
Loads–n-Limits and Release-n-Sequence:
The “Brains” behind WEPS

Paul S. Cerkez

DCS Corporation

46641 Corporate Drive
Lexington Park, MD. 20653

pcerkez@dcscorp.com
pcerkez@acm.org

Abstract

The Loads-n-Limits (LNL) and Release-n-Sequence (RNS)
modules are rule-based sub-systems designed to validate vari-
ous configurations of aircraft stores loading and weapons re-
lease planning. LNL, in conjunction with verifying and vali-
dating the loads presented, returns usage restrictions and limi-
tations of the aircraft and the weapons load. The RNS module
evaluates user-selected weapons employment planning. Be-
tween the two modules, the planner can create legal and safe
loads, determine flight restrictions, create safe weapon release
sequences and determine weapons delivery restrictions
throughout the entire flight scenario. This paper is a descrip-
tion of the two modules, the development environment, sys-
tem growth, change management problems, and the scope of
changes incorporated between the first release of Weapon
Employment Planning Software (WEPS) in 2001 and the lat-
est certified version.

Acronyms and Terms

AI - Artificial Intelligence
ATACS - Automated Tactical Manual Supplement
CLIPS - C Language Inference Production System
E/F – the F/A-18E/F Super Hornet
F-18 – the F/A-18A/B/C/D Hornet
LNL – Loads-n-Limits
MRI - Minimum Release Interval
NATOPS - Naval Aviation Tactical Operations Manual
(NATOPS)
NAVAIR - Naval Aviation
RNS – Release-n-Sequence
SEDA - Safe Escape and Delivery Application
SLIC - Stick Length Interactive Calculator
SLIM - Stores Limitations Manual (SLIM)
Store – any item mounted on an aircraft
Suspension - the interface mounting hardware between a
store and the aircraft
TACMAN - Tactical Manual (TACMAN)
WEPS -Weapon Employment Planning Software

 Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved

Background
During the 1990’s, a software program called the Auto-
mated Tactical Manual Supplement (ATACS) was devel-
oped to automate the load planning process of the F/A-18
Hornet (F-18) aircraft used by the US Navy and Marine
Corps. The ATACS system was originally DOS-based
but was later updated to a Windows environment.

ATACS is based on the F-18 aircraft’s Tactical Man-
ual (TACMAN) and Naval Aviation Tactical Operations
Manual (NATOPS). The TACMAN is the source docu-
ment for the authorized stores and load configurations for
the aircraft with the associated flight characteristics, limi-
tations, and restrictions. ATACS implements these data
as a listing of all store loading configurations authorized
on the aircraft. This information is primarily stored in a
large FoxPro database. The restrictions associated with
the aircraft loads are coded into the application. Flight
limitations are also stored in both the database and the
system’s code. The primary database associated with the
system is approximately 8 megabytes in size and there is a
very tight coupling of code and data.

The tight coupling between data and code led to
maintenance issues. As the capabilities of the F-18 were
updated in the TACMAN and NATOPS, changes in au-
thorized load configurations and stores also had to be up-
dated in ATACS. Every time ATACS needed updating,
decisions had to be made as to where the change needed
to be made: in data, code, or both. As ATACS results are
safety-of-flight critical, every time ATACS was updated,
the system was recertified for use. Under the ATACS
architecture, virtually all changes required re-compiling
the entire application. On average, the time it took to
implement even a simple change was 7 to 10 days for the
software effort alone.

ATACS has proven to be very successful and is
highly desired by pilots for mission planning. Without
ATACS, a single mission planning session is a couple of
hours work consisting of lots of page turning, data look
ups, and filling out various forms to facilitate calculations.
With ATACS that same mission can be planned in less
than 1 hour, typically, 30 minutes or less from start to
finish. With the introduction of the F/A-18E/F Super
Hornet, (E/F) the desire was to produce a tool functionally
similar to ATACS but significantly easier to maintain.

