
Selection and Ranking of Propositional Formulas
for Large-Scale Service Directories

Ion Constantinescu and Walter Binder and Boi Faltings
Ecole Polytechnique F́ed́erale de Lausanne (EPFL)

Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract

In this paper we consider scenarios, such as web service
composition, where a planner needs to discover its opera-
tors by querying a potentially very large and dynamically
changing directory. Our contribution is a directory system
that represents service advertisements and requests as propo-
sitional formulas and provides a flexible query language al-
lowing complex selection and ranking expressions. The in-
ternal structure of the directory enables efficient selection and
ranking in the presence of a large number of services thanks
to its organization as a balanced tree with an extra “intersec-
tion predicate”. In order to optimally exploit the index struc-
ture of the directory, a transformation scheme is applied to
the original query. Experimental results on randomly gener-
ated service composition problems illustrate the benefits of
our approach.1

Introduction
In a service-oriented environment, providers and consumers
use directories to publish and discover service descrip-
tions. Service discovery often requires complex interactions
with directories, because the number of different service
providers can be high and consumers may have complex re-
quirements.

To illustrate how such complex requirements can appear,
consider service composition: A composition engine re-
ceives a service request that it has to fulfill by using ser-
vices published in a directory. The engine returns one or
more services; in the latter case, the services are chained in
a workflow. Service composition can be seen as a reasoning
process related to planning. Some approaches directly use
planning techniques (McIlraith & Son 2002). In this paper
we consider techniques that interleave reasoning and infor-
mation gathering steps (Constantinescu, Faltings, & Binder
2004).

Here, the composition engine incrementally discovers ad-
vertised services based on the current state of the reasoning
process, applying heuristics specific to the composition al-
gorithm. The current reasoning state and algorithm-specific

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The work presented in this paper was supported by the Eu-
ropean projects KnowledgeWeb (FP6-507482) and DIP (FP6-
507483).

Transformed
FormulaQL

Original
FormulaQL

FormulaQL

Planner Directory
Interface

Heap Balanced Index Tree

next
best

expand
node

Figure 1: System overview.

heuristics are combined to form queries to the service direc-
tory. In contrast to classic planning, where a small number
of operators is exhaustively checked against a large space
of possible states, in service composition the search state
is used to create anoperator specification. Together with
algorithm-specific heuristics, this specification allows to se-
lect appropriate operators from a large number of possible
candidates.

We use propositional logic to represent operator specifi-
cations. A propositional formula can be used to represent a
large number of world states that a forward-chaining planner
computes. In some cases, the formula may represent only
a sound approximation of the set of possible states that is
easier to compute than an exact representation (e.g., mutex
relations in Graphplan (Blum & Furst 1997)). A possible
heuristic for forward-chaining may select operators whose
preconditions are satisfied by the formula of reachable states
and order them according to how much they fulfill the goal
formula of the service request. To support this process, we
need a directory mechanism that meets the following re-
quirements:

• Flexible selection and ranking:The query language has
to support user-defined search heuristics so that the most
promising elements of a (possibly large) result set are
returned first. However, the internal directory structure
should not be exposed to the client. Because there is no
widely accepted, standard service composition algorithm
at the moment, opening the directory for custom heuris-
tics is essential in order to let researchers optimize the
directory search for different composition algorithms.

• Efficient search: The internal structure of the directory
has to enable an efficient search in the presence of a large
number of service descriptions.

Our main contribution is a directory system that addresses

AAAI-05 / 1406

these two requirements in a novel way, first by organizing
the directory as a balanced search tree and secondly by pro-
viding FormulaQL, a flexible language for the selection and
ranking of propositional formulas. We provide a transfor-
mation framework for FormulaQL expressions that automat-
ically relaxes given query expressions, enabling the ranking
of inner nodes in the directory tree. As internal nodes are
expanded, they are stored in a heap structure (sorted accord-
ing to the ranking), resulting in a best-first directory search
(see Figure 1).

This paper is structured as follows: In the next section
we discuss the process of service publication and discovery
and introduce our formalism for modeling services. Then
we present our approach to flexible selection and ranking of
propositional formulas. We introduce FormulaQL, our di-
rectory query language, and show how existing approaches
for efficient propositional inference can be applied in our
case. Next, we describe the internal organization of the di-
rectory and explain how query transformations reconcile the
flexibility of our query language with the internal directory
organization to enable a customized and efficient directory
search. Finally, we investigate the performance of our direc-
tory for randomly generated service composition problems.

