
Scheduling Engineering Works for the
MTR Corporation in Hong Kong

Andy Hon Wai Chun

City University of Hong Kong
Department of Computer Science
Tat Chee Avenue, Kowloon Tong

Hong Kong SAR
andy.chun@cityu.edu.hk

Dennis Wai Ming Yeung,
Garbbie Pui Shan Lam

Synergicorp Limited

c/o City University of Hong Kong
Department of Computer Science
Tat Chee Avenue, Kowloon Tong

Hong Kong SAR
{dennis.yeung, garbbie.lam}

@synergicorp.com

Daniel Lai, Richard Keefe,
Jerome Lam, Helena Chan

MTR Corporation Limited
MTR Tower, Telford Plaza

Kowloon Bay, Hong Kong SAR
{daniell, jerome, keefe, helenac}

@mtr.com.hk

Abstract
This paper describes a Hong Kong MTR Corporation
subway project to enhance and extend the current Web-
based Engineering Works and Traffic Information
Management System (ETMS) with an intelligent “AI
Engine.” The challenge is to be able to fully and accurately
encapsulate all the necessary domain and operation
knowledge on subway engineering works and to be able to
apply this knowledge in an efficient manner for both
validation as well as scheduling. Since engineering works
can only be performed a few hours each night, it is crucially
important that the “AI Engine” maximizes the number of
jobs done while ensuring operational safety and resource
availability. Previously, all constraint/resource checking
and scheduling decisions were made manually. The new AI
approach streamlines the entire planning, scheduling and
rescheduling process and extends the ETMS with intelligent
abilities to (1) automatically detect potential conflicts as
work requests are entered, (2) check all approved work
schedules for any conflicts before execution, (3) generate
weekly operational schedules, (4) repair schedules after
changes and (5) generate quarterly schedules for planning.
The AI Engine uses a rule representation combined with
heuristic search and a genetic algorithm for scheduling. An
iterative repair algorithm was used for dynamic
rescheduling.

Task Description
The privatized MTR Corporation Limited owns and
operates the MTR metro system of Hong Kong. The first
subway line opened for service in 1979. Since then the
network has expanded to 6 lines and 50 stations, with a
new Disneyland Resort Line starting operations in the
second half of 2005. The MTR currently carries 2.4
million passengers each weekday [1], making it one of the
busiest in the world. For example, New York MTA’s
statistics [2] show roughly 14,000 passenger per station

Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

and 250,000 passengers per line daily.

 Despite the large traffic-flow, the MTR has set for itself
a very high service quality standard – train punctuality and
delivery must be 99% and 99.5% on time respectively. In
2004, it achieved 99.7% and 99.9% respectively. Ensuring
the required maintenance works are undertaken according
to program assists the smooth running of the railway, and
this task falls on the shoulders of a team of planners who
decide what engineering or maintenance works need to get
done, who to assign tasks to, what equipments to use and
when to perform the work. This planning is done once a
week in an Engineering Works Meeting (EWM). From this
planning session, an allocation plan is produced three
weeks prior to execution. During those three weeks,
further amendments, changes and additional requests can
be made, requiring the plan to be updated regularly.

 Similar to the Paris Métro [3], Hong Kong’s MTR
service ends after midnight and resumes early morning
next day. All the engineering works are performed during
this “non-traffic hour” (NTH) when no passenger trains are
running. Each night, there is only a precious 4 to 5-hour
window to perform all the necessary engineering works
and repairs. Obviously, it is crucial that the NTH window
is used wisely and efficiently.

Previous Manual Approach
Any type of work that needs to be performed during the
NTH will need to be approved and scheduled during the
EWM. Different parties will make requests by submitting a
“Possession Request” form via a Web-based application
called the Engineering Works and Traffic Information
Management System (ETMS). The ETMS collects all the
requests and prints a hardcopy report that is used during
the EWM for the week being scheduled.

 During the EWM, the planners determine which tasks
are more urgent or have higher priority and allocate them
one at a time while considering all the appropriate

IAAI-05 / 1467

operational and safety rules, constraints and guidelines. An
example of a safety rule is “pedestrian works are not
allowed within 600m from possession boundary of
energized possessions.” There are roughly 60 to 70 similar
rules and constraints that must be considered each time.
Understandably, the EWM is a very knowledge-intensive
meeting, as it is utmost critical that no safety rule or
regulation is overlooked.