IAAI-05 / 1459

Colloquially, our overriding requirement was to match the
TACMAN in all output data. Our tasked objects were
simply stated as (Cerkez, 2000):

 For a given load condition, an indicator that flags the
load as legal/valid or not

 If illegal/invalid, an indication of the cause of the
failure condition(s)

 Platform total weight returned as three data elements:
total Platform weight (as loaded), total Stores Weight
and Fuel

 Platform wing moments with stores loading
 Individual store drag indices and restrictions as
loaded (altitudes, airspeed, G’s, etc)

 If legal/valid:
 total platform restrictions in an as-loaded-
condition (altitudes, airspeed, G’s, notes, etc)

 drag indices for the platform will be provided for
the four (4) “True Mach Number” data points
listed on the “Weaponeering Checklist” for both
the DASH and CRUISE conditions.

Problem Description
A significant concern with the introduction of the E/F was
the number of updates that would be required to any
automated system. Like the F-18, the E/F has the capabil-
ity to perform both traditional bombing missions and air
superiority missions during the same flight sortie, but
with two additional stores mounting points. Due to the
two additional mounting points, the process for planning
store loads is more complex. Since its introduction, the
E/F has been undergoing continuous flight testing to ex-
pand its operating limits, to validate load configurations
and to conduct performance evaluations. From the outset,
it was a known development risk that changes to the
TACMAN and the type and quantity of authorized loads
were going to happen and happen often. In the case of the
E/F, the TACMAN was not published until 2002, and was
delivered to operational squadrons in mid-2002. Prior to

that, an engineering test and evaluation document, the
Stores Limitation Manual (SLIM), was used. The SLIM
evolved to become the first TACMAN. (From here on,
unless specifically called out, the use of the word
TACMAN will refer to both the SLIM and TACMAN.)

 In 1998, we proposed an AI-based approach to the
problem of aircraft load planning to the NAVAIR Ballis-
tics office (AIR 4.11.2). After a number of discussions, it
was decided to develop the tool with this concept.

Weapon Employment Planning Software (WEPS) is
the stores planning tool for the E/F. The most significant
design difference between ATACS and WEPS is the de-
coupling of data and code. In WEPS, the GUI collects
and displays data, with minimal knowledge of load plan-
ning or weapons release. The intelligent modules that are
part of the application contain all of the pertinent knowl-
edge of the aircraft and the authorized loads. There are
basically three sub-divisions in WEPS: (refer to Figure 1)
Loads-n-Limits (LNL), Delivery Planning and Validation,
(SEDA and SLIC), and finally, Release-n-Sequence
(RNS). WEPS versions 1.0 and 1.1, with only LNL and
SEDA, were subjected to a very rigorous certification
process due to safety-of-flight requirements and were
delivered to the fleet in November 2001 and June 2002 in
conjunction with the first TACMAN. WEPS 2.0, with an
updated LNL, updated SEDA, SLIC, and the new RNS
completed safe-for-flight testing in November 2004 and
was published to the user base in December 2004.

Figure 1: WEPS Components

During the development effort leading to WEPS 1.1,
the source baseline data (SLIM and TACMAN) was
changed ten times, and subsequent to WEPS 1.1 certifica-
tion testing, ten more baseline (TACMAN) updates have
been released with more pending. From 1998 through
2002, there were eight releases of the SLIM, each either
adding or deleting weapons or modifying the restrictions
and limitations of the aircraft. From June of 2002 through
September 2003, there were four major changes to the
TACMAN. From September 2003 to May 2004, there
were six more. Comparatively, in the same time frame
(1998 –2004), the TACMAN for the F-18, an aircraft in
production since the early 1980s, only had two major
changes.

LNL is the rules based sub-system that contains all of
the rules and facts necessary to both generate and subse-
quently validate a load configuration. While the numer-
ous changes to the baselines were a frustration, the struc-
ture of LNL allowed most changes to be made relatively
easily.

