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Abstract

One of the core components in information retrieval(IR) is the
document-term-weighting scheme. In this paper,we will pro-
pose a novel learning-based term-weighting approach to im-
prove the retrieval performance of vector space model in ho-
mogeneous collections. We first introduce a simple learning
system to weighting the index terms of documents. Then, we
deduce a formal computational approach according to some
theories ofmatrix computationandstatistical inference. Our
experiments on 8 collections will show that our approach out-
performs classictfidf weighting, about 20%∼45%.

Introduction

An IR model is to provide a ranking algorithm which defines
an ordering on a set of documents in terms of the degree of
relevance between each document and a query. According to
(Sager & Jackson 1976), a ranking algorithm has three major
components: (1)weighting of terms in query, (2)weighting of
terms in the document, (3)relevance(or similarity) measure
between query and document. In this paper, we will focus
on the second one.

The current term-weighting approaches have two major
categories. One istfidf -based, the other is probabilistic-
based.

tfidf weighing schemesThese schemes are based on the
hypotheses that theterm frequency(tf ) provides one mea-
sure of the intra-document characterization, and thein-
verse document frequency(idf ) provides one measure of
inter-cluster dissimilarity(Baeza-Yates, Baeza-Yates, &
Ribeiro-Neto 1999). Severaltfidf based term-weighting
approaches were reviewed in (Salton & Buckley 1988),
the most classic one is

wij = tf(ti, dj)× log
m

df(ti)

wherewij is a weight associated to the term-document
pair [ti, dj ], tf(ti, dj) is theterm frequencyof term ti in
the documentdj ,df(ti) is thedocument frequencyof ti,
m is the total number of documents in a collection.
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Probabilistic-based schemesThese schemes aim at esti-
mating the probability that a termti is relevant to a docu-
mentdj , i.e.,Pr(ti∧dj). The most famous one is thelan-
guage model(Ponte & Croft 1998), which uses the proba-
bility of term ti under the term distribution for document
dj to estimatePr(ti ∧ dj)

P̂r(ti ∧ dj) =
{

P̂r(ti|dj) if ti ∈ dj

αP̂r(ti|DC) else

However, the above two classic term-weighting ap-
proaches are debatable when applied into homogeneous col-
lection, where all documents are about the same topic, and it
is more difficult to distinguish them from traditional weight-
ing schemes. Because:

- Some terms, which describe the core concepts of a topic,
tend to have relatively higher document frequencies. For
example, “oil” and “fry” may have high document fre-
quencies if the collection is about cooking. However, ac-
cording totfidf weighting schemes, these important in-
dex terms be assigned with low weights. All extensions of
tfidf suffer this problem. We call it “idf -problem”.

- The challenge of language models is how to estimate the
collection probabilityPr(ti|DC), which educessmooth-
ing techniques. In (Ponte & Croft 1998), Ponte and
Croft remind us that their smoothing technique performs
poorly in homogeneous collections. However, the suc-
ceeding smoothing techniques, such as what were re-
viewed in(Zhai & Lafferty 2001), don’t consider homo-
geneous collections.

In this paper we devote to make use of the relations be-
tween documents and the co-occurrence of terms. We will
propose a novel learning-based term-weighting algorithm
and deduce a new term-weighting computational approach
as follows

wij =
n∑

k=1

MI(ti, tk)RDF (tk, dj) (1)

MI(ti, tk) = log2(1 +
df(ti, tk)

df(ti)df(tk)
)

wheredf(ti) is the document frequency ofti. df(ti, tk) is
the number of documents in whichti andtk co-occur. Ifi =
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k, df(ti, tk) = df(ti) = df(tk). MI(ti, tk) is an estimation
of themutual information(Church & Hanks 1990) between
ti with tk. tk ∈ TS, TS denotes the index term space of the
whole collection.n is the total number of terms in the whole
collection.

RDF (tk, dj) denotes the number of the documents not
only relevant todj but also containing the termtk, i.e., the
relevant document frequency (RDF ) of tk with regard to
dj . For example, there ared1, d2, d3 andd4 in the collec-
tion which are relevant todj . tk appears in documentsd1,
d2, thenRDF (tk, dj) = 2. It is a measure of the relevance
degree oftk anddj .