 At the same time as the allocation plan is being
formulated, resource assignments are also tentatively made
to ensure there are adequate personnel, train operators,
engineering locomotives and wagons to meet the assigned
workload as well as available at the requested depots.

 For any given week, there will not be enough time slots
or resources to accommodate all the possession requests
that would have been made. Therefore, as part of the
EWM work, the planners must decide which jobs are more
time critical and need to be performed first. For those that
cannot be assigned, usually because of either safety rule or
resource conflicts, the EWM team then tries to “squeeze
them in” by “combining” them with already allocated jobs.

 Combining two or more requests, potentially from
different parties, may save both personnel and equipment
resources. This allows jobs that cannot be allocated before
to be allocatable now. There is an entire set of rules that
govern when and how “combines” can be made. For
example, requests being combined must be nearby each
other and their engineering trains, if any, should ideally
come from and return to the same depot. The “combine”
operation not only allows more possession requests to be
satisfied, it also opens the possibility of reducing resource
needs, as locomotives and train operators can potentially
be shared and only 1 EPIC (Engineer Person-In-Charge) is
needed per combine. Most importantly, by combining two
requests that are close to each other, some safety protection
conflicts can be resolved.

 Once all the allocations have been made during the
EWM, the final decisions and approved allocation plan are
then manually entered back into the ETMS. Once a request
has been approved by the EWM, additional details are then
filled in, such as train paths and movements. The system
also keeps track of any changes or last-minute requests that
need to be slotted in. Any such changes or adjustments
made after the EWM must be resolved and rescheduled
separately.

 Because of the complexity of knowledge involved in the
EWM and the potential consequences if any safety rules
were overlooked, it makes sense to use AI to streamline
the entire process.

New AI Approach
The previous manual approach is quite tedious and time-
consuming, involving careful validation and negotiation
between staff of different responsibilities and departments.
Requests may need to be changed and refined several
times before they can finally be scheduled.

 In early 2004, MTR decided to work with the City
University of Hong Kong (CityU) to review their current
scheduling processes and investigate how AI technologies
might be used to help streamline their workflows,
maximize resource utilization and minimize errors.

Application Description
To meet the project objectives, we designed and built an
AI Engine that can be used to streamline MTR’s business
processes for scheduling. Since the original ETMS
application was already in production, we decided to use a
service-oriented architecture (SOA) and expose the new AI
functionality as Web services for existing applications to
use. This approach allowed us to effortlessly enhance the
existing application with AI capabilities without much, if
any, impact to existing daily operations.

 Besides the new AI services, additional screens had to
be built to display Gantt Charts and subway engineering
maps. These screens had to be interactive to take
advantage of the interactive problem-solving capabilities
of the AI Engine. We decided to use SVG technology as it
was standards based and more flexible. In addition, we
wanted to use XML as the common language for all
communications and data exchanges within the system.

Figure 1. Overall system architecture.

 Figure 1 shows our architecture. The AI Engine resides
in a dedicated application server for better performance
and reliability. It interfaces with the existing ETMS Web
servers using Web-Service/.NET Remoting. The existing
ETMS application was extended to n-tiered SOA for
screens that needed AI.

Application Use Cases
 The AI-enhanced ETMS is used in many different
situations. Firstly, when possession requests are first
entered, the AI Engine ensures each request is valid and
that there will be enough resources for the request. This

IAAI-05 / 1468

eliminates time wasted in making amendments later as well
as allows the requester to decide whether or not to
continue with his/her request if there are not enough
resources. With this information, the requester can
immediately adjust his/her request to maximize the
chances of allocation and thus reduce time wasted due to a
simple mismatch between resource availability and
requested work schedule.

 Secondly, after all the requests have been entered and
just before the EWM, the AI Engine automatically
generates a schedule or allocation plan. This plan provides
an opportunity to resolve minor issues off-line prior to the
EWM. The final plan will then be reviewed during EWM
for approval by the planning team, see Figure 2.

