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Abstract 
This paper reports on TEXTAL™, a deployed application 
that uses a variety of AI techniques to automate the process 
of determining the 3D structure of proteins by x-ray 
crystallography. The TEXTAL™ project was initiated in 
1998, and the application is currently deployed in three 
ways: (1) a web-based interface called WebTex, 
operational since June 2002; (2) as the automated model-
building component of an integrated crystallography 
software called PHENIX, first released in July 2003; (3) 
binary distributions, available since September 2004. 
TEXTAL™ and its sub-components are currently being 
used by crystallographers around the world, both in the 
industry and in academia. TEXTAL™ saves up to weeks of 
effort typically required to determine the structure of one 
protein; the system has proven to be particularly helpful 
when the quality of the data is poor, which is very often the 
case. Automated protein modeling systems like 
TEXTAL™ are critical to the structural genomics 
initiative, a worldwide effort to determine the 3D structure 
of all proteins in a high-throughput mode, thereby keeping 
up with the rapid growth of genomic sequence databases.  

Introduction 
The aim of structural genomics is to quickly determine and 
characterize the 3D structure of all proteins and other 
macromolecules in nature (Burley et al. 1999), thus 
shedding light on their functions and enabling structure-
based drug discovery. Recent years have witnessed a surge 
of effort towards high-throughput methods for protein 
structure determination. There is a pressing need for faster 
structure determination (Orengo et al. 1999), motivated by 
the exponential growth in the number of genomic 
sequences that are being uncovered, which require the 
knowledge of 3D structures for elucidating the functional 
significance of gene coding sequences.  

In particular, there has been a growing demand for 
superior experimental and computational crystallography 
methods (Adams et al. 2004). There are many challenges 
at all  stages of  high-throughput  protein   crystallography,  
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from data collection through structure solution, model-
building and refinement to analysis. There has been 
significant progress in many of these stages (Hendrickson 
and Ogata 1997; Terwilliger and Berendzen 1999). 
Automated model-building, however, is one of the most 
difficult steps to improve, especially if the data collected is 
of poor quality. But automation of this bottleneck step is 
essential for high-throughput protein crystallography, for it 
takes days to weeks of tedious effort for a crystallographer 
to build a structure, even with high quality data (Kleywegt 
and Jones 1997).  

TEXTAL™ undertakes the challenging task of 
automating protein structure determination, even with 
noisy data. This is achieved by using AI and pattern 
recognition techniques that try to mimic the human 
expert’s decision-making processes. This paper discusses 
the significance, development, deployment, use and 
payoffs of TEXTAL™. The rest of the paper is organized 
in sections that discuss the following: (1) issues and 
challenges of automated protein model-building, and the 
motivation for AI-based approaches; (2) AI and pattern 
recognition techniques employed in TEXTAL™; (3) 
architecture of TEXTAL™ and its sub-systems; (4) 
deployment issues, use of the application, and the current 
as well as anticipated benefits; (5) development and 
maintenance of the system; (6) lessons learned and 
conclusion. 

Problem Description 
There are many steps involved in x-ray protein 
crystallography: first the protein has to be purified, and 
then a crystal has to be grown (the crystal is typically 
small, fragile, and usually contains 30-60% water). When 
x-rays are shone through the crystal, atoms of the crystal 
diffract the x-rays in a certain pattern, depending on the 
arrangement of the atoms. The intensities of the diffracted 
rays are determined, and an electron density map is 
produced by the Fourier transformation of the diffraction 
pattern. The electron density map can be viewed as an 
image of the electron cloud surrounding the protein 
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molecule. Interpreting a map essentially means building a 
model that fits this image. 

 One central problem is that the diffraction pattern 
contains information only about the intensities of 
diffracted waves; the phase information, which is also 
required for inferring the structure, is lost and has to be 
approximated by other methods. This is known as the 
phase problem. Furthermore, the sample of points at which 
intensities can be collected is limited, which constrains the 
degree to which atoms can be distinguished from one 
another. This imposes limits on the resolution of the map, 
measured in Angstroms (Å), where 1 Å = 10-10m. 