RNS is an application developed to explicitly capital-
ize on the WEPS 1.1 work of LNL and provide the users
with additional planning capabilities. RNS is a knowl-
edge-based module that validates store releases from the
aircraft. Because of the dynamics of flight and the weight
and aerodynamics of stores, the stores have numerous
limitations associated with them. RNS addresses these
limitations and provides the planner with the final tool to
complete mission planning.

IAAI-05 / 1460

The front end of WEPS is a graphical interface that
allows the user to interface with the various sub-system
modules. The SEDA and SLIC components are software
implementations of the physics models used to calculate
the flight path of a released weapon, impact points and
fragmentation balloons.

Because CLIPS is a script language, a significant ad-
vantage of LNL and RNS is that changes do not require
recompilation of the WEPS code. De-coupling the load
planning and release rules from the user application was a
success. LNL and RNS can be run independently of the
WEPS GUI application.

What follows is a discussion of the technology of
LNL and RNS. While our conceptual approach was sim-
ple on the surface, implementation was tedious. We were
successful in our approach. Barring major exceptions to
the existing rules, it currently takes about 2 weeks to fully
implement complete new baseline data into LNL and
RNS. The majority of the time is spent analyzing the
change itself. To implement the simple change of adding
a single new store to LNL is in total, about 1 hour worth
of software effort. ‘Removing’ a store takes less than 5
minutes. Testing however, may take many weeks more.
LNL and RNS can be maintained by a single developer
with domain knowledge.

Our Approach
While ATACS utilized a brute force database of every
possible combination of stores and loading locations, the
concept behind LNL was to utilize an AI approach that
looked at the rules and relationships between the stores
and where they are loaded on the aircraft. A number of
implementation languages were discussed and CLIPS was

finally selected. A detailed analysis of the TACMAN was
performed with the express notion of finding patterns in
the data. One goal was to abstract the pattern data to the
point that any representation chosen for the stores and
suspension would be irrelevant. The LNL systems was
designed and built around the concept that it did not mat-
ter how the stores are represented. LNL only cares about
relationships that apply to the store code (more about
these codes later). This goal was achieved and the same
abstraction was later carried over into RNS.

The next goal was to identify rules that affect the
data. This proved to be the most difficult effort of the
project. The biggest obstacle to overcome was all of the
exceptions or modifications to supposedly standard rules.
Many of the exceptions and modifications are store driven
while others are driven by load configurations that have
been flight tested as safe in only one configuration or had
not completed full flight testing. Over the five years of
development and maintenance, as flight clearances were
approved, many rules were modified or deleted because
the earlier condition driving the rule’s existence was no
longer valid. Figure 2 is an overview of the LNL process
developed from the extracted rules used to guide the de-
velopment effort.

Just the Facts

f(n)

Input

Process

Output

Input
Parser
Rules

Ouput
building

rules

Get Station ID (0..Q)

Violations of Station-Suspension

Violations adjacent store
Violations of mixed store
Violations of "conditionals'
(i.e., matched pairs)

validate Load (0 .. ST)

validate Performance Factors(0 .. ST)

Get DDI/VDEDP Codes (0 .. ST)

Rules to
calculate

weight and
asymmetry

Rules to
calculate

airspeed, g's,
etc

Violations of Station-Store
Violations of Suspension- Store

validate Limits (0 .. ST)

illegal suspension
illegal store

Identify Illegals

validate Gross Weight (0 .. ST)

The Ballistics office produces a standardized representa-
tion of all stores, aircraft and suspension items used in
Naval Aviation software planning tools, including a rep-
resentation for no store or suspension. These are referred
to as either “Schanck Codes” (after the developer) or sim-
ply ‘store codes’. From these store codes, a person with
knowledge of the code’s structure can tell the configura-
tion of the store it represents. For example, a store code
of 11201023 represents a Mk-82 500lb bomb with a spe-
cific type bomb body, nose fuze and tail fin.

