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Abstract

Resolving ambiguity in the process of query translation
is crucial to cross-language information retrieval when
only a bilingual dictionary is available. In this paper we
propose a novel approach for query translation disam-
biguation, named “spectral query translation model”.
The proposed approach views the problem of query
translation disambiguation as a graph partitioning prob-
lem. For a given query, a weighted graph is first created
for all possible translations of query words based on the
co-occurrence statistics of the translation words. The
best translation of the query is then determined by the
most strongly connected component within the graph.
The proposed approach distinguishes from previous ap-
proaches in that the translations of all query words
are estimated simultaneously. Furthermore, translation
probabilities are introduced in the proposed approach
to capture the uncertainty in translating queries. Em-
pirical studies with TREC datasets have shown that the
spectral query translation model achieves a relative 20%
- 50% improvement in cross-language information re-
trieval, compared to other approaches that also exploit
word co-occurrence statistics for query translation dis-
ambiguation.

Introduction
Query translation has been an effective way to bridge the
gap between the source and target languages in cross-
language information retrieval (CLIR). To translate queries
from the source language into the target language, it re-
quires external linguistic resources, among which parallel
corpora or bilingual dictionaries are the most commonly
used. Methods based on parallel corpora, such as relevance
language models (Lavrenko, Choquette, & Croft 2002) and
statistical translation models (Kraaij, Nie, & Simard 2003;
Xu & Weischedel 2001), usually learn an association be-
tween words in the source language and the target language,
and apply the association to estimate translations of queries.
The main drawback of these methods is that they depend
critically on the availability of parallel bilingual corpora,
which are often difficult to acquire, especially for minor lan-
guages. Thus, dictionary-based approaches are usually more
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preferable because of the easy access to bilingual dictionar-
ies. However, compared to the corpus-based approaches,
dictionary-based approaches usually lack the ability in dis-
ambiguating query translations. A simple dictionary-based
approach forms the translation of a query by including all
the translations of query words provided by the dictionary
(which we call translation candidates in this paper). But
some of the translation candidates could be irrelevant to
the original query. Thus, a successful dictionary-based ap-
proach should be able to resolve the translation ambiguity
in its best effort, and meanwhile preserve the uncertainty in
query translation when the ambiguity is hard to reduce.

In the past, several approaches (Adriani 2000a; Gaoet
al. 2001; 2002; Jang, Myaeng, & Park 1999; Kraaij &
Pohlmann 2001) have been proposed to resolve the query
ambiguity. Given a query in the source language, for each
translation candidate of a query word, a coherence score is
computed based on its similarity to the query. The trans-
lation candidates with the highest coherence scores are se-
lected to form the final translation of the original query.
We refer to these approaches asselection-based approaches.
One of the main problems with the selection-based ap-
proaches is that the translation(s) of one query word is usu-
ally determined independently from the translations of other
query words, which we call “translation independence as-
sumption”. Another problem with a selection-based ap-
proach is that abinary decision is made with regard to
whether a translation candidate will be included in the trans-
lated query. Given the short length of queries and the large
variance existed in mapping information across different
languages, such binary decisions are usually difficult, if not
impossible, to make. We call this problem the “translation
uncertainty problem”.

To address the above problems, we propose a novel ap-
proach for dictionary-based CLIR, named “spectral query
translation model”. It views the query translation disam-
biguation from the perspective of graph partitioning. For
a given query, an undirected and weighted graph is con-
structed for the set of translation candidates of query words:
each vertex in the graph corresponds to a unique translation
candidate; for any two translation candidates related to two
different query words, a weight proportional to their similar-
ity is assigned to the edge connecting them. The best transla-
tion of the query corresponds to the most strongly connected
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Figure 1: An example of graph partitioning perspective for
query translation disambiguation.

clique within the graph, which can be efficiently identified
by a spectral clustering method. Since the translation of
all query words are determined simultaneously, we are able
to avoid the translation independence assumption. To ac-
count for the uncertainty in query translation, “soft mem-
berships” will be used in the clustering procedure through
the introduction of translation probabilities. An exampleof
applying graph partitioning methods to disambiguate query
translations is shown in Figure 1. The query is composed
of four Chinese words, and around each Chinese word are
its translation candidates in English provided by a Chinese-
English dictionary. The thickness of lines connecting two
English words roughly represents their correlation. The
number below each English word is its translation proba-
bility estimated from the proposed approach. Based on the
graph representation in Figure 1, we can easily see that the
strongly connected component consists of words “indepen-
dent”, “sign”, and “press”, which have been assigned with
large translation probabilities.