The production ofMI(ti, tk) and RDF (tk, dj) can be
considered as a measure of the relevance degree ofti and
dj with considering a “medi-term”tk, which forms our ap-
proach basis. A term which does not appear in a documents
may still be related to the document. Our approach can find
the relevance relationships through another medi-term. But
only considering few medi-terms is not enough, which is
supported by our experimental results (See table 4).

Example 1 simply demonstrates the computational pro-
cess of our approach.
Example 1. Assume there are a 3-document collectionDC
= {d1, d2, d3}. d1 = {satellite}, i.e.,d1 has only one term
“satellite”.d2 = {launch}. d3 = {satellite, launch}. Let t1
= “satellite”, t2 = “launch”, then

df(t1) = 2, df(t2) = 2, df(t1, t2) = 1

MI(t1, t1) = MI(t2, t2) = log2(1 +
1
2
) = 0.5850

MI(t1, t2) = log2(1 +
1
4
) = 0.3219

Assume documentd1 is relevant tod3
1, but irrelevant tod2,

then
RDF (t1, d1) = 2, RDF (t2, d1) = 1

For documentd1

w11 = MI(t1, t1)RDF (t1, d1) + MI(t1, t2)RDF (t2, d1)
= 0.5850× 2 + 0.3219× 1 = 1.4919

w21 = MI(t2, t1)RDF (t1, d1) + MI(t2, t2)RDF (t2, d1)
= 0.3219× 2 + 0.5850× 1 = 1.2288

Each term-document pair is assigned a weight. Although
“launch” does not appear ind1, it is still assigned a weight
1.2288. These weights act as “smoothing” technique to im-
prove the performance of our approach.

In the following discussion, we will focus on the deduct of
this computational approach. The remains of this paper are
organized as follows: Firstly, we introduce a simple learning
system to weighting and the definition of our target. Then,
we deduce a formal computational approach according to
some theories ofmatrix computation(Modi 1989) andsta-
tistical inference. At last, we apply our approach to improve
the retrieval performance of vector space model(VSM). Our

1We will discuss how to discover relevance relationships be-
tween documents later. Obviously, a document is also relevant to
itself.

experiments will show that our approach outperforms classic
tfidf weighting (about20% ∼ 45%) on 8 different homo-
geneous collections.

Problem Definition
In homogeneous collections, where exist strong relations be-
tween documents. If a termt is important to a documentd,
it may appear frequently in the relevant documents ofd and
appear seldom in the irrelevant documents. We target to as-
sign high weights to these terms and low weights to the oth-
ers. In our work, documentdl is relevant to documentdm if
and only if

sim(dl, dm) =
−→
dl .
−→
dm√

|−→dl ||−→dm|
> simTH (2)

where
−→
dl = (w1l, ..., wnl), wil is weighted according to

tfidf scheme.simTH is the threshold.
Suppose we have known: (1)The term set (or con-

tents) of each document, i.e., we know whether a term
appear in a document or not. (2)The relevance relation-
ships between documents, i.e., we know whether two doc-
uments are relevant or not. The problem will be to de-
termine a proper weightwij associated with each term-
document pair[ti, dj ] so that the retrieval performance can
be improved. This mechanism is somewhat similar with
relevance-feedback(Harman 1992) which can improve the
effectiveness of IR systems. The difference is that we use
the relevance relationships between documents.

Weighting Through a Learning Process
We define anoutputfunction based onlinear unit (Mitchell
1999) for each documentdj

fdj (xl) = −→
dj
−→xl = w1jx1l + . . . + wnjxnl

where−→xl is an-dimensional vector representing anexample
xl,−→xl = (x1l, ..., xnl).

We use some documents as examples to train over each
documentdj . Each example-document2 is marked asxl, rep-
resented by a binary weight vector−→xl = (x1l, ..., xnl), where

xil =
{

1 if ti ∈ xl

0 else (3)

We definetarget outputfor each examplexl as

ydj (xl) =
{

1 if xl is relevant todj

0 else (4)

To determine the weight vector
−→
dj , the learning process

should make the outputs fit the target outputs so as to solve
the following inconsistent equation(Manna 2003)




x11 . . . xn1

x12 . . . xn2

...
...

