Results for aligning groups of 5 protein sequences
from reference set 1 of BAliBASE. Columns show name of
instance, cost of optimal alignment, peak number of patterns
stored in RAM (Int PDB), peak number of patterns stored
on disk (Ext PDB), number of node expansions in thousands
(Exp), and CPU seconds (Secs).

We ran BFIDA* on the 10 most difficult of Korf’s 100
random instances of the Fifteen Puzzle (Korf 1985). On av-
erage, each instance took 22.6 seconds to solve using struc-
tured duplicate detection and our external-memory disjoint
pattern databases. For comparison, BFIDA* using struc-
tured duplicate detection and the Manhattan-distance heuris-
tic took an average of 1083 seconds to solve each instance,
although the internal-memory requirements of the two algo-
rithms are about the same. In other words, using external-
memory disjoint pattern databases results in a 48-times
speedup of BFIDA* without using more RAM.

Note that the average runtime of BFIDA* in our experi-
ments also includes the time it takes to read pblocks stored
on disk in solving every instance. On the other hand, the av-
erage runtime using regular pattern databases may increase
if there are only a handful of instances to solve. This is be-
cause the time it takes to read the entire disjoint pattern data-
bases from disk, if not amortized over a sufficiently large
number of instances, may become a significant part of aver-
age runtime. For example, reading the two regular disjoint
pattern databases from disk actually takes about 12 seconds
on our machine, and if only a single instance were to be
solved, the average runtime would be at least 12 seconds no
matter what algorithm is used; whereas the average runtime
of BFIDA* in our experiments remains unaffected.

Multiple sequence alignment
Optimal alignment of multiple DNA or protein sequences
is a challenging search problem for which A* has been
shown to be very effective (McNaughton et al. 2002; Zhou
& Hansen 2003; 2004b). When the standard sum-of-pairs
cost function is used, admissible heuristics can be created
by aligning subsets of the sequences. This creates large
table-based heuristics that are essentially pattern databases,
and can be summed in a manner similar to disjoint pattern
databases. For example, in order to optimally align 5 se-
quences, we can create two triple-alignment pattern data-
bases such that the sum of their values will be an admis-
sible heuristic. However, the size of a triple-alignment pat-
tern database is cubic in the length of a sequence, where
the length (of a protein sequence) is typically in the few
hundreds. To limit the amount of memory required to store

AAAI-05 / 1403



these large table-based heuristics, we used a technique de-
scribed in (Zhou & Hansen 2004b) in combination with
the external-memory pattern database technique presented
in this paper. We used both in a memory-efficient version of
A* that is very effective for multiple sequence alignment,
called Sweep A* (Zhou & Hansen 2003), using structured
duplicate detection.

We ran an external-memory version of Sweep A* using
our external-memory pattern databases on real protein se-
quences from reference set 1 of BAliBASE, a widely-used
benchmark (Thompson, Plewniak, & Poch 1999). All prob-
lems involve aligning 5 protein sequences. The cost func-
tion used is a Dayhoff substitution matrix with a linear gap
penalty of 8. We built two triple-alignment pattern databases
in solving each problem. The pattern-space projection func-
tion used ignores all but the longest sequence that is shared
by both triples of sequences, thereby dividing each triple-
alignment pattern database into L pblocks, where L is the
length of the longest sequence.

Table 2 shows that our approach reduces the internal-
memory requirements of the pattern databases by an aver-
age factor of 83 times. We also found that using external-
memory pattern databases made Sweep A* run 16% faster
than using traditional pattern databases of the same accuracy
that are stored entirely in internal memory. The reason is that
the amount of internal memory needed to store the pblocks
is often small enough to fit (or almost fit) in the 512 kilo-
bytes of L2 cache that our machine has, and pattern lookups
are much faster in cache than in RAM. Of course, this is not
guaranteed to happen. For example, it took a disproportion-
ately long time to solve the most difficult problem (1bco) in
Table 2, partly because the peak number of patterns stored
in internal memory for this problem (62,513 patterns) does
not quite fit in cache. With external triple-alignment pat-
tern databases, we can solve multiple sequence alignment
problems that could not be solved previously. For example,
no one before has found provably optimal solutions for the
largest three problems listed in Table 2.