The rest of the paper is structured as follows: after briefly
reviewing the related work in query translation disambigua-
tion and spectral clustering, we describe our spectral query
translation model and the procedures for solving the related
optimization problem. Experimental results with analysis
will be provided by the end of this paper before we conclude
this work.

Related Work
Selection-based CLIR Query Translation
The simplest approach in dictionary-based CLIR is to use
all the translation candidates for every query word equally
(Davis 1996; Kraaij & Pohlmann 2001). This amounts to
no sense disambiguation for query words. Other approaches
try to resolve the translation ambiguity by selecting a subset
of the translation candidates that are provided by the dictio-
nary. Ideally, for each word in a query we should select the
translation(s) that is coherent with the selected translations
for other query words. In other words, the selection of trans-

lations for one query word should depend on the translations
for other query words. However, due to the computational
concern, most selection-based approaches (Adriani 2000a;
Gao et al. 2001; 2002) adopted an approximate solution:
for any translation candidate of a query word, its similari-
ties to all the translation candidates for other query words
are computed and summed as itscoherence score; then, for
each query word, the translation candidate with the highest
score is selected as the final translation for the query word.
Given that the coherence score of each translation candidate
is computed based on both selected and unselected trans-
lation candidates, this approximation leads to the translation
independence assumption that has been discussed in the pre-
vious section. In addition to selecting the most likely trans-
lation candidate for each query word (Gaoet al. 2001; Adri-
ani 2000b; Kraaij & Pohlmann 2001), other selection-based
approaches have been studied, including selecting the best
N translation candidates (Davis 1996) and selecting transla-
tions by a predefined threshold (Jang, Myaeng, & Park 1999;
Maedaet al. 2000).

Spectral Clustering
Spectral clustering approaches view the problem of data
clustering as a problem of graph partitioning. Each data
point corresponds to a vertex in the graph. Any two data
points are connected by an edge whose weight is the simi-
larity between the two data points. To form data clusters, the
graph is partitioned into multiple disjoint sets such that only
the edges with small weights are removed. Based on dif-
ferent criteria imposed on the partitioning, there are three
major variants for spectral clustering: Ratio Cut (Chung
1997), Normalized Cut (Shi & Malik 2000) and Min-Max
Cut (Dinget al. 2001). In the following, we briefly recapit-
ulate the 2-way Normalized Cut algorithm.

Let G(V,E,W) denote an undirect graph, whereV is
the vertex set,E is the edge set, andW = (wi,j)n×n is a
matrix with wi,j ≥ 0 denoting the edge weight between the
i-th and thej-th vertex. DefineD = diag(d1, d2, · · · , dn),
wheredi =

∑

j∈V wi,j . To partition the vertex set into two
disjoint setsA andB, a 2-way Normalized Cut algorithm
minimizes the following objective function:

J =
S(A,B)

dA

+
S(A,B)

dB

(1)

where we defineS(A,B) =
∑

i∈A

∑

j∈B wi,j anddA =
∑

i∈A di. By relaxing cluster memberships to real values,
the Normalize Cut algorithm can be formulated into the fol-
lowing eigenvector problem:

(I − D− 1

2 WD− 1

2 )q̃ = λq̃ (2)

where vector̃q is related to the cluster memberships.