Flexible Selection and Ranking of
Propositional Formulas

The general idea of the discovery process is to select from a
potentially large number of Service Advertisement(s) (SA)
published in a Service Directory those that fulfill require-
ments specified by a Service Request (SR). The SR together
with a FormulaQL expressionmake up the directory query.
A FormulaQL expression may comprise a selection expres-
sion, which defines necessary conditions for SA(s) to match
the given SR, as well as a ranking expression that speci-
fies the order in which matching SA(s) have to be returned.
SA(s) and the SR are represented as one or more proposi-
tional formulas (e.g.,Σ1, Σ2, Γ1, Γ2 in Figure 2), where
each formula is uniquely identified by a keyword (e.g.,IN ,
OUT).

IN: Γ1

OUT: Γ2

Service Request (SR)

+
IN: Σ1

OUT: Σ2

Service Advertisement(s) (SA)Directory SystemFormulaQL

selectExpr rankExpr

Query

SA
Response(s)

Publish

Figure 2: Accessing the service directory.

We define a propositional formulaφ in the standard way
as:

φ = l | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2,

wherel stands for a proposition and formulas can be cre-
ated from other formulas using the basic logical operators
negation¬, conjunction∧, and disjunction∨.

If we use model-theoretic semantics and define asM(φ)
the set of satisfying truth assignments of the formulaφ (i.e.,
the set of models of the formula), the entailment relation

Γ |= Σ is equivalent toM(Γ) ⊆ M(Σ). I.e., the set of
models ofΓ is included in the set of models ofΣ. If in turn
we consider each model as a set of positive propositions
and we use the standard set operatorm1 ⊆ m2 for testing
whether modelm2 subsumes modelm1, we can specify the
entailment relation as:

Γ |= Σ ⇔ (∀mi ∈M(Γ))(∃mj ∈M(Σ))(mi ⊆ mj).

We generalize the|= relation, supporting different
quantifications over the set of models, as well as several
inclusion relations that can be tested between concrete
models (sets of positive propositions). For this purpose, we
introduce the predicateselect:

select(q1, q2, Γ, Σ, op) ⇔
(q1 mi ∈M(Γ)) (q2 mj ∈M(Σ))(mi op mj)

whereq1, q2 = (∀ | ∃),
op = (≡ | ⊇ | ⊆ | ∩ 6= ∅ | ∩ = ∅).

For complete matches (exact and plugin
matches (Paolucciet al. 2002)), the quantifier combi-
nation < ∀, ∃ > is used, whereas forpartial matches
(subsumption and intersection matches (Constantinescu
& Faltings 2003)), the quantifier combination< ∃, ∃ >
applies. The other combinations may be used to specify
strong pruning conditions (e.g., a negation appears in front
of the selection predicate).

For quantifying how much a formulaΓ entails another
formulaΣ, we introduce therank function as follows:

rank(Γ, Σ, op) =
| {mi ∈M(Γ) : (∃mj ∈M(Σ))(mi op mj)} |

As an example, consider a scenario where different flight
information services are offered and a travel agent looks for
services that give the flight number and/or ticket price for
flight connections between a set of departure airports and a
set of arrival airports. A sample service requestSR and its
corresponding sets of models are shown below:

IN(SR) : date ∧ (dep GV A ∨ dep ZRH) ∧ arr HER

OUT (SR) : flight no ∨ flight price

M(IN(SR)) = { {date, dep GV A, arr HER},
{date, dep ZRH, arr HER},
{date, dep GV A, dep ZRH, arr HER} }

M(OUT (SR)) = { {flight no}, {flight price},
{flight no, flight price} }

Assume we have two service advertisementsSA1 and
SA2 with the following input specification and their corre-
sponding models:

IN(SA1) : date ∧ (dep GV A ∨ dep ZRH)∧
(arr HER ∨ arr CHQ)

IN(SA2) : dep GV A ∧ (arr HER ∨ arr CHQ)

M(IN(SA1)) = { {date, dep GV A, arr HER},
{date, dep ZRH, arr HER},
{date, dep GV A, dep ZRH, arr HER},
{date, dep GV A, arr CHQ},
{date, dep ZRH, arr CHQ},