With nothing mounted on the aircraft, the aircraft has
baseline performance and flight characteristics. Every-
thing that can be mounted to the wings or body of the
aircraft has an impact on airflow over the aircraft. Each
item has its own aerodynamic characteristics. As each
store and suspension item is mounted on the aircraft the
baseline performance and flight limitations are affected.
Many limits and restrictions are detailed in the
TACMAN’s textual loading notes. Figure 2: Overview of LNL operations The very first configuration management requirement
of the system was to apply all notes identified in the vari-
ous reference manuals and to track any changes to the
system via certifier’s notes. All items in the fact bases in
the LNL and RNS systems contain a slot to enter and hold
a note identifier and a slot to contain a string representing
the certifier’s notes. A certifier note typically contains the
date, the initials of the person making the change, the
source document directing the change and the affected
data (ex: 10/2/04 PSC TACMAN IC 5: changed airspeed
knots value from …).

IAAI-05 / 1461

As result of the analysis of the TACMAN and other
manuals, a basic methodology was laid out. We deter-
mined that the entire aircraft load could be represented in
its simplest form as a tree. The root node of the tree is the
aircraft itself. The first level of the tree’s branches repre-
sents all of the possible mounting locations on the aircraft.
At each of these branches, even on an empty station, there
is always a suspension code followed by either another
suspension code or a store code. By using this particular
structure, the system can easily handle those cases where
there may be 3 or more levels of suspension before reach-
ing the store leaf node. Additionally, as flight testing
continued, this structure allowed us to adapt to new
mounting locations approved for the aircraft. A case in
point occurred during the later stages in the development
of version 1.0. A requirement was added to account for
mounting points internal to the aircraft that support spe-
cialized systems. The effort required to accommodate
these new stations was to simply give the locations unique
identifiers and identify the Schanck codes for the stores.

To support the tree structure approach, we developed
a simple method of defining what constituted a legal pair-
ing. To accomplish this we defined and developed the
relations file. This is a CLIPS fact file containing all ap-
plicable relationships between any one item and another.
The fact (relation [A8234900] [S11201231])
states that store [S11201231] can be mounted on the
suspension item [A8234900]. Because this simple
approach can allow unwanted mountings, a second part of
this methodology incorporated another fact file defining
explicitly illegal mounting locations. The advantage of
this approach was it enabled the system to be quickly
modified by simply removing the illegal condition fact as
new mountings became authorized. Also, by simply add-
ing a fact to the illegal fact base, a previously approved
mounting could be removed if necessary.

Now that the most basic part of the system had been
described, the next effort was to extract default data about
each item represented in the load. To support this, three
separate fact bases were developed: PLATFORM,
STORES, and SUSPENSION. Each of these fact bases
contains simple default information about each item. All
three contain the item’s weight, nomenclature, Schanck
Code, note identifiers and a certifier note. To support
these default fact bases, a CLIPS super class structure was
defined. Each subclass (platform, store, and suspension)
inherited the basic slots that applied across all items. Fol-
lowing this, in LNL we created three additional fact bases
containing load specific data such as airspeed limits, g-
limits, and drag data. In RNS we created additional fact
bases to hold release data and sequencing data,

The next two fact bases generated were in support of
mixed loading. The first of these fact bases contains the
information necessary to define authorized aircraft loads.
Even though a suspension combination is authorized on
the aircraft, there are combinations of stores not author-
ized on each wing. Additionally, there are combinations
of left wing and right wing loadings that are explicitly

authorized or not authorized. Furthermore, there are wing
combinations that are authorized but are illegal in combi-
nation with certain fuselage station loads. This mixed
load fact base contains all of the authorized loading pat-
terns and explicitly illegal combinations. With each en-
try, there are the associated notes. The second fact base
supplies the unique notes when specific combinations of
wing loadings are evaluated.