Spectral Query Translation Model
The essential idea of the spectral query translation model
is to transform the query translation disambiguation prob-
lem into a 2-way graph partitioning problem. In the follow-
ing subsections, we will first describe the graph partition-
ing view to the query disambiguation problem. Then, we

AAAI-05 / 1425



will show how to introduce translation probabilities into the
graph partitioning algorithm, followed by the procedure for
solving the related optimization problem. At last, we will
show a retrieval model that utilizes the estimated translation
probabilities.

The following terminology and notations will be used
throughout the rest of the paper. The term “source language”
and a superscripts are used when referring to the language
of queries. Similarly, the term “target language” and a super-
scriptt are for the language of documents. Let a query of the
source language be denoted byqs = {ws

1
, ws

2
, · · · , ws

ms},
wherems is the number of distinct words inqs. Let rk

denote the set of translation candidates provided by the dic-
tionary for a wordws

k in the queryqs. The whole transla-
tion candidate set for the entire queryqs is then denoted by
R =

⋃ms

k=1
rk. And we usemt to denote the the size ofR,

i.e., the total number of distinct translation candidates.

Query Translation Disambiguation Through
Graph Partitioning
Our graph partitioning view of query translation disam-
biguation can be formally described as follows.

For a given queryqs and its translation candidate setR,
an undirected weighted graph is created. Each translation
candidatewt

k ∈ R is represented by a vertex. Any two
translation candidates related to two different query words
are connected by an edge if they ever co-occur in at least one
document. A non-negative weight is assigned to each edge
to indicate the similarity between the two connected words.
Among many different co-occurrence statistics, we adopted
a variant of mutual information as the similarity measure-
ment, which has been used in previous studies (Gaoet al.
2002)

st
j,j′ = Pr(wt

j , w
t
j′) × log

Pr(wt
j , w

t
j′)

Pr(wt
j) × Pr(wt

j′)
(3)

Pr(wt
j) is the unigram probability for wordwt

j , and
Pr(wt

j , w
t
j′) is the joint probability for wordwt

j andwt
j′ to

co-occur in the same documents. Note that Equation (3) is
different from the standard definition for mutual information
in that only co-occurrence information is used. Due to the
computation concern, in Equation (3) we ignore the correla-
tion between two words when at least one of them does not
occur in documents.

With the constructed graph for a given query, we hypoth-
esize that the best translation of a query corresponds to the
most strongly connected component within the graph. To
separate the strongly connected component from the rest of
the graph, a graph partitioning algorithm can be employed
to divide the graph into two disjoint clusters: a cluster for
strongly connected component, and a cluster for the rest
of the graph. To this end, we inherit the idea from the
Normalized Cut algorithm. For the graph constructed for
the translation candidate setR, we define the adjacency
matrix asS = [st

j,j′ ]mt×mt where st
j,j′ is the similarity

measurement defined in Equation (3). Let diagonal matrix

D = diag(d1, d2, · · · , dn) wheredj =
∑mt

j′=1
sj,j′ . Then

the graph Laplacian matrix isL = D−S. Following the for-
mulism of the Normalized Cut algorithm, the optimal 2-way
partitioning is found by minimizing the following objective
function:

J = vT D− 1

2 LD− 1

2 v (4)

Herev = [v1v2 · · · vmt ]T is a cluster indicator vector. Each
elementvi is a binary variable with 1 indicating the corre-
sponding word being included in the query translation and
0 for not being included. For later reference, we name this
model “spectral query translation model”, or “ SQT” for
short.

Soft Cluster Memberships via the Introduction of
Translation Probabilities
To address the “translation uncertainty problem” mentioned
in the introduction section, we introduce translation proba-
bility in our new model.