Solving the structure essentially means fitting the correct 
amino acids or residues into the density patterns in the 
right orientation (a protein is a sequence of typically 
hundreds of amino acids, or a polypeptide chain, that folds 
into a unique structure). A partially solved structure can be 
used to obtain better phase information, generate a superior 
map, which can then be re-interpreted. This process can go 
through several cycles, and it may take weeks, or even 
months of effort for an expert crystallographer to interpret 
a map, even with the help of molecular visualization 
programs. Protein structure determination can be laborious 
and inaccurate, depending on factors like the size of the 
structure, resolution of the data, etc. There are many 
sources of errors and noise, which distort the electron 
density map, making interpretation difficult (Richardson 
and Richardson 1985). Model building can also be 
subjective (Mowbray et al. 1999), where decisions are 
often based on what seems most reasonable in specific 
situations, with oftentimes little scope for generalization.  

There are several methods that have been proposed for 
automated model-building: integrating modeling with 
phase refinement in ARP/wARP (Perrakis et al. 1999), 
expert systems (Feigenbaum, Engelmore, and Johnson 
1997; Terry 1983), molecular-scene analysis (Glasgow, 
Fortier, and Allen 1993), database search (Jones and 
Thirup 1986; Diller et al. 1999; Holm and Sander 1991), 
using templates from the Protein Data Bank (Jones, Zou, 
and Cowtan 1991), template convolution and other FFT-
based approaches (Kleywegt and Jones 1997), maximum-
likelihood density modification (Terwilliger 2000), 
heuristic approaches to optimize fit into the density (Levitt 
2001; Turk 2001), etc.  

Many of these approaches depend on user-intervention 
and/or high quality data. In contrast, TEXTAL™ has been 
designed to be fully automated, and to work with average 
and even low quality data (around 2.8Å resolution); most 
maps are, in fact, noisy (Jones and Kjeldgaard 1997) due 
to difficulties in protein crystallization and other 
limitations of the data collection methods. In (Morris 
2004), some of the popular model building packages, 
including TEXTAL™, are reviewed and compared.  

Uses of AI Technology 
AI and pattern recognition approaches are well-suited to 
address the various challenges of automated map 

interpretation: heavy dependency on expert knowledge in 
recognition of density patterns; decision-making at every 
step of the interpretation process, involving frequent 
backtracking; availability of growing databases of 
solutions which can be exploited by case-based reasoning.    

TEXTAL™ has been designed to mimic a three-stage 
process that crystallographers typically employ:  

(1) determine the “backbone” of the protein, which is 
essentially a main chain that contains central carbon atoms 
(known as Cα’s) of all the amino acids that make up the 
protein;  

(2) determine the identity and orientation of side chains 
or residues, based on knowledge of the positions of Cα’s;  

(3) post-processing routines to refine and enhance the 
model.  

In the next sections, we describe the specific ways in 
which AI techniques are used in TEXTAL™. We 
emphasize that many of the novel AI techniques developed 
are potentially applicable to and useful for many other 
difficult problems, especially those which share common 
challenges with TEXTAL™: noisy and high-dimensional 
data, recognition of patterns in 3D, computationally costly 
retrieval from large databases, expensive domain expertise, 
etc.   

Neural Network to Determine Positions of Cα 
atoms 
To determine the 3D coordinates of Cα atoms, 
TEXTAL™ uses a feed-forward neural network to predict 
the distance of many candidate positions (chosen along the 
medial axis of the electron density map), and selects the 
ones that are deemed closest to true Cα’s, factoring in 
domain knowledge, especially about constraints on 
distances between Cα’s. The objective of the neural 
network is to learn the relationship between characteristics 
of electron density patterns around a point and its 
proximity to Cα atoms. Thirty eight numeric features are 
used to characterize the local density; these features are fed 
to the network, which uses one layer of 20 hidden units 
with sigmoid thresholds, and outputs the predicted distance 
to a true Cα atom. The network is trained with a set of 
points in maps of solved proteins, with known distances to 
true Cα’s, and the network weights are optimized using 
backpropagation. For more details, refer to (Ioerger and 
Sacchettini 2002).  