A significant advantage of this approach is that it al-
lowed for temporary flagging of certain loads as illegal.
We accomplished this by creating a special note called a
User Defined Error (UDE) note. By simply replacing the
existing legal notes with a UDE note, the load configura-
tion in question is made invalid and a detailed reason is
returned. To reverse the flag, we simply remove the UDE
note and the system returns to the way it was. This ap-
proach also allowed us to pass dynamic data through the
GUI layer to the physics models by creating special per-
formance notes.

Finally, the last set of facts stored in the system is the
drag calculation factors interpolated from NATOPS flight
performance graphs for drag. These facts are used to dy-
namically determine the overall drag effects on the air-
craft.

Following the Rules
As stated earlier, determining the rules was the most trou-
blesome effort on this project. The system was set up in a
heuristically guided building block structure. As men-
tioned earlier, the E/F is a very robust weapon platform
capable of carrying a vast array of stores. Weapons range
from precision guided stores to missiles to general pur-
pose iron bombs. The Navy’s Office Of Information web
site shows a sampling of the stores used by the E/F.
(Navy) As with all US Navy aircraft, the TACMAN is the
authoritative source describing what stores can be loaded
where on the aircraft and in what quantities. These de-
scriptions constitute the load patterns LNL must evaluate.

The flip side of the coin is the ability to deliver stores
on target. The E/F is a flying computer controlled by an
operating system developed by the aircraft manufacturer.
Each operating system has its own set of rules regarding
stores deliveries and has an associated manual detailing
the rules of operation. (Greybook) RNS is constructed
from these rules.

To evaluate a load for both loading and delivery, the
approach we took was to start with the simplest condi-
tions, validate them then move on to the more complex.
Simply put, if the load can’t pass the simple test, there is
no need to check the more complex.

The first set of rules applied to a load pattern was to
determine if the load exceeded any maximum parameters
for the aircraft. After some housekeeping rules to check
that the input load pattern is properly formatted, the first
test is for maximum weight. The second is for asymme-
try. If either of these parameter limits are exceed, the

IAAI-05 / 1462

load evaluation halts and an error message is returned to
the calling system (WEPS) for display to the user.

Upon successful completion of the initial testing,
LNL checks to ensure a legal wing loading exists fol-
lowed by legal combinations of wings and fuselage loads.
If the entire load combination is legal, notes applicable to
the load are extracted and stored for final return to the
calling routine. Once the load is validated as legal, air-
speed and g-limits are then calculated followed by the
drag data calculations. With both airspeed and g-limits,
the output is not necessarily a simple retrieval from the
appropriate fact base. It is an aggregation of the limits of
the basic aircraft and all items loaded. For example, the
limits from one wing’s store combination can impose
more restrictive limits on the rest of the aircraft. Addi-
tionally, in many cases, the presence of a single store will
impact all other stores on the aircraft. However, a prob-
lem associated with calculating the limits is that some
limits are published as numeric values (i.e., -1.9, 6.3, 575,
etc) while others are mnemonic (i.e., P, NA, LON, etc.).
To support the safe for flight requirement, the most re-
strictive is always used and so a function (Figure 3) was
created that compared the numeric values and the mne-
monics to determine the most restrictive limit.

Finally, the LNL subsystem evaluates the MRI. The
MRI refers to the authorized time increment for a pilot to
release the stores from the aircraft. In order to return the
proper release notes associated with the load, LNL per-

forms a very rudimentary evaluation of the MRI data.
This represents a slight crossover of functionality between
LNL and RNS. A second cross over with RNS is the
evaluation of the load with regard to proper downloading
(i.e., removal of stores). The E/F drops its weapons in
specific sequences based on the store and suspension. In
order for RNS to perform its functions, LNL iteratively
validates the load as the stores are released. Also, be-
cause the aircraft can fly in a ‘downloaded’ configuration,
LNL validates these loads to ensure that the downloaded
configuration is not an invalid condition.