AAAI-05 / 1407

{date, dep GV A, dep ZRH, arr CHQ},
{date, dep GV A, arr HER, arr CHQ},
{date, dep ZRH, arr HER, arr CHQ},
{date, dep GV A, dep ZRH,

arr HER, arr CHQ} }
M(IN(SA2)) = { {dep GV A, arr HER},

{dep GV A, arr CHQ},
{dep GV A, arr HER, arr CHQ} }

Concerning inputs, SA1 is a plugin match
for SR, which means that each model of
IN(SR) implies a model of IN(SA1), i.e.,
(∀x ∈M(IN(SR)))(∃y ∈M(IN(SA1)))(x ⊇ y),
or select(∀, ∃, IN(SR), IN(SA1), ⊇).

In contrast,SA2 is not a plugin match forSR, because
the model {date, dep ZRH, arr HER} ∈ IN(SR)
is not a superset of any model inM(IN(SA2)).
However, SA2 can be considered a partial match, i.e.,
(∃x ∈M(IN(SR)))(∃y ∈M(IN(SA2)))(x ⊇ y), or
select(∃, ∃, IN(SR), IN(SA2), ⊇).

Now we consider the ranking of services regarding their
outputs. Assume there are two servicesSA1a andSA1b with
IN(SA1a) = IN(SA1b) = IN(SA1). OUT (SA1a) and
OUT (SA1b) are defined as follows:

OUT (SA1a) : flight no

OUT (SA1b) : flight no ∨ flight price

M(OUT (SA1a)) = { {flight no} }
M(OUT (SA1b)) = { {flight no}, {flight price},

{flight no, flight price} }

Intuitively, SA1b is better suited to fulfill the requestSR,
because it generates all the outputs thatSR is interested in.
This can be stated with a ranking expression, as shown be-
low (a higher ranking value means a better match):

• rank(OUT (SR), OUT (SA1a), op) = 2
rank(OUT (SR), OUT (SA1b), op) = 3
(op ∈ {⊇, ∩ 6=∅})

• rank(OUT (SR), OUT (SA1a), op) = 1
rank(OUT (SR), OUT (SA1b), op) = 3
(op ∈ {⊆, ≡})

FormulaQL – A Query Language for Propositional
Formulas
When searching a collection of formulas for entailment, the
client submits a query consisting of a service request as well
as a custom selection and ranking function. The selection
and ranking function is written in the simple, high-level,
functional query language FormulaQL (Formula Query Lan-
guage). An (informal) EBNF grammar for FormulaQL is
given in Table 1. The non-terminalnumber, which is not
shown in the grammar, represents a numeric constant (inte-
ger or decimal number) and the non-terminalword repre-
sents a non-empty alphanumeric word used for the names of
the keys.

The semantics of the boolean expressionsallSRallSA ,
etc., and their negations(not (allSRallSA)) , etc.,
and of the numeric functionscount , countSR , and
countSA are those defined in the previous section for the

dirqlExpr: selectExpr | rankExpr | selectExpr rankExpr

selectExpr: ’select’ boolExpr

rankExpr: ’order’ ’by’ (’asc’ | ’desc’) numExpr

boolExpr: ’(’ (’and’ | ’or’) boolExpr+ ’)’
| ’(’ ’not’ boolExpr ’)’
| ’(’ quantOP word word relOP ’)’
| ’(’ cmpOP numExpr numExpr ’)’

quantOP : ’allSRallSA’ | ’allSRsomeSA’ | ’someSRallSA’
| ’someSRsomeSA’ | ’allSAallSR’ | ’allSAsomeSR’
| ’someSAallSR’ | ’someSAsomeSR’

relOP : ’EQUIV’ | ’SUBSET’ | ’SUPERSET’
| ’OVERLAP’ | ’DISJOINT’ | ’T’ | ’F’

cmpOP : ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’!=’

numExpr : ’(’ (’+’ | ’ * ’) numExpr numExpr+ ’)’
| ’(’ (’-’ | ’/’) numExpr numExpr ’)’
| ’(’ (’max’ | ’min’) numExpr+ ’)’
| ’(’ ’if’ boolExpr numExpr numExpr ’)’
| ’(’ ’count’ word word relOP ’)’
| ’(’ ’countSR’ word ’)’
| ’(’ ’countSA’ word ’)’
| number

Table 1: A grammar for FormulaQL.