Let pk,j denote the probability of translating a wordws
k of

the source language into a wordwt
j of the target language,

given the context of queryqs. It is defined as

pk,j = Pr(wt
j |w

s
k,qs) (5)

which satisfies

if wt
j /∈ rk, pk,j = 0; otherwisepk,j ≥ 0

∑

∀j,wt
j
∈rk

pk,j = 1

To simplify our notation, matrixP = [pk,j ]ms×mt is used
to denote all the translation probabilities associated with the
queryqs. Let T = [tk,j ]ms×mt denote the part of the bilin-
gual dictionary that is related to queryqs. An elementtk,j

in T is 1 if the wordwt
j appears as a translation in the dic-

tionary for the wordws
k, and0 otherwise. Then the above

constraints can be rewritten as

P · 1mt×mt = I (6)

0 ≤ P ≤ T (7)

where1mt×mt is a matrix of all elements of 1’s andI =
diag(1, 1, · · · , 1).

Furthermore, we compute the probability for a translation
candidate to be adopted in the query translation, i.e.,

Pr(wt
j |q

s) =
∑

ws
k
∈qs

Pr(wt
j |w

s
k,qs) Pr(ws

k|q
s) (8)

HerePr(ws
k|q

s) is from a monolingual language model for
queryqs in the source language. For the sake of simplicity,
we assume a uniform language model for the queryqs, i.e.,
Pr(wt

j |q
s) = pk,j/ms.

From the graph partitioning perspective, the probability
Pr(wt

j |q
s) can be interpreted as a soft membership of the

translation candidatewt
j to the most strongly connected clus-

ter. Instead of constraining each elementvi in the clus-
ter indicator vectorv to be a binary variable, we can set
vi = Pr(wt

i |q
s). Then, each elementvi indicates how likely

the corresponding translation candidate will be included in
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the strongly connected component, or the final translation
for the queryqs.

Finally, combining Equation (5)-(8), the query translation
disambiguation can be formulated into the following opti-
mization problem:

min
P

eT PD− 1

2 LD− 1

2 PT e (9)

s.t. P · 1mt×mt = I

0 ≤ P ≤ T

wheree is a vector with all elements as 1s. This is a con-
vex programming problem, where the unique optimal solu-
tion is guaranteed. Note that, by solving Equation (9), we
are able to estimate the translation probabilities forall query
words simultaneously, thus removing the “translation inde-
pendence assumption”.

Solving the optimization problem
The optimization problem in (9) is in fact a standard
quadratic programming (QP) problem (Gill, Murray, &
Wright 1981). To give it an explicit QP form, we define

Pms×mt =











pT
1

pT
2

...
pT

ms











Tms×mt =











tT
1

tT
2

...
tT
ms











(10)

p̃msmt×1 =









p1

p2

...
pms









pmsmt×1
=









t1

t2

...
tms









(11)

Amsmt×msmt = 1ms×ms ⊗ (D− 1

2 LD− 1

2 ) (12)

Ems×msmt = diag(tT
1
, tT

2
, . . . , tT

ms) (13)
where⊗ representskronecker product. Then, the optimiza-
tion problem in (9) can be rewritten in a standard form of the
QP problem as follows:

max
p̃

p̃T Ap̃ (14)

s.t. Ep̃ = 1ms×1 and0 ≤ p̃ ≤ p

In our experiment, the QP package from MATLAB is used
to solve the above problem.

Retrieval Model
The introduction of translation probabilitiespk,j can be well
accommodated by a statistical retrieval model for CLIR. In
particular, we estimatePr(dt|qs), i.e., the probability for a
documentdt in the target language to be relevant to a query
qs in the source language. By the Bayes’ law, the logarithm
of this probability can be approximated as

log Pr(dt|qs) ∼ log Pr(qs|dt)

∼
∑

wt

Pr(wt|qs) log Pr(wt|dt) (15)

HerePr(wt|dt) is a monolingual language model for doc-
ument dt in the target language;Pr(wt|qs) is the soft
membership for translation candidatewt to be in the most
strongly connected cluster and can be computed from the
set of translation probabilities as in Equation (8).

Experiments
Our experiments are designed to examine the effectiveness
of the proposed model for cross-language information re-
trieval in the following two aspects:

1. Is the proposed spectral query translation model effective
for CLIR?

2. How important is the translation uncertainty and the re-
moval of the translation independence assumption for
CLIR?

The first aspect is examined by comparing the proposed
method to existing approaches, and the second aspect is ad-
dressed through case studies.