When it is time to plan a stores delivery, the planner
selects a store from the ones loaded and queries the sys-
tem for the authorized quantities, multiples and priority
stations. RNS is the engine that determines these outputs.
RNS was developed separately from LNL but with many
common concepts. RNS provides more detailed informa-
tion and specific limitations related to releasing stores
from the aircraft. The primary complexity of RNS was
the source data. For any given legal load configuration,
there is only one proper sequence as dictated by the rules
in the Greybook. For a selected quantity, there are an
approved number of stores (the multiple) that can be re-
leased in a single pulse. Then, based on the load configu-
ration, a designated station to start release pulses from is
determined. Included in the calculations are the final
MRI determinations.

(deffunction LNL::calc_as-limit (?IN1 ?IN2)
;;; First check to see if IN1 is LON and IN2 is NOT LON, NA or P.
 (if (and
 (or
 (member$ NA ?IN1)
 (member$ P ?IN1)
)
 (not (subsetp (create$ P NA) ?IN2))
) then
 (bind ?OUT ?IN2)
 else
 (if (or
 (member$ NA ?IN2)
 (member$ P ?IN2)
) then
 (bind ?OUT ?IN2)
 else
 (bind ?t1_1 (nth$ 1 ?IN1))
 (bind ?t2_1 (nth$ 1 ?IN2))
 (bind ?t1_2 (nth$ 2 ?IN1))
 (bind ?t2_2 (nth$ 2 ?IN2))

; returns the lower as limit
 (bind ?out_1 (min_as ?t1_1 ?t2_1))

; returns the upper as limit
 (bind ?out_2 (max_as ?t1_2 ?t2_2))

 (bind ?OUT (create$?out_1 ?out_2))
);end if
) ; end if
 (return ?OUT)
) ; END deffunction calc_as-limit

Because the E/F is so capable, there exists load con-
figurations that can be supported, but because they have
not been approved yet they must be disallowed by the
system. Fortunately, the existing rules cover most situa-
tions. However, we did have to create a specific set of
rules and facts to handle a peculiar condition. Any store
mounted on the aircraft has an associated code used by
the aircraft’s armament computer to support releasing of
the weapons as required. The problem is that many stores
within a class can have the same aircraft armament code
but cannot be on the aircraft together. The problem deals
with store compatibility. An example is the Mk-82 (500
lb) bomb series. In the case of the Mk-82, there are about
120 different Schanck codes for the Mk-82 class stores to
define different variations of the bomb, fin and fuzes. Of
these 120 store codes, all have the same aircraft armament
code. However, some are considered compatible with
each other while others are not. An example is a live
bomb and a practice bomb (inert). As far as the aircraft is
concerned these are the same bomb. The only difference
is one that does not explode on impact. Among other
attributes, WEPS was designed to differentiate live and
inert bombs.

To solve this problem, we brainstormed with the do-
main experts and came up with a mapping technique
where we could identify in data what constituted com-
patible stores. All Schanck codes have a well defined
structure so we decided to capitalize on those definitions.
We developed a simple mapping of codes using 2 tokens
(= and ~) and the list processing capability of CLIPS. We
created a class instance for each type of store that we

Figure 3: Calculate Air Speed Limit Function

IAAI-05 / 1463

called the STORE_MASK. Every store in the system is
assigned a STORE_MASK key (e.g., k112). Within each
STORE_MASK we defined the positional compatibility
of each store code. For example, for the Mk-82 series, we
used the following:

([k112] of STORE_MASK
(pos1 "=")
(pos2 "=")
(pos3 "=")
(pos4 "~"); don't care
(pos5 "=")
(pos6 "=")
(pos7 "=")
(pos8 "="))

All Mk-82’s stores supported in LNL and RNS share this
key. This example shows that for Mk-82 stores, all posi-
tions of the store codes being compared must be the same
EXCEPT position 4 which is a don’t care. So long as all
7 of the other positions are the same, the two store codes
being compared are compatible.