T
ex

t

Σ
upper bound
or envelope

Φ ΦThe set of models of formula .

Σ
lower bound
or core

Σ1

Σ2

Figure 3: Formula approximations for fast inference.

predicateselect and for the functionrank. For select and
rank, the formulasΓ andΣ are retrieved from the service
requestSR resp. from the service advertisementSA ac-
cording to the two keys specified as parameters. For exam-
ple, (allSRsomeSA IN IN EQUIV) is equivalent to
select(∀,∃,Γ,Σ,≡), whereΓ = SR(IN), Σ = SA(IN).

The functionscountSR andcountSA return the num-
ber of models for a given key in the service request
SR resp. in the service advertisementSA. The rela-
tion specifiersEQUIV, SUBSET, SUPERSET, OVERLAP,
DISJOINT correspond to the operators≡, ⊆, ⊇, ∩ 6= ∅,
∩ = ∅. In the case of the operatorsT (true) andF (false),
the selection function is considered to return always true
resp. false. For the operatorT, thecount function returns
the size of the first argument formula, whereas for the oper-
atorF, it returns 0.

Efficient Propositional Inference
Our approach for efficiently computing formula entailment
is related to the one initially proposed by (Selman & Kautz

AAAI-05 / 1408

Positive relations (select(...)).

Γ ≡ Σ ⇒ Γ ⊆ Σ

Γ ⊆ Σ ⇒ Γ ⊆ Σ

Γ ⊇ Σ ⇒ Γ∩Σ 6= ∅
Γ∩Σ 6= ∅ ⇒ Γ∩Σ 6= ∅
Γ∩Σ = ∅ ⇒ >

Γ ≡ Σ ⇒ Γ ⊇ Σ

Γ ⊆ Σ ⇒ >
Γ ⊇ Σ ⇒ Γ ⊇ Σ

Γ∩Σ 6= ∅ ⇒ >
Γ∩Σ = ∅ ⇒ Γ∩Σ = ∅

We apply(A ⇒ B) ↔ (¬B ⇒ ¬A) and get:

Negative relations (¬select(...)).

¬(Γ ≡ Σ) ⇒¬(⊥)

¬(Γ ⊆ Σ) ⇒¬(⊥)

¬(Γ ⊇ Σ) ⇒¬(Γ ⊇ Σ),

⇒¬(Γ ≡ Σ)

¬(Γ∩Σ 6= ∅)⇒¬(⊥)

¬(Γ∩Σ = ∅)⇒¬(Γ∩Σ = ∅)

¬(Γ ≡ Σ) ⇒¬(⊥)

¬(Γ ⊆ Σ) ⇒¬(Γ ⊆ Σ),

⇒¬(Γ ≡ Σ)

¬(Γ ⊇ Σ) ⇒¬(⊥)

¬(Γ∩Σ 6= ∅)⇒¬(Γ∩Σ 6= ∅),
⇒¬(Γ ⊇ Σ)

¬(Γ∩Σ = ∅)⇒¬(⊥)

Figure 4: Selection criteria and required pruning conditions
for Σ and Σ (right side of the implications). Instead of
M(φ) we simply writeφ. We assume thatM(φ) 6= ∅.

1991) and then developed in several other works (Cadoli &
Scarcello 2000). They proposed a compilation technique
where a generic formula is approximated by two Horn
formulasΣ andΣ that satisfy the following:

Σ |= Σ |= Σ or equivalentlyM(Σ) ⊆M(Σ) ⊆M(Σ).

In the literatureΣ is called theHorn lower boundor core
of Σ, while Σ is called theHorn upper boundor envelope
of Σ. As it can be seen in Figure 3,Σ is acompleteapprox-
imation of Σ, since any model of the core (lower bound)
formula is also a model of the original formula. Conversely,
the envelope (upper bound) is asoundapproximation of the
original formula, as any model of the original formula is also
a model of the envelope.

Several formulas (e.g.,Σ1 and Σ2 in Figure 3) may be
approximated by common bounds: The union of their mod-
els can be considered an upper bound and the intersec-
tion of their models can be considered a lower bound.
Hence, before testing individual entailment betweenΓ and
Σ1 resp.Σ2, the bounds can be tested as pruning conditions.