...
x1m . . . xnm







w1j

w2j

...
wnj


 =




ydj (x1)
ydj (x2)
...
ydj (xm)




2A document which is used as a training example.
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wheren is size of index term space.m is the training exam-
ples amount. LetX=[xuv]m×n, −→y =(ydj (x1), ..., ydj (xm)),
the equation above is equal to

X
−→
dj

T
= −→y T (5)

Example 2The same settings with example 1. We select
the whole collection as a sample3: S = {x1, x2, x3}, x1 =
d1, x2 = d2, x3 = d3. The training examples are presented
as:−→x1 = (1, 0),−→x2 = (0, 1),−→x3 = (1, 1).
For documentd1: yd1(x1) = 1, yd1(x2) = 0, yd1(x3) = 1.
Then, to determine the weight vector

−→
d1 = (w11, w21) is

equal to solve the following inconsistent equation
[ 1 0

0 1
1 1

] [
w11

w21

]
=

[ 1
0
1

]

To solve the inconsistent equation 5, the RGDS (Random
Gradient Descent Search) algorithm devotes to minimize the
following training error(Mitchell 1999)

E(−→dj ) =
1
2

∑

∀xl

(ydj
(xl)− fdj

(xl))2

i,e., to solve the followingoptimization equation

−→
dj

T
= arg min−→

β
T
‖X−→β T −−→y T ‖ (6)

The RGDS algorithm works as(Mitchell 1999)

wij ← wij + η(ydj (xl)− fdj (xl))xil

whereη is the learning speed. This process continues until
the minimum erroris reached. Obviously, the terms which
appear frequently in the relevant documents (the target out-
put is 1) will be assigned higher weights, and vice versa.

However, the computational complexity of the process is
too high. So we deduce another more efficient computational
approach as discussed in the next section.

Deduce a Computational Approach
According to Matrix Theory
As shown in(T. Hastie & Friedman 2001), the solution for
the equation 6 is

−→
dj

T
= (XT X)−1XT−→y T (7)

To facility our discussion, we assume select the whole col-
lection as the training sample.

(1)Consider the detail ofXT−→y T which is a n-
dimensional vector. LetXT−→y T = (r1j , ..., rnj)T , whererij

is associated with a term-document pair[ti, dj ]

rij =
m∑

l=1

xil × ydj (xl)

The production ofxil andydj (xl) is non-zero if and only
if xil = 1 andydj (xl) = 1. xil = 1 denotes thatti ∈ dl.

3A set of examples.

ydj
(xl) = 1 denotes thatdl is relevant todj . Therefore,rij

denotes the number of documents which not only relevant to
dj but also containti. i.e.,

rij = RDF (ti, dj) (8)

(2)Consider the detail of the matrixXT X, Let XT X =
[mij ]n×n

mij =
m∑

l=1

xilxjl = df(ti, tj)

Let XT X = E + D + ET be the splitting ofXT X into
its strictly upper triangular, diagonal, and strictly lower tri-
angular part. According to(Fischeret al. 1996)(Bietenholz
)(Benzi & Tuma 1999)

(XT X)−1 ≈ (I − L)−T D̂−1(I − L)−1 (9)

whereI is theunit matrix, L = ωED−1, D̂ = ω−1D, and
0 < ω < 2 is arelaxation parameter(Modi 1989). Letω=1,
then the elementlij of the matrixL is

lij =

{
df(ti,tj)
df(tj ,tj)

= df(ti,tj)
df(tj)

if i < j

0 else

Generally speaking,df(ti, tj) ¿ df(tj). Therefore, accord-
ing to(Benzi & Tuma 1999)

(I − L)−1 =
+∞∑

k=0

Lk =
n−1∑

k=0

Lk ≈ I + L

Then
(XT X)−1 ≈ (I + LT )D̂−1(I + L)

Let C = (I +LT )D̂−1(I +L) = [cij ]n×n, expand this matrix

c11 =
1

df(t1)
, c12 =

df(t1, t2)
df(t1)df(t2)

, c1j =
df(t1, tj)

df(t1)df(tj)
for i ≤ j

cij =
df(t1, ti)df(t1, tj)
df(t1)df(ti)df(tj)

+
df(t2, ti)df(t2, tj)
df(t2)df(ti)df(tj)

+

. . . +
df(ti−1, ti)df(ti−1, tj)
df(ti−1)df(ti)df(tj)