 Thirdly, as changes come in, the AI Engine is used to
validate the changes. If a change causes conflicts, the AI
Engine will automatically resolve these conflicts and
propose schedule changes for the human planner to
approve.

 Lastly, the AI Engine is used for long-term quarterly
planning. Technically, it works similar to weekly planning
except that the time span is a quarter instead of a week.
The actual number of requests need not be proportionally
larger as quarterly planning deals only with larger projects
and higher priority jobs.

Figure 2. Sample ETMS screen with AI Engine.

Domain Knowledge
The AI Engine encodes several types of knowledge
regarding how engineering works should be assigned:

 Track Possessions

Engineering work requests using engineering trains are
called “possession” requests as engineering works
require the possession of a segment of tracks for
dedicated use by those engineering tasks. There is a set
of rules to ensure that adequate length of possession is
requested for different types of jobs. For example,
possession booking must be from station to station if the
engineering task involves an electric train that must be
run. Or for the case of rail grinding, possession must be
taken of all tracks between stations/landmarks on both

sides as well as adjacent to worksite. Obviously, track
possessions requested by different jobs cannot overlap.

 Train Protection
There are also rules regarding the length of tracks that
must be reserved between two neighboring protections
to be used as a safety buffer. This “protection zone” is
defined for both ends of a possession request. For
example, energized possessions require 200m for
protection, while non-energized possessions require
100m for protection. The rules may further differ for
different types of neighboring work. For example, a
pedestrian access (PA) work next to an energized work
will require at least 600m protection. Related to train
protections are rules governing the placement of track
circuit operating clips and red flashing lights.

 Train Consists
Along with each possession request is the request for an
engineering train that might be needed to support that
engineering work. There are rules governing how the
engineering train can be formed from different types of
locomotives and wagons. The details of how a train is to
be formed is called the “train consist,” which is basically
a patterns of how locomotives and wagons can be used
to form a train plus additional constraints. For example,
having a battery electric locomotives at both ends of a
train consists can at most support 3 wagons. Another
example is that some wagons need to be coupled
together. The rules may be different for different types
of locomotives.

 Train Availability
Besides ensuring there is no conflict in track possessions
and that the engineering train is of proper formation, the
system has to also ensure that the requested locomotives
and wagons are indeed available and that they will be
located at the requested depot at the night of the job.
Engineering train movements during the day must
therefore be recorded as well.

 Personnel Availability
Our system also keeps track of personnel resources. This
includes making sure there are adequate train operators
(TO) and supervisors or “engineer’s person-in-charge”
(EPIC) for each job. There are rules governing how TOs
and EPICs are assigned, making sure they have adequate
skills for the job as well as adequate number of available
staff.

 Combining Requests
When resources are not adequate to support all
engineering work requests, some jobs may be
“combined” together to allow multiple non-conflicting
jobs to be performed at the same vicinity with some
potential for resource savings. There are rules on how
and whether track possessions may be combined as well
as train consists. In some cases, the same locomotive
and train operator may be used for more than one job.

IAAI-05 / 1469

 Operational Heuristics
Besides these general rules and guidelines, there is also
a set of very specific rules that relate to particular
scenarios of operational needs. These rules are called
“operational heuristics.” For example, there is a
heuristic that deals with how particular set of sidings
must be reserved for overnight use to park trains.

Uses of AI Technology
Several different AI techniques were used in our AI
Engine implementation. To represent the operational rules
and regulations used in validation, we used a rule based
approach. To perform weekly/quarterly scheduling, we
created a heuristic search algorithm that is combined with a
GA for optimization. To ensure non-stop processing, we
coded a “self-healing” mechanism within the AI Engine
that provides fixes to data problems on-the-fly. We also
have an iterative repair algorithm for rescheduling.

The Rule Engine
One of our design objectives is easy of maintainability – to
ensure that rules can be maintained easily by any
developer and that the rule engine implementation should
be separated from the domain objects. To achieve this, we
took a “non-intrusive” approach to AI where the rule base
resides as XML data and is totally separated from the
domain objects that are coded in C#. Automatic code-
generation techniques were then used to dynamically
generate the rule engine library (as DLL) from XML. This
is made possible with .NET object reflection and attribute-
based programming.
 To represent the rules in XML, we must first select or
design an XML-based markup language. User interface
validation rules, such as [7, 8, 9] can only represent simple
types of value validation, such as checking if an input is
within a particular range of values. On the other hand,
there is also a body of XML markup languages to
represent AI rules. For example, there is a rule-engine
neutral Simple Rule Markup Language (SRML) that can
represent common language constructs to support forward-
chaining rule engines. SRML is a relatively higher
abstract-level markup that can easily be read by a
programmer. Drools [17], an open source Java rule engine,
also has a high-level markup language called DRL.