As an example, assume that from several service adver-
tisementsΣx (x = 1, 2, ...) bounded byΣ andΣ, we have to
select those that satisfy the entailmentΓ |= Σx, whereΓ is
a service request. As a necessary condition forΣx to satisfy
the entailment,Σ must satisfy the entailment, too. If this is
the case, the individual formulasΣx have to be tested for en-
tailment. Otherwise, no further tests are necessary. I.e., the
negation of the entailment,Γ 6|= Σ, can be used as a pruning
condition.

In Figure 4 we list all other possible inclusion implica-
tions between a requestΓ and an advertisementΣ, as well
as the corresponding pruning conditions forΣ andΣ. We
considered five possible set relations: Equivalence≡, sub-
set⊆, superset⊇, overlapping sets∩ 6= ∅, and disjoint sets

∩ = ∅. If no particular relation could be deduced, we used
the truth symbol> (i.e., to make the implication a tautol-
ogy).

The lower table in Figure 4 applies if the selection predi-
cate appears negated in the query formula (e.g., in the form
¬select(...)). For determining the pruning conditions for
this case, we used the fact thatA ⇒ B is logically equiv-
alent to¬B ⇒ ¬A and the previously determined implica-
tions of positive relations betweenΓ andΣ resp.Σ.

Efficient Directory Search
The need for efficient discovery and matchmaking leads to
a need for search structures and indexes for directories. We
consider the propositional formulas representing service de-
scriptions as multidimensional data and use techniques re-
lated to the indexing of such kind of information for orga-
nizing the directory.

The indexing technique we use is based on the General-
ized Search Tree (GiST) structure, which was initially pro-
posed as a unifying framework by Hellerstein (Hellerstein,
Naughton, & Pfeffer 1995) and later extended regarding dif-
ferent other aspects such as concurrency. The design prin-
ciple of GiST arises from the observation that search trees
used in databases are balanced trees with a high fanout in
which the internal nodes are used as a directory and the leaf
nodes point to the actual data. In the classic GiST, each inter-
nal node holds a key in the form of a predicate and a number
of pointers to other nodes (depending on system and hard-
ware constraints, e.g., filesystem page size). Predicates of
inner nodes subsume predicates of all children nodes. To
search for records (Σi) that satisfy a query predicate (Γ),
only some paths of the tree are followed, those having inner
predicates that can satisfy the query being processed. For a
given inner node, the associated predicate can be seen as an
upper bound or envelope (see aboveΣ) of the predicates in
the leaf nodes of the subtree originated at the node.

Relevant to our work are also SS trees, the GiST exten-
sions described in (Aoki 1998) regarding heuristic directed
stateful search. The main difference between SS trees and
our approach is that we uses a declarative query language
which makes the internal organization of the directory trans-
parent to the user. In our case, search is still highly efficient
thanks to a query transformation scheme that exploits the
tree structure of the index.

Our approach extends the basic GiST framework by asso-
ciating a second predicate, which is subsumed by all values
below in the tree, with each inner node. This new predicate
can be seen as a lower bound or core (see aboveΣ) of the
predicates in the leaf nodes of the subtree originated at the
node defining the predicate. Core predicatesΣ are required
for pruning conditions that include negative entailment tests
(¬select(...)).

As it can be seen in the example in Figure 5, while the
size of envelope predicates normally increases as they are
closer to the root of the tree, core predicates become smaller
or even empty (⊥) as they approach the root.

In our implementation core formulas are constructed as
the intersection of the envelopes of the core formulas in

AAAI-05 / 1409

Leaf Nodes

Node with 3
entries

Internal Nodes

ptr

ptr

ptr

Node N with core ΣN,

envelope ΣN and pointer ptr

Σ

Σ11

Σ1

Σ11

Σ1

Logical formula
implication

Node 1

Leaf node

ptr

Σ N

Node 11

... ...
...

ptr

ptr

ptr

Σ1 Σ2 Σ3

Σ11 Σ12 Σ13

Figure 5: Theory approximation tree.

children nodes. In the example in Figure 5, for the inner
node 1 with children nodes 11, 12, and 13, this is:

Σ1 = Σ11 ∩ Σ12 ∩ Σ13.

Conversely, envelope formulas are constructed as the
union of the envelopes of the formulas below:

Σ1 = Σ11 ∪ Σ12 ∪ Σ13.