For Mk-84’s (2000 lb) however, the following mask
exists for position 4:
(pos4 "1 5 6 9 A | 2 3 4 7 8");

In this case, we have two sets of compatible codes for
position 4. A code for one set is NOT compatible with
one from another, but within the set, all are compatible.
This methodology allowed us to handle other store classes
were we had to support 3 and 4 sets of equivalences. As
flight testing progressed and more clearances were ap-
proved, compatibilities were updated. Utilizing this ap-
proach, we could change the compatibility of stores in the
system via data without the need to re-build a new WEPS
release. More importantly, there were no software code
changes. The entire compatibility test for 674 store codes
consists of a single rule, 3 functions and 30
STORE_MASK instances.

This approach proved it worth when two stores of the
same class were previously considered non-compatible.
In the later stages of the WEPS version 2.0 development,
these two stores were now considered compatible. To
implement the change, we simply adjusted the appropriate
tokens in the applicable STORE_MASK and in less than
5 minutes the change was effected.

Talking the Talk
The LNL effort preceded the WEPS GUI effort, so LNL
had to establish an interface protocol that any calling lan-
guage could use. At the time, the decision for the WEPS
GUI implementation language was still being studied and
choices included Visual Basic, C, C++, and compiled
FoxPro. The final decision was C++ as the development
language. To allow LNL development to begin and to
establish a universal parameter passing methodology a
tokenized string structure was developed for passing all
data in and out of the LNL subsystem. An implementa-
tion specific code block (class, procedure, etc) to build the
data string going into LNL and parse the returning data

string coming from LNL was the only requirement of the
calling application. Typically, the string representing the
loads going into LNL are about 1k long, however the re-
turn strings coming out of LNL are typically 10k or more.
This tokenized string with the addition of four new tokens
was later used in the RNS subsystem.

Keeping up to Date
The dynamics of the changes to the TACMAN and other
source material for the LNL and RNS subsystems re-
quired close monitoring of the source data. Except for the
MS-Excel spreadsheet containing the Schanck codes, all
source material available was either a domain expert’s
input, a paper copy or a PDF file of the reference docu-
ment. After surviving a few valuable hard learned lessons
in the development efforts leading to WEPS 1.1, we initi-
ated a process that allowed us to identify each data ele-
ment change between versions of the source material,
primarily the TACMAN. The procedure was time con-
suming but simple: a side by side, page by page compari-
son of the old document and the one replacing it. Each
data element that changed in the new document was cir-
cled in red. As part of this procedure, we identified the
impact of the changes to the systems. There were cases
where a simple one word text change in a loading note
affected every single load on the aircraft. Fortunately, in
most cases changes were simply revising a limit or re-
moving a restriction.

The second step in the process was to work through
each fact base with the marked-up TACMAN and to
make each required change to the appropriate individual
facts. In support of those cases where an entirely new
store or a new set of load patterns was being added to the
system, we developed a series of flow charts and step by
step procedures to walk a maintainer through the various
fact files in the proper order. When the procedures were
not followed, there was a risk of missing a data point.

 The third step was the most troublesome: imple-
menting new rules or modifying existing ones. The diffi-
culty here was determining side effect interactions with
other existing rules.

The problem with the third step is best illustrated by
a situation in the RNS rules to determine the proper re-
lease sequence for a set of stores given a change in re-
strictions. Prior to the change, the rules and facts worked
cleanly. When the restrictions for a new store were
added, it caused unintended conflicts with other rules and
resulted in wrong outputs. After significant analysis and
effort (almost 70 hours), the whole section of 31 rules and
125 facts was removed. It was replaced by 3 new rules
and 634 new facts that only took 12 hours to generate.
The new implementation eliminated the possibility of
interactions and was significantly easier to maintain. A
positive side effect was a speed up in performance.

