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Many data sets routinely captured by businesses and or-
ganizations are relational in nature yet over the past decade
most machine learning research has focused on “flattened”
propositional data. Propositional data record the character-
istics of a set of homogeneous and statistically independent
objects; relational data record characteristics of heteroge-
neous objects and the relations among those objects. Ex-
amples of relational data include citation graphs, the World
Wide Web, genomic structures, fraud detection data, epi-
demiology data, and data on interrelated people, places, and
events extracted from text documents. Relational data offer
unique opportunities to boost the accuracy of learned mod-
els and improve the quality of decision-making if the algo-
rithms can learn effectively from the additional information
the relationships provide.

Relational data representations greatly expand the range
and applicability of machine learning techniques, but the
greater expressive power of relational representations pro-
duces new statistical challenges. The data often have irreg-
ular structures and complex dependencies that contradict
the assumptions of conventional modeling techniques. First,
algorithms for propositional data assume that the data in-
stances are recorded in homogeneous structures (a fixed set
of fields for each object), but relational data instances are
usually more varied and complex. For example, molecules
have different numbers of atoms and bonds, and web pages
have different numbers of incoming and outgoing links. The
ability to generalize across heterogeneous data instances is
a defining characteristic of relational learning algorithms.
Second, algorithms designed for attribute-value data assume
the data are independent and identically distributed. Rela-
tional data, on the other hand, have dependencies both as
a result of direct relations (e.g., hyperlinked pages) and
through chaining of multiple relations (e.g., pages linked
through the same directory page). Recent work has shown
that these dependencies can be exploited to improve classi-
fication accuracy if inferences about related data instances
are made simultaneously (Chakrabarti, Dom, & Indyk 1998;
Neville & Jensen 2000; Taskar, Abbeel, & Koller 2002;
Macskassy & Provost 2003; Jensen, Neville, & Gallagher
2004). However, the dependencies among instances also
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complicate efforts to learn accurate statistical models be-
cause the traditional assumption of instance independence
is violated (Jensen & Neville 2002; 2003).

There are a number of relational models that are used for
individual inference, where inferences about one instance
are not used to inform the inferences about related instances
(e.g., Perlich & Provost 2003, Popesculet al.2003, Neville
et al.2003). These approaches consider relational instances
represented as independent, disconnected subgraphs (e.g.,
molecules). Such models can represent and reason with the
complex relational structure of a single instance. However,
they do not attempt to model the relational structure among
instances—thus removing the need (and the opportunity)
for simultaneouscollective inference. Joint relational mod-
els (Getooret al. 2001; Taskar, Abbeel, & Koller 2002;
Neville & Jensen 2004), on the other hand, model the inter-
connections among relational instances that are represented
as one large graph. These approaches are able to exploit
relational autocorrelationto improve classification perfor-
mance by estimating joint probability distributions over the
entire graph andcollectivelyinferring the labels of related
instances (Jensen, Neville, & Gallagher 2004). Autocorre-
lation is a statistical dependency between the values of the
same variable on related entities and is a common charac-
teristic of many relational data sets. It is easy to see how
autocorrelation could be used to improve the predictions of
statistical models in relational domains. For example, con-
sider the problem of automatically predicting the topic of a
scientific paper (e.g., neural networks, reinforcement learn-
ing, genetic algorithms). One simple method for predicting
topics would look at papers in the context of their citation
graphs. It is possible to predict a given paper’s topic with
high accuracy based on the topics of neighboring papers be-
cause there is high autocorrelation in the citation graph—
papers tend to cite other papers with the same topic.