Experiment Setup
All our experiments are retrieval of English documents using
Chinese queries. TREC ad hoc test collections are used in
our experiments, including

AP88-89 164,835 documents from Associated Press(1988,
1989)

WSJ87-88 83,480 documents from Wall Street Journal
(1987, 1988)

DOE1-2 226,087 documents from Department of Energy
abstracts1

In addition to the homogeneous collections listed above,
we also tested the proposed model against two heteroge-
neous collections that are formed by combining multiple ho-
mogeneous collections: collection AP88-89 + WSJ87-88,
and collection AP89 + WSJ87-88 + DOE1-2. In a hetero-
geneous collection, words are more likely to carry multiple
senses, thus increasing the difficulty in word sense disam-
biguation. The SMART system (Salton 1971) is used to
process document collections with stop words removal and
word stemmed.

Our queries come from a manual Chinese translation of
TREC-3 ad hoc topics (topic 151-200). Both short and long
Chinese queries are tested: short ones are created by trans-
lating the “title” field of English queries into Chinese and
long ones are formed by combining the Chinese transla-
tions of both the “title” and “description” fields in English
queries. Despite of the general belief in monolingual IR
that long queries are less ambiguous than short ones, long
queries are generally more challenging for translation dis-
ambiguation. This is because long queries tend to include
more words that are either irrelevant or only slightly rele-
vant to their topics, which makes the estimation of coherence
scores for translation candidates unreliable. The Chinese-
English dictionary from Linguistic Data Consortium (LDC,
http://www.ldc.upenn.edu) is used in our experiment. Since
our experiments do not involve the processing of English
phrases, any English phrase in the translation of a Chinese
word is treated as a bag of words.

1DOE1-2 collection is not used as one of the homogeneous
datasets in our experiments because DOE1-2 collection provides
no relevant documents for the majority of the queries used in this
experiment. It is only used to create heterogeneous collections by
combining with the other two homogeneous collections.
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Table 1: 11-point average precision for both short and long queries on TREC datasets
(The last two columns list the relative improvements of our spectral query translation model over the other two methods)

SHORT QUERIES LONG QUERIES
BSTO ALTR SQT (S-B)/B (S-A)/A BSTO ALTR SQT (S-B)/B (S-A)/A

AP 0.2381 0.2241 0.3116 +30.87% +39.05%0.1749 0.1803 0.2426 +38.71% +34.55%
WSJ 0.1966 0.2129 0.2571 +30.77% +20.76%0.1478 0.1727 0.2161 +46.21% +25.13%
AP+WSJ 0.2253 0.2209 0.2859 +26.90% +29.43%0.1433 0.1665 0.2048 +49.92% +23.00%
AP+WSJ+DOE 0.1739 0.1829 0.2296 +32.03% +25.53%0.1122 0.1411 0.1712 +52.58% +21.33%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Short Queries / AP)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Long Queries / AP)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Short Queries / WSJ)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Long Queries / WSJ)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Short Queries / AP+WSJ)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Long Queries / AP+WSJ)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Short Queries / AP+WSJ+DOE)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Precision−Recall (Long Queries / AP+WSJ+DOE)

Recall

P
re

ci
si

on

BSTO
ALTR
SQT

Figure 2: Comparison of CLIR performance on four datasets using both short and long queries. The first two columns are for
homogeneous datasets: AP88-89 and WSJ87-88; the last two columns are for heterogeneous datasets: AP88-89 + WSJ87-88
and AP89 + WSJ87-88 + DOE1-2. The upper row is for short queries, and the lower row is for long queries.

Two selection-based approaches are used as the baseline
models. The first one selects the most likely translation can-
didate for each query word based on the algorithm in (Adri-
ani 2000a), which we call “BSTO”. The second model,
which we call “ALTR”, includes all the translation candi-
dates for query words into the final query translation.