 The most widely used XML markup for rules is
probably RuleML [12] from the Rule Markup Initiative. It
permits both forward and backward-chaining rules for
deduction, rewriting, and further inferential-
transformational tasks. Several rule-engines, especially
open source ones, such as jDrew [13] and Mandarax [14]
supports RuleML.

 Unfortunately, RuleML was designed to be processed
by a computer and not really to be used directly by a

programmer encoding knowledge. For this project, we
have designed a markup that is midway between RuleML
and higher-level representations like SRML.

 Our rules are represented in W3C’s RDF/XML [18]
format. Since our representation is designed to be editable
by both a programmer or via a GUI rule-editor, our XML
Schema was designed so that the rules can easily be
comprehended by a programmer. The RDF/XML syntax
was selected so that programmers have the flexibility of
using either RDF or XML editors to process the rules.
<ai:Rule>
 <ai:RuleStructure
 ai:ruleset="Combines"
 ai:salience="high priority"
 ai:direction="forward">
 <dc:title>No Combine for Energized Possession</dc:title>
 <dc:identifier>K1_R1</dc:identifier>
 <dc:subject>ETMS</dc:subject>
 <dc:description>
 Energized possessions may not be combined.
 </dc:description>
 <dc:date>2004-05-10</dc:date>
 <ai:Antecedent>
 <ai:And>
 <ai:Object ai:var="r" ai:type="Request"/>
 <ai:Condition ai:check="r.IsEnergized"/>
 </ai:And>
 </ai:Antecedent>
 <ai:Consequent>
 <ai:And>
 <ai:Variable ai:var="requests" ai:key="r.CombinedRequestList"/>
 <ai:OrValidate>
 <ai:OrValidateStructure>
 <ai:Validate ai:check="requests==null"/>
 <ai:Validate ai:check="r.IsAllEnergizedCombine"/>
 </ai:OrValidateStructure>
 </ai:OrValidate>
 </ai:And>
 </ai:Consequent>
 <ai:Message
 ai:format="Cannot combine energized possession {0}"
 ai:arg0="requests"/>
 <ai:Remark
 ai:format="Cannot combine energized possession with others,
unless others are also energized. Conflicts: {0}"
 ai:arg0="requests"/>
 </ai:RuleStructure>
</ai:Rule>

The above example illustrates the syntax of our AI rules.
(The dc: namespace is the Dublin Core [19].) Once the
rules are encoded into our RDF/XML format, we use code
generation techniques to automatically create a .NET DLL
from the RDF/XML rule file that can be called directly
from the application server without any additional rule-
related coding. All necessary information needed to
compile the rules are extracted from domain objects via
object reflection; the DLL was then generated dynamic.
The GUI rule-editor uses .NET attributes, i.e. metadata
annotated on the business objects, to create the editing
environment for the domain.

The Scheduling Algorithm
The rule engine is used to valid individual requests as well
as to guide the scheduling algorithm. The scheduling
algorithm was originally designed as a genetic algorithm
(GA) [10]. This was later extended with heuristic search.
The reason was that although GA produced an optimized
solution, it was hard for humans to comprehend the
rationale behind the evolved solution. GA is driven mainly
by its fitness function, a complex formula that embodies all

IAAI-05 / 1470

the necessary knowledge to evaluate the quality of a plan.
The human planners found it hard and time consuming to
interpret the meaning behind differences in fitness values.

 The final approach we took was to use heuristic search
for higher priority jobs and then use GA to optimize the
lower priority ones. This combined the best of both worlds.
The heuristic search was coded with the same heuristics
used by the human planners so results were easy to
comprehend. The heuristics included scheduling jobs
chronologically and according to their priority, while
“combines” are done separately and afterwards. GA was
then used to optimize on lower priority jobs which are
harder to schedule with heuristics alone as many different
options must be tried.