Heuristic Search to Build Chains 
An AI-based approach is also used to link the Cα atoms 
(as predicted by the neural network described earlier) into 
backbone chains, based on how well the chains built fit 
typical structural motifs in proteins, known as secondary 
structures. Linking Cα atoms into chains is a 
combinatorial search problem; whenever possible, an 
exhaustive search is done to create an optimum solution. 
When a complete search becomes intractable, TEXTAL™ 
uses heuristics to choose between various options for 
chains, based on criteria that favor better adherence to 

IAAI-05 / 1484



stereo-chemical constraints and secondary structures that 
occur commonly in proteins. Essentially, these heuristics 
and decision criteria try to capture the type of reasoning 
that experienced crystallographers employ. It should be 
emphasized that automation of this deliberation is 
particularly challenging because noisy data (like incorrect 
or missing connections in the density patterns) can be 
easily misleading, which can potentially lead to a 
succession of wrong decisions. A thorough discussion of 
the methods used to build the backbone can be found in 
(Ioerger and Sacchettini 2002). 

Case-Based Reasoning to Stitch Chains  
This is a backbone refinement step that follows the initial 
construction of the backbone chains; it attempts at slightly 
modifying and connecting different chains together, 
especially in regions where the backbone makes a loop. A 
case-based reasoning approach that bears resemblance to a 
method proposed by (Jones and Thirup 1986) is employed 
to “stitch” chains - regions of the structure that probably 
should have been connected (typically at close extremities 
of different chains) are identified and a database of solved 
density patterns (constructed from ~100 maps) is searched 
to find the most similar case. The case matching is done by 
superposing all chain fragments (of 7 to 11 consecutive Cα 
atoms) from the database with the region under 
consideration, and computing the root mean square 
deviation. If the deviation is small enough, and the electron 
density in the region is adequately high, then stitching is 
justified, which may entail adding new Cα atoms. This 
approach tries to circumvent the problem of noisy electron 
density data, especially regions with broken density. 

Case-Based Reasoning and Nearest Neighbor 
Learning to Model Side Chains 
After the backbone is built and refined, the density is fitted 
with side chains or amino acids by using the information 
on Cα positions.  Spherical regions with a radius of 5Å are 
defined around the Cα atoms, and for each region, a 
database of ~50,000 previously solved regions 
[constructed from maps of ~200 proteins from PDBSelect 
(Hobohm et al. 1992)] is searched to identify the best 
match. Essentially this involves recognition of the 
unknown patterns of density by comparison to other 
known cases. This can be achieved by using a similarity 
metric based on how well the density distribution of the 
two regions superimpose over each other. But such an 
objective similarity metric involves computing the optimal 
superposition between two 3D regions. Since the number 
of possible 3D orientations of a region is very large, this 
metric is expensive and we cannot afford to run it on the 
whole database. Thus, we use an inexpensive and 
approximate feature-based measure of similarity to filter k 
(400, for instance) cases, based on k-Nearest Neighbor 
learning; the selected cases are then examined by the more 
expensive metric to make the final choice. 

There are two noteworthy issues related to this 
approach: (1) a fast and effective similarity metric has to 
be defined to do the filtering, such that as many good 
matches as possible are caught in the top k cases filtered. 
In (Gopal et al. 2004b), we compare various similarity 
measures, and argue that probabilistic and statistical 
measures outperform geometric ones (like those based on 
Manhattan or Euclidean distance);  (2) the choice of k is 
important since it influences the performance, both in 
terms of computational cost and quality of retrievals.  In 
(Gopal et al. 2004a), we empirically and theoretically 
analyze the choice of a suitable k, and provide a model to 
predict k based on a loss function that represents the ability 
of approximate measures of similarity to rank good 
matches (according to the objective metric) as best 
possible. An in-depth discussion on the side chain 
modeling system as a whole can be found in (Ioerger and 
Sacchettini 2003).  