+
df(ti, tj)

df(ti)df(tj)
According to(Church & Hanks 1990), andC is a symmetri-
cal matrix. Then, for∀i, j

cij ≈ log2(1 +
df(ti, tj)

df(ti)df(tj)
) = MI(ti, tj)

i.e.,
(XT X)−1 ≈ [MI(ti, tj)]n×n (10)

(3)Integrate equation 7, 8 and 10. For documentdj , its
weight vector

−→
dj = (w1j, ..., wnj) is




w1j

w2j

...
wnj


 =




MI(t1, t1) . . . MI(t1, tn)
MI(t2, t1) . . . MI(t2, tn)
...

...
...

MI(tn, t1) . . . MI(tn, tn)




×




RDF (t1, dj)
RDF (t2, dj)
...
RDF (tn, dj)



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Then, the weightwij associated to term-document pair
[ti, dj ] is

wij =
n∑

k=1

MI(ti, tk)RDF (tk, dj) (11)

In the following discussion we present another deduct of this
approach according tostatistical inference.

According to Statistical Inference
For a documentdj , according to theinference network(Tur-
tle & Croft 1991)(Turtle & Croft 1990), the probability of a
queryq is relevant todj can be measured by

Pr(q ∧ dj) =
n∑

k=1

Pr(q|tk)Pr(tk|dj)Pr(dj)

Let q be a single termti

Pr(ti ∧ dj) =
n∑

k=1

Pr(ti|tk)Pr(tk|dj)Pr(dj) (12)

Generally speaking,̂Pr(dj) = 1
|DC| , where|DC| is the size

of the collection. In the following discussion, we devoted to
estimatePr(ti|tk) andPr(tk|dj).

For a documentdj , let p be “the probability of a termtk
appears in the relevant documents ofdj”, then

Pr(RDF (tk, dj) = r) = Cr
npr(1− p)n−r

wheren is the total number of document wheretk appears,
i.e., n = df(tk). This is based on the assumption that all
documents are either relevant todj or not. We use the esti-
mation ofp to estimatePr(tk|dj)

P̂r(tk|dj) = p̂ =
RDF (tk, dj)

df(tk)
(13)

The same to above, letq be the “probability of the termti
co-occur withtk inside documents ”. We use the estimation
of q to estimate thePr(ti|tk)

P̂r(ti|tk) = q̂ =
df(ti, tk)
df(ti)

(14)

Integrate the equation 12, 13 and 14

df(ti, tk)
df(ti)df(tk)

≈ log2(1 +
df(ti, tk)

df(ti)df(tk)
)

P̂r(ti ∧ dj) ≈ 1
|DC|

n∑

k=1

MI(ti, tk)RDF (tk, dj) (15)

This is the same to equation 12 except a constant1
|DC| . So

thewij computed with equation 1 is a measure of relevance
degree ofti anddj . This support the analysis aboutMI and
RDF at the beginning of this paper.

We deduce the same computational approach according to
two different theories. One is based on machine learning, the
other is based on statistical inference. This is not just coin-
cidence. In fact, it has been proved that probabilistic-based
IR models can be considered as an application of learning
process(Chen 1995).

Efficiency Improvement
As shown in equation 1, we need to consider each term as the
medi-term when weighting for a term-document pair. How-
ever, this is not necessary. Some terms which appear sel-
dom are negligible when used as medi-terms. Because they
co-occur seldom with other terms, i.e., lowMI value. The
RDF value can not be high if a term appear seldom. These
seldom appear terms are useless in statistics which form the
basis of our approach.

We just need to select some core-terms as the medi-terms.
As mentioned above, these core terms with relatively high
document frequency describe the core concepts of a topic.
Based on this, we selectN terms which with highest doc-
ument frequency as the “core space”:CS = {c1, ..., cN}.
The weighting algorithm needs a small change

wij =
N∑

k=1

MI(ti, ck)RDF (ck, dj) (16)

Apply to Information Retrieval
We apply our approach to VSM. The degree of relevance
between the documentdj and the queryq is measured by

rel(dj , q) =
∑

ki∈q∩dj

wij (17)

wherewij is calculated with equation 16.This ranking algo-
rithm is calledinner product measure(Salton 1971).ki ∈
q ∩ dj denotes that, we just need to weighting the terms
which appears indj , i.e., remove “non-appear” terms.