Comparison with Selection-based Approaches
Table 1 lists the average precision across 11 recall points for
both the homogeneous and heterogeneous collections. As
indicated in Table 1 the proposed model (i.e., “SQT”) is able
to outperform the two baseline models for both short and
long queries across all the four different collections. Fur-
thermore, we plot the precision-recall curves for both the
short queries and the long queries in Figure 2, respectively.
We clearly see that for all the four collections, the precision-
recall curves of the spectral query translation model stay
above the curves of the other two models. Based on these re-
sults, we conclude that the spectral query translation model
performs substantially better than the other two selection-
based approaches for cross-language information retrieval.

A further examination of results in Table 1 gives rise to
the following observations:

1. In general, the retrieval accuracy for heterogeneous col-
lections is worse than that for homogeneous collections.

This result is in accordance with our previous analysis,
i.e., words from heterogeneous collections are more likely
to have multiple senses, thus resulting in a higher transla-
tion ambiguity.

2. A better retrieval performance is achieved for short
queries than for long queries. Furthermore, the perfor-
mance gap between the short queries and the long queries
is more significant for heterogeneous collections than for
homogeneous collections. Again, this is consistent with
our previous analysis: long queries are usually more dif-
ficult to disambiguate, particularly when the disambigua-
tion algorithm is based on word similarities.

3. The “BSTO” method does not consistently outperform
the “ALTR” method. In fact, for the long queries, the
“ALTR” method performs better than the “BSTO” method
across all four collections. Similar to the previous analy-
sis, this phenomenon can be attributed to the fact that long
queries are rather noisy and likely to include irrelevant
words. Thus, given that a significant amount of noise can
be present in queries, it is important to maintain the un-
certainty of translation in the retrieval process. Note that
our results appear to be inconsistent with the finding in
(Gao et al. 2001). However, the setup of our experi-
ments is rather different from theirs. For example, we did

AAAI-05 / 1428



not identify English phrases in our text processing, which
has been shown to be important for CLIR (Ballesteros &
Croft 1997). Despite the importance of phrase analysis
for CLIR, we believe that a generic probabilistic model
will be beneficial to CLIR of any languages, particularly
when linguistic resources are scarce.

The Impact of Translation Uncertainty and
Translation Independence Assumption on CLIR
To demonstrate the uncertainty in query translation, we
reuse the example in Figure 1, where each translation candi-
date is annotated with its translation probability. A variance
can be observed in the distribution of translation probabili-
ties across the four Chinese words: for the word on the left,
its translation probability distribution is close to be uniform;
for the word on the right, its distribution is rather skewed;for
the rest two words, their translation probability distributions
are between the two extremes. This variance suggests the
difficulty to apply the selection-based approaches for query
translation disambiguation, since they only make binary de-
cision in selecting translations.

The example in Figure 1 also reveals the impact of trans-
lation independence assumption on query translation dis-
ambiguation. In this example, the translations selected by
the “BSTO” method are “sign”, “press”, “disappear” and
“stand” 2. Given the context of the original query, “inde-
pendent” should be a better translation than “stand”. One
reason for such a mistake is that in the “BSTO” method,
the coherence score of a translation is computed based on
all the English words in the translation candidate set. Since
“stand” is common in English, it co-occurs with many other
English words. Although the mutual information for each
co-occurring word is small, the overall coherence score for
“stand” turns out to be larger than that of “independent”.
In contrast, spectral query translation model eliminates this
problem by simultaneously estimating the translation prob-
abilities of all translation candidates.

Conclusions
In this paper, we propose a novel method, named “spectral
query translation model”, that applies a graph partitioning
algorithm to disambiguate query translation in CLIR. Com-
pared to the selection-based approaches, our model is advan-
tageous in two aspects: 1) It maintains the translation uncer-
tainty through the estimation of translation probabilities; 2)
The simultaneous estimation of all translations allows the
proposed model to avoid the translation independence as-
sumption, hence forming more coherent query translations.
Empirical studies with CLIR under various scenarios have
shown that the proposed model is able to perform substan-
tially better for CLIR than several existing selection-based
approaches.
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