Research on joint relational models has focused primarily
on knowledge representation and inference—there has been
little attention paid to the challenges and opportunities that
are unique to learning in relational domains. For example,
probabilistic relational models (PRMs) (Getooret al.2001)
extend Bayesian networks to support reasoning in complex
relational domains by defining a template of typed depen-
dencies, tying parameters across object of the same type,
and aggregating over heterogeneous sets of attribute values.
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Relational Markov networks (RMNs) (Taskar, Abbeel, &
Koller 2002) extend Markov networks in a similar manner,
with typed clique templates, parameter tying, and aggrega-
tions over probabilities rather than values. Within these ex-
tended representations, conventional propositional learning
techniques are used for both parameter estimation and struc-
ture learning.

This approach is a good first step but there are a num-
ber of limitations to using propositional learning techniques
in a relational setting. First, dependencies among instances,
combined with varying relational structure, will increase the
variance of parameter estimates (Jensen & Neville 2002).
This inefficiency in parameter estimation will cause the
learning algorithms to overfit and may result in biased struc-
ture learning. One solution is to use a non-selective model,
that is, a model that doesn’t do feature selection. However,
for relational tasks, which are likely to have a large number
of features, this lack of selectivity will make the model more
difficult to interpret and will increase the computational bur-
den for inference. Second, the search space is potentially
much larger than in propositional domains, making con-
ventional generate-and-test approaches to structure learning
intractable. When the data are propositional, the possible
dependencies are exponential in the number of attributes.
When the data are relational, the possible dependencies are
exponential in the number of attributesand the number of in-
stances. Third, restrictions to the model space to make struc-
ture learning tractable, generally involve a change in repre-
sentation that presents achicken and eggproblem. Represen-
tation can impair the ability to learn important knowledge,
but knowing the right representation often requires just that
knowledge. To date there has been little work that has ex-
plored this issue.

This work will consider in depth the issue of structure
learning in statistical relational models. There are three as-
pects to developing accurate and efficient structure learn-
ing techniques: (1) hypothesis testing, (2) structuring the
search space, and (3) efficient search of the space. We pro-
pose to develop accurate hypothesis testing techniques that
will adjust for the widely varying structure and dependen-
cies among instances in relational data. In addition, we will
investigate approaches to structuring the search space, of-
fering alternatives to the current naive approach of general-
to-specific ordering, which will break down as the data com-
plexity grows. Specifically, we will consider a view-learning
approach, which uses predicate invention to decouple the
search space into a set of biased abstractions, allowing the
search to consider a wider range of dependencies. Finally,
we propose to develop more efficient search techniques for
model selection. By interleaving structure learning, param-
eter estimation, and inference, we will constrain the search
using the structure of data in a bottom-up fashion.

Our work to date has identified a number of key character-
istics in relational data (e.g., heterogeneous relational struc-
ture, autocorrelation), their adverse effects on learning, and
initial strategies to adjust for these characteristics (Jensen &
Neville 2002; 2003). This work will be extended to analyze
hypothesis testing techniques used in learning directed and
undirected joint models, and to develop accurate structure

learning techniques for these models. In addition, we are
currently investigating abstractions that decouple structure
and attribute dependencies with latent groups as a means
to structure the search space. This work will be combined
with our investigation of the properties of aggregation tech-
niques (Neville, Jensen, & Gallagher 2003) and approxima-
tion techniques (Neville & Jensen 2004) to develop accurate
and efficient search techniques for relational domains.

This work is positioned to extend the range, applicability,
and performance gains of joint statistical relational models.
A sufficient number of relational representations have been
developed to start generalizing their characteristics and ex-
tending their performance. The models have been success-
fully applied in a number of domains, including the World
Wide Web, genomic structures, and citation graphs, but
progress is hindered by the complexity of learning and in-
ference. If we do not focus on techniques for structure learn-
ing in relational models, we risk learning models with un-
interpretable structure, poor generalization, and inefficient
performance. The benefits of accurate and efficient structure
learning are two-fold. First, in small datasets, where we have
the computational resources to apply current learning and
inference techniques, improved structure learning will in-
crease the accuracy of the models. Second, in large datasets,
where learning and inference are computationally intensive,
if not intractable, improved structure learning will make re-
lational modeling both practical and feasible.
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