 This scheduling algorithm is used for both weekly and
quarterly scheduling. It determines which requests to
allocate, which days to allocate these requests to, and how
to combine requests if there is not enough resources.
Finally, the scheduling algorithm determines locations to
place track circuit operating clips and red flashing lights
for protection.

 We compared results from our scheduling algorithm
with historical human-generated schedules prior to AI
Engine deployment. The results were quite interesting.
Firstly, out of the 21 weeks of data that we compared,
there were on average 5 to 10 hard rule violations daily for
the human-generated schedule; rules were divided into
hard, medium and soft rules. The AI Engine-generated
schedules, of course, did not contain any hard rule
violations. After analyzing the results, it turns out that
some of the hard rule violations were due to human data
entry errors, while others were real errors that were fixed
in later processes after scheduling and prior to execution.
With the deployment of the AI Engine, we ensure that
these types of human errors were caught upstream in the
workflow.

 We also found that our approach produced schedules
that had similar, if not better than, “fitness” scores
compared to human schedules. The fitness was measured
using a following formula that maximizes on the
percentage of high priority jobs that are allocated, while
minimizing rule violations. The formulae also had a
“combine penalty” component to define different degrees
of preference for different types of “combines.” For
example, combining requests from the same line or that
result in resource savings has higher preferences.

 The AI Engine not only mimics what human planners do
today, it also opens up new functionality that were not
considered before. For example, users can now specify a
range of days to be allocated, such as “2 days out of 5
days.” Users can also specify preferences for certain
scheduling actions, such as which other requests it would
like to be combined with if possible.

 To further assist the human planners in understanding
the AI Engine-generated schedule, explanations are
automatically generated by the AI Engine for requests that
cannot be allocated. These explanations justify why those
requests were not allocated, for example listing rules that
would have been violated or resources that were
unavailable.

The Self-Healing Mechanism
The ability to perform “self-healing” is important for any
mission critical application [15]. The main objective for
self-healing code is to allow the system to dynamically
heal itself when minor inconsistencies are found and
continue processing with possibly some graceful
degradation in results. Without self-healing, the system
might just throw an exception and exit. In our case, the
self-healing mechanism handles different types of potential
data inconsistencies. These data inconsistencies are then
logged so that similar problems might be avoided in the
future.

 It is particularly important for ETMS as data input for
the AI Engine comes from many different sources – the
user, the user interface, database tables, historical data, and
other software components. It is unavoidable that some
data inconsistencies may occur from time to time, while
software or database tables are being upgraded or
improved. Self-healing is used in several types of
situations in the AI Engine such as illogical parameter
values, incorrect data items, or missing information. We
found self-healing mechanisms to be extremely useful,
especially in transient situations where software is being
updated and different components are being integrated.

The Iterative Repair Algorithm
The iterative repair algorithm [11, 24, 25] is used during
interactive rescheduling to handle changes and
modifications. The main objective of the algorithm is to
determine if a change can be accommodated without any
impact to the existing schedule. If not, it then tries to find a
way to satisfy the request through various different types
of “combine” operations. This algorithm is an “iterative
repair” algorithm as it iteratively finds problems and
repairs the schedule. It uses heuristics similar to those used
by the weekly and quarterly scheduling. The same set of
validation rules are used as well. The performance of the
iterative repair algorithm is fast enough (within seconds to
tens of seconds) to be used during the EWM for interactive
problem solving and rescheduling.

Application Use and Payoff
The AI Engine has been in daily use since July 2004.
Practically all reports for engineering work requests now
contains rule violation warning messages, if rules were
violated, and summaries of resource usages as computed

IAAI-05 / 1471

by the AI Engine. In particular, hard rule violations are
highlighted. Experiments and end user feedback tells us
that schedules generated by AI Engine are very similar to
those generated by humans.