The WEPS software program is a certified safety of
flight application and as such there is a traceability re-
quirement to source documents. To that end, all changes

IAAI-05 / 1464

0 2000 4000 6000 8000 10000 12000 14000 16000

WEPS 1.1

WEPS 1.2

WEPS 1.3

WEPS 1.4

WEPS 1.5

WEPS 1.6

WEPS 1.8

WEPS 1.9

WEPS 1.10

WEPS 1.11

WEPS 1.12

WEPS 1.14

WEPS 2.0

Rules, Facts and Declarations

Total store instances: Total airspeed instances: Total store-mask- instances: Total notes instances: Total errors instances:
Total mixed-stores- instances: Total fuzelage instances: Total illegal-mixes- instances: Total loadnotes instances: Total relations-facts:
Total illegals-facts: Total store-data-facts: Total store-notes-facts: Total as-limits-facts: Total g-limits-facts:
Total interference-codes-facts: Total drag-values-facts: Total legal-station-facts: Total authorized-facts: Global Facts
Functions Rules Total RELEASE instances Total ACPATTERNS-instances Fact Templates
RNS Facts

Figure 4: LNL and RNS Rules, Facts and Declarations Growth

were initiated, recorded, prioritized, coordinated, directed,
implemented and documented per a formal configuration
management program managed by the Ballistics Office.

Today
As of January 2005, WEPS 1.1 had been in use for ap-
proximately 2.5 years. Since its release some of the
changes released in the TACMAN have had major im-
pacts on the applicability of WEPS for the users. Most of
the TACMAN changes resulted in many new stores being
added, many new load patterns and expanded perform-
ance envelops. If an approved load configuration was not
already in WEPS, the planning had to be done manually.
E/F pilots enjoy the ease WEPS affords when planning
compared to the manual method. The Ballistics office was
constantly being asked for the next WEPS release so the
pilots could do all planning work in the software. Figure
4 is a graphic summary of the additions to the system
made in development builds between WEPS 1.1 and
WEPS 2.0. The chart only shows those areas were there
were changes. Note there is only partial data for WEPS
1.2. WEPS 1.7 was the first version to have RNS included
but was not distributed so its data is excluded from the

chart. WEPS 1.8 is essentially a distributed version 1.7
with some additions.

The initial goal to decouple the technical knowledge
of the aircraft loads from the user-level application was a
success. 99% of the knowledge related to validating an
aircraft load and delivery planning is currently contained
in the LNL and RNS subsystems. The simple, abstracted
approach we used facilitates the rapid changes needed to
support the E/F as more stores become authorized for the
aircraft and the limits of the weapons become clarified.
WEPS 2.0 is expected to be used by Super Hornet com-
munity for at least 2 years until it is replaced by a com-
mon aircraft mission planning tool.

Acknowledgments
This material is based upon work performed for Ballistics
Office, Naval Aircraft Weapons Center, Aircraft Division,
(NAWC-AD) Patuxent River, Maryland under Contract
No. N00421-02-D-3176.

Figure 1: Permission to publish granted by K. Schanck,
WEPS Project Manager, NAVAIR Ballistics Office.

IAAI-05 / 1465

References
Cerkez, P.S. June 2, 2000, System Design Specification
to Aircraft Loads and Limits Module. DCS Corporation,
Lexington Park MD 20653.

Greybook. MDC B 1984-13E. Operation of the F/A-18
Avionic Subsystem for F/A-18E/F Aircraft with 13E Op-
erational Flight Programs. Boeing Aircraft Corporation.

NATOPS. A1-F18EA-NFM-000. NATOPS Flight Man-
ual F/A-18E/F 165533 And Up Aircraft. CHIEF OF NA-

VAL OPERATIONS (N880). WASHINGTON , D.C.
20350-2000.

Navy.
http://www.chinfo.navy.mil/navpalib/aircraft/fa18/fa18or
d.html

SLIM
Stores Limitations Manual for the Navy Model F/A-18EF

TACMAN. F/A-18E/F Tactical Manual. NWP 3-22.5-
F/A18E/F Volume IV A1-F18EA-TAC-020. Chief of
Naval Operations (N880). Washington , D.C. 20350-2000

IAAI-05 / 1466