In our implementation we use 0-suppressed binary deci-
sion diagrams (ZDDs) (Minato 1993) to represent formulas.
ZDDs are a compressed graph representations of combina-
tion sets, allowing us to efficiently manipulate formulas, to
determine inclusions between models, and to count the num-
ber of models. This is in accordance with the assumption
that service directories are optimized for queries. A higher
overhead for the update of entries is tolerable.

By default, the order in which matching service de-
scriptions are returned depends on the actual structure of
the directory index (the GiST structure discussed before).
However, depending on the service composition algorithm,
ordering the results of a query according to user-defined
heuristics may significantly improve the performance of ser-
vice composition. In order to avoid the transfer of a large
number of service descriptions, the pruning, ranking, and
sorting according to application-dependent heuristics should
occur directly within the directory. As the best pruning and
ranking heuristic depends on the service composition algo-
rithm, our directory allows its clients to define custom selec-
tion and ranking functions which are used to select and sort
the results of a query.

While the query is being processed, the visited nodes are
maintained in a heap (priority queue), where the node with
the most promising heuristic value comes first. Always the
first node is expanded; if it is a leaf node, it is returned to
the client. Further nodes are expanded only if the client
needs more results. This technique is essential to reduce
the processing time in the directory until the the first result

is returned, i.e., it reduces the response time. Furthermore,
thanks to the incremental retrieval of results, the client may
close the result set when no further results are needed. In
this case, the directory does not spend resources to compute
the whole result set. Consequently, this approach reduces
the workload in the directory and increases its scalability. In
order to protect the directory from attacks, queries may be
terminated if the size of the internal heap or the number of
retrieved results exceed a certain threshold defined by the
directory service provider.

Query Transformation
In this section we give an overview of our transformation
scheme that integrates the flexibility and transparency of-
fered by the FormulaQL language with the efficiency pro-
vided by the internal directory structures, i.e., the balanced
tree and the heap.

Processing a user query requires traversing the GiST
structure of the directory starting from the root node. For
validating the final result, the original FormulaQL expres-
sion is applied to leaf nodes of the directory tree, which cor-
respond to concrete service advertisements.

The client defines only the selection and ranking func-
tion for leaf nodes (i.e., to be invoked for concrete service
descriptions), while the corresponding functions for inner
nodes are automatically generated by the directory. The di-
rectory uses a set of simple transformation rules that enable
an efficient generation of the selection and ranking functions
for inner nodes (the execution time of the transformation al-
gorithm is linear with the size of the query FormulaQL ex-
pression).

If the client desires ranking in ascending order, the gen-
erated ranking function for inner nodes computes a lower
bound of the ranking value in any node of the subtree; for
ranking in descending order, it calculates an upper bound.

The actual query transformation starts by putting the
select part of the initial formula into a Negated Normal
Form (NNF) by propagating negations over boolean expres-
sions such that they appear only in front ofselect() con-
structs or numeric boolean expressions (e.g.,<, <=, etc.).
Numeric expression directly absorb negations by inverting
the comparator (e.g.,¬ < ⇒ >=). The second phase
of the transformation relaxes the query by using the appro-
priate bounds. Positiveselect(...) expressions are relaxed
using the rules in the upper part of Figure 4. For negated
expressions of the form¬select(...), the lower part of the
table is used. In inner nodes, theallSA quantifier is relaxed
to someSA. Numerical expressions are relaxed by hav-
ing lower or upper bounds propagated using basic interval
arithmetic (e.g.,[Xl, Xu] + [Yl, Yu] = [Xl + Yl, Xu + Yu],
[Xl, Xh]− [Yl, Yh] = [Xl − Yh, Xh − Yl], etc.) Lower
bounds are computed as low interval ends and upper bounds
are computed as high interval ends. The numeric ranking
functions use the coreΣ for lower numeric approximations
and the envelopeΣ for upper numeric approximations. A
detailed table of all the transformation rules had to be omit-
ted due to space limitations.

‘

AAAI-05 / 1410

0

10

20

30

40

50

60

70

80

90%

1500 3000 4500 6000 7500 9000 10500 12000

Number of Services in Directory

P
e
rc

e
n

ta
g

e
 o

f
D

ir
e
c
to

ry
 N

o
d

e
s
 V

is
it

e
d

Fwd Complete Full

Fwd Partial Full

Fwd Complete Best First

Fwd Partial Best First

Best First Search

Full Search

Figure 6: Average percentage of visited directory nodes per
query.