 There are numerous benefits to extending the ETMS
with an AI Engine. Some of the key payoffs include:

 Improved productivity – with automated AI
scheduling, human planners can focus on resolving
difficult operational problems and resource
contentions that requires human negotiation

 Ensured operational safety – the AI Engine
eliminates any potentials for human errors

 Maximized resource utilization – different
combinations are explored to maximize utilization

 Streamlined workflows – the human aspect of
scheduling is streamlined for efficiency

 Streamlined decision making & problem solving
– changes/modifications are automatically resolved

 Improved long-term quarterly planning –
planning is now more flexible and dynamic

 Improved Quality of Service – by providing better
schedules for engineering works, the quality of
service provided during the day for passenger trains
will be improved.

Application Development and Deployment
This project began in early 2004 and involved several
different IT enhancements to the existing ETMS
application. CityU was responsible for identifying the
software requirements and performing the architecture and
software design. Implementation was then performed by
different development teams in parallel – an MTR team
handles all database enhancements, a third party handles
the client-side ASP.NET and SVG development, while
CityU coded the AI application server and Web services.
Total development team size was roughly a dozen people.

 With several development parties involved, all located
in different places, it was important to have a loosely-
coupled architecture that simplifies development and
minimizes any potential integration problem. A Service-
oriented Architecture (SOA) was selected with data
exchanges between modules through standard XML
messages.

 To further ensure that all the development teams were
in-sync at all times and that requirements were in-line with
user expectations, we adopted an agile development
methodology with fine-grained iterations and releases,
each with incremental functionality.

Business Process Re-engineering
The project began with an extensive user requirements
study and business process re-engineering (BPR). Since
the final application will be used by different types of end

users and at different phases of the scheduling process, we
had to interview key staff members from different
departments within MTR to thoroughly understand their
specific needs and the potential impact any changes to
workflows might have on their work. By April 2004, we
have designed new workflows that leveraged upon new
features to be provided by the AI Engine. Initial screen
designs and API interfaces were also made.

Knowledge Engineering
At the same time as BPR, knowledge engineering was
performed to define the exact set of rules to be coded into
the AI Engine. The knowledge engineering process was
simplified by the fact that detailed operational rules and
regulations were already readily available. However, there
were still tacit undocumented knowledge as well as “grey
areas” that needed to be clarified. Once the final set of
rules were mutually agreed upon, they were easily
translated and coded into our RDF/XML rule syntax. Since
we follow agile test-driven development, test cases and test
data were created for each rule. With hundreds of test
cases in hand, we were able to precisely determine project
progress at any time by the number of NUnit [16] “green
lights” (passed test cases).

 The initial development involved business object
modeling, design and C# coding as well as mapping
business objects to MS SQL Server tables in the MTR
database. A highly decoupled “non-instructive AI”
approach was taken where the rule engine interacts with
the business objects without rule engine-specific changes
to object coding. This is done through automatic code
generation from RDF/XML using object reflection that
produces the rule engine as a separate DLL.

 Just like any other modern software project, we made
extensive use of open source tools to accelerate our
development effort. For example, we used #develop for
IDE, NUnit [16] for unit testing, NDoc [20] for
documentation, Log4Net [21] for event logging, NAnt [22]
for software building, and Subversion [23] for source code
management.

First Release
Using this approach, we were able to quickly produce our
first release in June 2004, which included important
application features that immediately helped streamline
and simplify some of the MTR workflows. This release
included the rule engine that was used firstly to validate all
newly entered possession requests to ensure they followed
all the necessary rules and regulations. Previously, there
was no way of knowing if there was a problem until the
request was reviewed by managers during the weekly
EWM scheduling process. By then, a lot of time would
have been wasted. Now, problems can be rectified
immediately during initial data entry.

IAAI-05 / 1472

 In addition, the rule engine also verifies whether or not
the newly entered request conflicts with any prior
approved or yet-to-be approved requests and what priority
levels those requests are in. With this information, the
party making the request will have a fairly good idea of the
chances that his/her request will be granted or not. This
information will also guide the user in modifying the
request so that it will have a higher chance of approval, for
example, changing the work request to another day that
does not have any conflict. Alternatively, the user may
decide to negotiate with the conflicting party to mutually
resolve the problem. In any case, this allows the human
aspect of problem solving to start immediately instead of
waiting for the weekly EWM. Although AI cannot replace
the human aspects of scheduling, in our case, it helps guide
and streamline this time-consuming process.