There also exist other reasons of that we remove non-
appear terms: (1) Add new terms into a document can help
the users to find this document(improve “recall”), but the
inter-cluster dissimilarity will be reduced(decline “preci-
sion”). (2)Retrieval over a collection with equation 17, the
returned-documents of each test query will be exactly the
same withtfidf approach except a different ordering. Our
aim is to manifest that our weighting scheme is more accu-
rate than traditionaltfidf scheme.

About Normalization
Another popular ranking algorithm of VSM is thecosine
measure(Salton 1971), which normalizes the weight vector
before using the inner product measure. The normalization
can improve the retrieval effectiveness. However, normaliza-
tion in our approach must be executed carefully. Because all
terms can be assigned weights to a document, non-appear
terms of the document must be took into account. We do as
follows
(1)For a documentdj , let Bdj = CS ∪ dj , i.e., combinedj

andCS into a new term set.
(2)For a termti /∈ Bdj , wij = 0, otherwise, computewij

with equation 16.
(3)Normalize the weight vector as follows

ŵij =





wij√∑
tk∈Bdj

w2
kj

, if ti ∈ dj

0, else
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Topic Docs Num Terms Num N simTH
EN 2289 52563 6000 0.12
IE 5315 63132 8000 0.12
IF 1449 29396 4000 0.12
IP 2764 46253 5000 0.12
IR 3127 47318 5000 0.12
LG 2495 56152 6000 0.12
MB 2575 63821 7000 0.12
ST 4852 73659 8000 0.12

Table 1: Statistics of the 8 collections and corresponding pa-
rameters setting. whereN denotes the size of the concept
space,simTH is the relevance-document decision thresh-
old in equation 2

wherewij is computed with equation 16. We label this with
“smoothing”.

Example 3 In example 1. If we select the core spaceCS
= {launch}, thenBd1 = {satellite, launch}.
w11 = 0.3219× 1 = 0.3219, w21 = 0.5850× 1 = 0.5850
After normalization:w11 = 0.4821,w21 = 0.8761.
After remove non-appear term:̂w11 = 0.4821,ŵ21 = 0.
If normalize the weight vector without considering the non-
appear term “launch”. Then̂w11 = 1, ŵ21 = 0. Becaused1

contain only one term.
Our experiment will show that this smoothing technique

can improve the performance of our approach.

Experiments and Results
Test Data

TREC5 We use the 30 queries and related documents in
routing task of TREC5 to construct test data. These queries
have “domain” information and there are altogether 8 do-
mains. The “domain” is used as topic in our experiments.
About 17000 documents belong to these 8 topics according
to query-result list. We construct 8 homogeneous collections
by using documents with the same topic.

MEDLINE There are 1033 documents and 30 test
queries. Each document is an abstract article on medicine.

Experiments Setting

Compare with tfidf on TREC5 Compare our approach
with classictfidf (which is presented at the beginning of
this paper) on 8 collections with average 11-point average
evaluation. Statistics of these collections and corresponding
parameters setting are presented in table 1. The 8 collections
are labelled with the abbreviation of their topic name. For
example,“IE” is the short for “International Economics”.N
denotes the size of core space, i.e., we select topN terms
from a term list sorted descending according to document
frequency.

In addition, we also present the performance oftf -
weighting scheme which has noidf -problem on homoge-
neous collections. But it is too simple to achieve good per-
formance.

Rec tfidf NoSmo MIRDF Imp1 Imp2
0.0 0.9095 0.9591 0.9411 +03.48 -01.88
0.1 0.4846 0.6042 0.6397 +32.00 +05.87
0.2 0.3797 0.4596 0.5140 +35.37 +11.84
0.3 0.3207 0.3804 0.4393 +37.02 +15.51
0.4 0.2730 0.3169 0.3748 +37.26 +18.26
0.5 0.2349 0.2705 0.3174 +35.09 +17.35
0.6 0.1879 0.2178 0.2539 +35.09 +16.58
0.7 0.1507 0.1735 0.2006 +33.10 +15.62
0.8 0.1120 0.1281 0.1436 +28.22 +12.13
0.9 0.0706 0.0794 0.0874 +21.29 +10.15
1.0 0.0053 0.0053 0.0058 +09.43 +10.31
avg 0.2846 0.3268 0.3561 +25.15 +08.99

