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Thesis Goal

My thesis aims to contribute towards building autonomous
agents that are able to develop what White (1959) called
competencyver their environment—agents that are able to

As itis with humans, the ability to automatically construct
useful skills is an invaluable asset in an autonomous agent,
one that can be used towards building competence (Barto,
Singh, & Chentanez 2004). Designing such agents, however,

achieve mastery over their domain and are able to solve new fémains a challenge, and the main difficulty lies in determin-
problems as they arise using the knowledge and skills they N9 what constitutes a useful skill.

acquired in the past. While the field of machine learning has
made much progress in solving individual, isolated prob-

Proposed Research

lems, progress has been slow in developing agents that areMy thesis will propose two novel and task-independent def-

able to interact effectively with their environment and flex-
ibly deal with new tasks. There is still a large gap between
the abilities of humans in this respect and the current capa-
bilities of autonomous agents.

My thesis will propose a number of methods for build-

ing competence in autonomous agents using the reinforce-

ment learning (RL) framework, a computational approach to

learning from interaction that has proved effective in certain

types of problems (Sutton & Barto 1998). | expect that the

methods | propose will extend the capabilities of RL agents
in ways that are more than incremental, essentially allowing
an autonomous agent to operate at a qualitatively different
level.

Background

In the RL framework, the interaction between an agent and
its environment takes the following form: The agent senses
the state of the environment, performs one of the actions that
are available in this state, and receives a numerical reward
signal. The agent’s objective is to maximize the expected
total reward it will receive in the future.

Recent methods allow the agent to perform higher-level
actions, which we will calkkills, that are closed-loop poli-
cies over lower-level actions (Parr & Russell 1997; Sutton,
Precup, & Singh 1999; Precup 2000; Dietterich 2000). An
example of a skill that people use is driving. Once peo-
ple learn how to drive, they no longer think in terms of
the lower-level behaviors that are involved in driving. They
simply choose between, for instance, driving and walking
to work. In fact, most of the time, people choose among a
small set of higher-level actions, which simplify their lives
dramatically.
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initions of a useful skill, develop algorithms for autonomous
agents to efficiently acquire such skills, and evaluate the ef-
fectiveness of these skills towards competence in agents.

The first class of skills | propose uses the notion of an
access statea state that allows the agent to transition to
a part of the state space that is otherwise unavailable or
difficult to reach from its current region. A simple navi-
gational example of an access state is a doorway between
two rooms. These states are closely related to several types
of subgoals previously proposed in the RL literature (Mc-
Govern & Barto 2001; Menache, Mannor, & Shimkin 2002;
Mannoret al.2004).

| hypothesize that behaviors that take the agent to the ac-
cess states of the environment are useful skills. First, easy
access to these states allows more efficient exploration of the
state space by providing direct access to those regions that
are difficult to reach. Thus, these skills are useful in solving
a single, isolated task. But more importantly, these are skills
that are useful in a variety of problems in the same domain—
getting to the doorway is useful regardless of what the agent
needs to do in the other room.

While navigational domains are rich sources of access
states—and are useful in conveying their intuitive appeal—
access states capture a certain type of connectivity structure
(of the state-transition graph) that exists in a broader class of
problems. For example, completion of a subtask in a sequen-
tial task is an access state; so is building a tool that makes
possible a new set of activities for the agent.

With respect to access states, | aim to address the follow-
ing questions: Are behaviours that take the agent to access
states useful towards building competence? Is it possible to
quantify their utility? How can the agent efficiently identify
access states and learn behaviours that take it to these states?
Are access states common in real-world problems?

The second class of skills | propose are behaviors that
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efficiently uncover the key causal relationships in the
environment—closed-loop policies for conducting experi-
ments and interventions to understand the influential vari-
ables in the domain and their effects through explicit hypoth-
esis formation and testing. Through the use of such skills,
the agent would build a task-independent causal model of
the environment, one that would be useful in solving many
problems in the same domain. It is important to note here
that the generated model would not include all of the vari-
ables and relationships in the domain—it would include only
a subset of them, but a subset that consists of the relation-
ships that are the strongest and the most influential.

The key questions | aim to address with respect to this
second class of skills are the following: What types of vari-
ables should the agent include in its model, in other words,
what constitutes an influential variable? How can an agent
efficiently identify such variables and uncover the causal re-
lationships among them? Is building such a causal model of
the environment useful towards building competence? Can
we quantify its utility?

Progress to Date

Most of my research to date has focused on the class of skills
that takes the agent to access states of the environment. |
have published two papers, with my advisor A. G. Barto and
colleague A. P. Wolfe, demonstrating the utility of access
states as subgoals in a number of tasks and proposing two
methods for identifying them efficiently (Simsek & Barto
2004; Simsek, Wolfe, & Barto 2004).

The first method, the relative novelty algorithm (RN), is
based on the observation that access states will be more
likely to introduce short-term novelty than other states in the
environment. The second method, L-Cut, is based on the ob-
servation that access states will be more likely to lie between
two densely-connected regions of the state-transition graph.
Both of these algorithms are simple, effective, and have low
computational complexity. | am currently evaluating the fol-
lowing hypothesis: The utility of access states lies in the con-
nectivity structure of the state-transition graph; more specif-
ically, it is correlated with the graph-theoretic meashee
tweenness centralityhe proportion of shortest paths on the
graph that pass through a given node. Furthermore, the suc-
cess of RN and L-Cut lies in their ability to provide simple
but accurate estimates of this measure.

Ongoing work with respect to access states include build-
ing a repository of domains, borrowing from the literature
and creating new ones, to explore whetherdheess state
concept is useful in general towards building competence in
agents.

My work on the second class of skills | propose is in its
early stages. | am currently formulating ideas on compo-
nents of a skill set aimed at discovering the causal structure
in the domain, building on the extensive work on compu-
tational methods for building causal models in the machine
learning literature, as well as the existing research on how
people build causal models (Pearl 2000; Goptikl. 2004;
Tenenbaum & Griffiths 2001).
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