Second Release
A second release of the AI Engine was made in October
2004 with the addition of automatic weekly scheduling
capabilities. The scheduling algorithm combined heuristic
search with genetic algorithm to automatically produce an
allocation plan, within a few minutes. This plan is
generated and circulated to all the managers a day prior to
the EWM so that minor issues and simple conflicts can be
resolved prior to the weekly meeting. By resolving trivial
problems before the meeting, the planning team can then
be more productive and focus on discussing and resolving
more complex problems, thus reducing the amount of time
needed for the EWM.

 This second release also contained an iterative repair
algorithm to reschedule requests after changes were made.
Since plans are produced 3 weeks ahead of time, there may
inevitably be changes to the requests as well as last-minute
additional urgent work requests. The iterative repair
algorithm detects conflicts and resolves problems due to
these changes in tens of seconds.

Third Release
A third release of the AI Engine was made in November
2004 to support quarterly planning. Since many different
parties, some external to MTR, will be performing work in
the subway, they all need to have an overview of the
coming month’s committed schedule to help them
formulate their own schedule. The task of quarterly
planning is to produce a 3-month plan that includes long-
term projects or high-priority jobs that must be performed,
such as construction work. The quarterly plan allowed
more difficult issues to be resolved first before the weekly
scheduling. Given the quarterly plan, others can then try to
work their own work request schedule around it.

 The challenge in creating the quarterly plan was to
produce an algorithm that was able to handle such as large
search space within reasonable time. We solved this by

partitioning the search space into regions that can be
solved independently. This partitioning makes use of the
fact that some possession requests are recurrent within a
quarter.

Fourth Release
A fourth release of the AI Engine was made in April 2005
to support additional rules and operational requirements
needed to support the new Disneyland Resort Line that
connects the current subway system to the soon to open
Hong Kong Disneyland.

Future Plans
The ETMS is an ongoing MTR strategic project. New
enhancements and software features will be added in the
future to support the evolving business requirement.
Potential future AI enhancements include adding train path
planning to the engineering work scheduling process.
Train path planning is currently performed manually after
the request allocation plan has been finalized and just
before execution. The task of train path planning is to find
an optimized train path for all the engineering trains. The
path must take the train to their designated work area
before the nightly power shutdown and without any
conflicts with other engineering trains. However, this is
also a very tedious task requiring a lot of domain
knowledge on MTR-specific train operations and railroad
network structure. This is also a good candidate for AI
automation. In addition, crew rostering is also being
considered as candidates for future enhancements.

Maintenance
Just like any other mission critical software, there will
inevitable be changes and upgrades to the AI Engine after
deployment to reflect business and operational changes in
MTR. The architecture design and technology selected for
the AI Engine makes it easy to maintain. Firstly, the client-
side is Web-based and any required plug-in is downloaded
as needed, such as the SVG viewer. The data used by the
AI Engine is stored in MTR’s own MS SQL Server
database and maintained by the MTR IT team. The
operation of the AI Engine is parameter-driven to reduce
the need for maintenance. Exposing the AI Engine as Web
services also helps reduce maintenance and integration
needs.

 The only potential need for maintenance is the rule base,
which will probably not change much, unless when there is
a new line or station. In any case, the rule base was
designed to be maintainable by anyone with basic
RDF/XML knowledge and an understanding of our simple
rule syntax. Changes to the rule base to reflect changes in
operational needs can be easily done without any source
code modifications to the AI Engine itself. This is done

IAAI-05 / 1473

through our “non-destructive” AI approach as explained
earlier.

 For the ETMS, MTR’s IT team provides front-line
technical and end-user support while we provide additional
assistance on the AI Engine whenever requested. In
addition to maintenance, CityU and its partners provide
continued enhancement and consulting services to MTR on
the AI Engine.