Table 2: Test the impact of smoothing on TREC5-IE collec-
tion. “NoSmo” denotes without smoothing

Topic EN IE IF IP
tf 0.2893 0.2650 0.2600 0.2533
tfidf 0.3103 0.2846 0.2756 0.2708
MIRDF 0.3922 0.3561 0.4001 0.3590
Imp +26.40 +25.15 +45.21 +32.55
Topic IR LG MB ST
tf 0.2478 0.2759 0.2873 0.2734
tfidf 0.2601 0.2999 0.3075 0.2989
MIRDF 0.3732 0.3834 0.3690 0.3603
Imp +43.49 +27.86 +19.99 +20.53

Table 3: Compare withtfidf on 8 collections with average
11-point average evaluation.

Test the impact of smoothing on TREC5-IE IE denotes
the “International Economics” topic. We test the impact of
smoothing on this collection with 11-point average evalua-
tion. In addition, we present the performance oftfidf with
11-point average evaluation.

Test the impact of core space on MEDLINE The total
number of terms in MEDLINE is 8702. The size of core
space is set asN = {500, 1000, 3000, 5000, 7000}. We test
the impact of the selection of core spaceCS with average
11-point average evaluation.

Results

(1)In table 2, we show the detail recall-precision informa-
tion on IE collection. The results show a comprehensive im-
provement in precision compared withtfidf (labelled with
“Imp1”). At recall 0.1, improve about 32%. Improve about
25% in average. It is noticeable that, our approach with the
ranking algorithm (equation 17) don’t put any change to the
contents of returned-documents compared withtfidf except
their ordering.

The impact of smoothing is positive in this collection (la-
belled with “imp2”). It improve the precision at every levels
of recall except recall 0(decline about 2%) and with 8.99%
improvement in average.

(2)In table 3, we compare our approach withtfidf on 8
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N tfidf 500 1000 3000 5000 7000
Avg 0.504 0.541 0.564 0.572 0.573 0.574
Imp +7.4 +11.9 +13.6 +13.7 +13.9

Table 4: Test the impact of the selection of concept space on
MEDLINE collection with average 11-point average evalu-
ation(baseline:tfidf ), whereN is the size of core space

homogeneous collections. Our approach outperformtfidf
with ranges of 19.99%∼45.21% with average 11-point av-
erage evaluation.tf weighting also perform poorly on these
homogenous collections although it has noidf -problem.

(3)Table 4 shows that the retrieval performance do not as-
cend along with the increasing of the size of core space.
When the core sizeN ≥ 1000, the retrieval performance
tend to be stable.Mean = 0.5706, Std.Dev = 0.0047. How-
ever, use a too small core space will reduce the performance.
WhenN = 500, the performance declines obviously com-
pared withN = 1000. This offers support to that we can not
use too few medi-terms.

In MELINE collection,MIRDF also improve the per-
formance, about 13% at most. The performance oftfidf is
also considerable in this collection.

In our experiments, the relevance decision threshold
simTH is set to 0.12 on all collections. We found the perfor-
mance of our approach is not very sensitive to this parameter
when it locates in a space(0.08 ∼ 0.14).

Conclusion and Future Work
In this paper, we devote to solve the term-weighting chal-
lenge in homogeneous collections. By using relations be-
tween documents and terms, we could weighting terms
through a simple learning process. Then we deduce a com-
putational approach accordingly. We also get the same cal-
culation mechanism according to inference network, which
provides evidence of that probabilistic-based IR models can
be considered as an application of machine learning. One ad-
vantage of our approach is that non-appear terms can be as-
signed reasonable none-zero weights, while most traditional
approaches assign zero or random weights. In order to test
the effectiveness of our mechanism, we apply it to 8 collec-
tions constructed by TREC5 data. The experimental results
prove that it outperforms classictfidf significantly.

There is still some work left. First, the estimation of
P (ti|dj) is not proved strictly in this paper. Second, our
approach is not appropriate for heterogeneous collections
in which RDF values tend to be close for term-document
pairs, so that different terms can not be distinguished
clearly.
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