Conclusion
Pattern databases have proved to be an effective way of au-
tomatically creating highly-accurate admissible heuristics.
The accuracy of the heuristics typically increases with the
size of the tables in which they are stored, and thus mem-
ory is a bottleneck in creating improved heuristics. We
have introduced an efficient approach to creating and using
external-memory pattern databases that uses structured du-
plicate detection to leverage shared local structure in both
the pattern space and the abstract state space used for dupli-
cate detection. This approach allowed us to create the largest
pattern database ever constructed, and we showed that it sig-
nificantly improves search performance in three domains. In
the future, we plan to use this approach to create much larger
external-memory pattern databases that could significantly
improve the scalability of heuristic search.

Acknowledgements
We thank the anonymous reviewers for helpful comments.
This work was supported in part by NSF grant IIS-9984952.

References
Culberson, J., and Schaeffer, J. 1998. Pattern databases. Compu-
tational Intelligence 14(4):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In 6th
European Conference on Planning (ECP-01).
Edelkamp, S.; Jabbar, S.; and Schrödl, S. 2004. External A*. In
Proceedings of the 27th German Conf. on AI, 226–240.
Felner, A.; Meshulam, R.; Holte, R.; and Korf, R. E. 2004. Com-
pressing pattern databases. In Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI-04), 638–643.
Hernádvölgyi, I., and Holte, R. 2000. Experiments with automati-
cally created memory-based heuristics. In Proc. of the Symposium
on Abstraction, Reformulation, and Approximation (SARA-2000),
Lecture Notes in Artificial Intelligence 1864, 281–290.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy, D.
2004. Multiple pattern databases. In Proceedings of the 14th In-
ternational Conference on Automated Planning and Scheduling,
122–131.
Korf, R. 1985. Depth-first iterative deepening: An optimal ad-
missible tree search. Artificial Intelligence 27:97–109.
Korf, R. 1997. Finding optimal solutions to Rubik’s cube using
pattern databases. In Proceedings of 14th National Conference on
Artificial Intelligence (AAAI-97), 700–705.
Korf, R. 2004. Best-first frontier search with delayed duplicate
detection. In Proceedings of the 19th National Conference on
Artificial Intelligence (AAAI-04), 650–657.
Korf, R., and Felner, A. 2002. Disjoint pattern database heuristics.
Artificial Intelligence 134(1–2):9–22.
McNaughton, M.; Lu, P.; Schaeffer, J.; and Szafron, D. 2002.
Memory-efficient A* heuristics for multiple sequence alignment.
In Proceedings of the 18th National Conference on Artificial In-
telligence (AAAI-02), 737–743.
Mehlhorn, K., and Meyer, U. 2002. External-memory breadth-
first search with sublinear I/O. In Proceedings of the 10th Annual
European Symposium on Algorithms, 723–735.
Munagala, K., and Ranade, A. 1999. I/O-complexity of graph
algorithms. In Proceedings of the 10th Symposium on discrete
algorithms, 687–694.
Qian, K., and Nymeyer, A. 2004. Guided invariant model check-
ing based on abstraction and symbolic pattern databases. In Pro-
ceedings of the 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 497–511.
Sleator, D., and Tarjan, R. 1985. Amortized efficiency of list
update and paging rules. Communications of the ACM 28:202–8.
Thompson, J.; Plewniak, F.; and Poch, O. 1999. BAliBASE:
A benchmark alignment database for the evaluation of multiple
alignment programs. Bioinformatics 15(1):87–88.
Zhou, R., and Hansen, E. 2003. Sweep A*: Space-efficient
heuristic search in partially ordered graphs. In Proceedings of
15th IEEE International Conference on Tools with Artificial In-
telligence, 427–434.
Zhou, R., and Hansen, E. 2004a. Breadth-first heuristic search. In
Proceedings of the 14th International Conference on Automated
Planning and Scheduling, 92–100.
Zhou, R., and Hansen, E. 2004b. Space-efficient memory-based
heuristics. In Proceedings of the 19th National Conference on
Artificial Intelligence (AAAI-04), 808–814.
Zhou, R., and Hansen, E. 2004c. Structured duplicate detection
in external-memory graph search. In Proceedings of the 19th Na-
tional Conference on Artificial Intelligence (AAAI-04), 683–688.

AAAI-05 / 1404