Conclusion
This paper is an overview of our AI project to enhance
Hong Kong MTR’s Web-based subway engineering work
processing software with AI capabilities and automated
scheduling. Through the use of AI techniques, we were
able to help the subway streamline their
scheduling/rescheduling processes and maximize their
resource utilization, while providing early identification of
potential violations of safety and operational regulations
and guidelines for all scheduled engineering works. In
addition, valuable domain knowledge and expertise related
to these regulations and guidelines are now quantified,
coded and preserved within the organization, for use by
this and other systems. Experiments showed that the AI-
generated schedules were comparable in quality with
human-generated schedules while eliminating all errors
and conflicts. Our AI Engine also makes use of several
innovative techniques, such as a non-intrusive XML rule-
engine, intelligent self-healing coding, and combining
heuristic search with genetic algorithm. This is probably
the first AI system to be deployed in Asia Pacific that uses
these innovative techniques as well as a modern service-
oriented architecture.

Acknowledgements
The authors would like to thank the MTR Corporation
Limited for providing us with an opportunity to participate
in this exciting project. In particular, we would like to
thank Richard Keefe, our key user and knowledge expert
and Jerome Lam, who heads the IT project team.

 The research described in this paper was partially
supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China
(Project No. 9040517, CityU 1109/00E) and a grant from
the City University of Hong Kong (Project No. 7001286).

References
[1] MTR Corporation (n.d.), “Patronage – Monthly Total,”
http://www.mtr.com.hk/eng/investors/pad.htm
[2] Metropolitan Transportation Authority (n.d.), “The MTA
Network,” http://www.mta.nyc.ny.us/mta/network.htm
[3] RATP (n.d.) http://www.ratp.fr/

[4] Said Tabet, Prabhakar Bhogaraju, David Ash, “Using XML as
a Language Interface for AI Applications,” PRICAI Workshops
2000, Springer-Verlag Heidelberg, 2000, pp.103-110.
[5] MindBox (n.d.), http://www.mindbox.com/
[6] Venugopalan, Vivek, “User Interface Validator Pattern,”
TheServerSide.com, February 17, 2002,
http://www.theserverside.com/patterns/thread.tss?thread_id=1194
7#40970
[7] Commons Validator (n.d.), The Jakarta Project,
http://jakarta.apache.org/commons/validator/project-info.html
[8] Introduction to Validating User Input in Web Forms (n.d.),
MSDN,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vbconintroductiontovalidatinguserinputinwebform
s.asp
[9] Struts Validator Guide (n.d.), The Apache Software
Foundation,
http://jakarta.apache.org/struts/userGuide/dev_validator.html
[10] Holland, J. H., Adaptation in natural and artificial systems,
Ann Arbor: The University of Michigan Press, 1975.
[11] Zweben, M., Daun, B., Davis, E., and Deale, M.,
“Scheduling and Rescheduling with Iterative Repair,” Intelligent
Scheduling, Morgan Kaufmann, San Francisco, 1994, pp. 241-
256.
[12] The RuleML Homepage (n.d.), http://www.ruleml.org/
[13] A Java Deductive Reasoning Engine for the Web (jDrew)
(n.d.), http://www.jdrew.org/
[14] The Mandarax Project (n.d.),
http://mandarax.sourceforge.net/
[15] Jim Gray, Why do computers stop and what can be done
about it?, Technical Report 85.7, Tandem Corp., 1985.
[16] The NUnit Homepage (n.d.), Retireved 1 May 2004 from
http://www.nunit.org/
[17] Drools: Object-Oriented Rule Engine for Java (23 January
2004), codehaus, http://drools.org/
[18] Resource Description Framework (RDF) (11 May 2004),
http://www.w3.org/RDF/
[19] The Dublin Core Metadata Initiative (n.d.),
http://dublincore.org/
[20] NDoc Homepage (n.d.), http://ndoc.sourceforge.net/
[21] log4net Homepage (n.d.), http://logging.apache.org/log4net/
[22] NAnt Homepage (n.d.), http://nant.sourceforge.net/
[23] Subversion Homepage (n.d.), http://subversion.tigris.org
[24] David E. Wilkins and Marie desJardins, “A Call for
Knowledge-Based Planning,” AI Magazine, Vol 22, No.1, pp.99-
115, 2001.
[25] Gregg Rabideau, Russell Knight, Steve Chien, Alex
Fukunaga, and Anita Govindjee, “Iterative repair planning for
spacecraft operations using the aspen system,” In Proceedings of
the International Symposium on Artificial Intelligence Robotics
and Automation in Space (ISAIRAS), Noordwijk, The
Netherlands, June 1999.

IAAI-05 / 1474