Evaluation
We evaluated our approach with a service composition plan-
ner based on forward chaining (Constantinescu, Faltings, &
Binder 2004). The planner iteratively selects an applicable
serviceS (i.e., all inputs required byS have to be available)
and applies it to the current world state. The process termi-
nates, if either the requested functionality is provided (i.e.,
all required outputs are provided) or no solution could be
found.

We carried out tests on random service descriptions and
service composition problems. The composition problems
were solved using two forward chaining composition algo-
rithms: One that handles only complete matches and a sec-
ond one that also supports partial matches. Since we were
interested in the efficiency of the directory search, we evalu-
ated the average percentage of tree nodes visited during the
processing of a query for different directory sizes.

We compared two different directory configurations. In
the first configuration, the directory creates thefull result
setbased on the query selection criteria before ranking the
results according to the provided ranking function. In the
second configuration, we evaluated the directory that per-
forms abest-first searchapplying the transformed selection
and ranking function to inner nodes, thus lazily creating the
result set. For both directories, we used exactly the same
set of service descriptions, and for each iteration, we ran the
algorithms on exactly the same random composition prob-
lems.

The results (Figure 6) show that for both composition al-
gorithms, the number of directory nodes that are evaluated is
smaller in the case of thebest-first searchthan in the case of
full search(about 20% instead of 80%). When the directory
increases in size, the percentage of visited nodes slightly de-
creases.

Conclusion
In this paper we presented an extensible directory system
providing a flexible query language (FormulaQL) and an ef-
ficient way of managing and searching the published service
descriptions.

The directory is organized as a special kind of balanced
search tree, where nodes contain also an “intersection pred-
icate”, in contrast to current systems which usually provide
only an “union predicate”. This “intersection predicate” is
used for early pruning in the case of negated queries and
for providing tighter lower bounds in the case of numerical
functions. For an efficient search, the initial user query is au-
tomatically transformed into a query exploiting the internal
directory structure (lower and upper bounds). A best-first
search technique is used for the lazy creation of the result
set.

Performance measurements with two kinds of composi-
tion algorithms based on randomly generated service de-
scriptions and composition problems confirm that this best-
first search evaluates consistently less directory nodes than
a simpler directory implementation.

References
Aoki, P. M. 1998. Generalizing “search” in generalized
search trees. InProc. 14th IEEE Conf. Data Engineering,
ICDE, 380–389. IEEE Computer Society.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis.Artificial Intelligence
90(1–2):281–300.
Cadoli, M., and Scarcello, F. 2000. Semantical and com-
putational aspects of horn approximations.Artif. Intell.
119(1-2):1–17.
Constantinescu, I., and Faltings, B. 2003. Efficient match-
making and directory services. InThe 2003 IEEE/WIC In-
ternational Conference on Web Intelligence.
Constantinescu, I.; Faltings, B.; and Binder, W. 2004.
Large scale, type-compatible service composition. InIEEE
International Conference on Web Services (ICWS-2004).
Hellerstein, J. M.; Naughton, J. F.; and Pfeffer, A. 1995.
Generalized search trees for database systems. In Dayal,
U.; Gray, P. M. D.; and Nishio, S., eds.,Proc. 21st Int.
Conf. Very Large Data Bases, VLDB, 562–573. Morgan
Kaufmann.
McIlraith, S. A., and Son, T. C. 2002. Adapting Golog
for composition of semantic web services. In Fensel, D.;
Giunchiglia, F.; McGuinness, D.; and Williams, M.-A.,
eds.,Proceedings of the 8th International Conference on
Principles and Knowledge Representation and Reasoning
(KR-02), 482–496. San Francisco, CA: Morgan Kaufmann
Publishers.
Minato, S. 1993. Zero-suppressed BDDs for set manipu-
lation in combinatorial problems. In IEEE, A.-S., ed.,Pro-
ceedings of the 30th ACM/IEEE Design Automation Con-
ference, 272–277. Dallas, TX: ACM Press.
Paolucci, M.; Kawamura, T.; Payne, T. R.; and Sycara, K.
2002. Semantic matching of web services capabilities. In
Proceedings of the 1st International Semantic Web Confer-
ence (ISWC).
Selman, B., and Kautz, H. A. 1991. Knowledge compi-
lation using horn approximations. InNational Conference
on Artificial Intelligence, 904–909.

AAAI-05 / 1411