Feature Extraction and Weighting 
The inexpensive measure of similarity that we use to 
compare two density regions (for side chain modeling) is 
based on numeric features that characterize density 
patterns. Constructing and selecting features can be 
challenging (Aha 1998; Liu and Motoda 1998; Ioerger 
1999), especially since our features are in 3D and they 
have to be rotation-invariant (since the regions that we 
want to compare using the features can occur in any 3D 
orientation). Seventy six features have been chosen and 
categorized into four classes that capture different types of 
information about density patterns: statistical features 
related to the electron density distribution, information on 
symmetry (as defined by the distance from the center of 
the region to its center of mass), moments of inertia (and 
their ratios), and features that try to represent the 
geometric shape of the region.  

Various features contribute differently to the description 
of regions; thus features have to be weighted accordingly. 
We use a feature weighting strategy called SLIDER, which 
adjusts weights incrementally, such that, for a given set of 
regions, known matching regions are better ranked than 
known mismatching ones. SLIDER employs a filter 
approach (Kira and Rendell 1992) to feature weighting. 
One salient innovation in our method is a more efficient 
and informed way of finding the weight values that are 
most promising candidates for update, thereby 
circumventing the intractability of exhaustive search over 
all possible weight vectors. In fact, SLIDER uses a greedy, 
heuristic-based approach, where in each iteration we 
consider only those weights at which matches and 
mismatches switch as nearer neighbors to query instances; 
these weights can be efficiently computed. The 
classification accuracy is more likely to change at these 
particular weights (which we refer to as crossovers), 
thereby making the search fast and effective. For more 
details, refer to (Gopal et al. 2005). 
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Detection of Disulfide Bridges through Linear 
Discriminant Analysis 
A disulfide bridge is a covalent bond between the sulfur 
atoms of two cysteine residues from one or neighboring 
polypeptide chains. The residues with disulfide bridges can 
be located anywhere in the chain, and thus they contribute 
to the stability of the protein.  Disulfide bridges occur in 
roughly one out of every four proteins; localizing them in 
an electron density map will help the crystallographer in 
modeling the backbone as well as side chains, especially 
since the presence of a disulfide bridge will reveal the 
position of cysteine residues.  

Disulfide bridges are detected by the following method: 
First, local spherical regions in the electron density map 
are characterized by 76 numeric features (the same ones 
that are used for the side chain modeling step described 
earlier).  Then a linear discriminant model is applied to 
estimate resemblance to a disulfide bridge, based on a 
training experience with known cases from a disulfide 
class and a non-disulfide class of examples. The training 
cases are used to optimize the parameters of the linear 
discriminant. In particular, the Fisher linear discriminant 
model (Fisher 1936) is used to optimally maximize class 
separation, and minimizing variance within each class. 
This classification method projects the high-dimensional 
data onto an optimal line in space, along which 
classification is performed, using a single threshold to 
distinguish between the two classes. A detailed discussion 
on this method can be found in (Ioerger 2005).           

Application Description 
In this section, we briefly describe the architecture of 
TEXTAL™, which combines both AI and non-AI 
techniques to address the various facets of the complex 
problem of protein structure determination. TEXTAL™ 
has been designed to be modular, where different 
components can be used independently or in various 
possible combinations. TEXTAL™ uses two standard  
formats of data as input/output: electron density maps are 
in XPLOR format (Brünger 1992); atoms and their 
coordinates   (to  represent  chains,  partially or completely 
solved models) are in PDB format (Berman et al. 2000).  

TEXTAL™ is made up of three major sub-systems (as 
shown in Fig. 1):  

(1) CAPRA, or C-Alpha Pattern Recognition Algorithm, 
models the backbone (or main chain) of the protein. 
Essentially it takes an electron density map as input, and 
outputs a PDB file containing a set of Cα chains 
representing the true backbone as best possible. CAPRA is 
made up of several modules, as described in Fig. 1.   

(2) LOOKUP uses the output of CAPRA to model the 
residues (or side chains), using case-based reasoning and 
nearest neighbor learning. Essentially, LOOKUP takes 
spherical regions (of 5Å radius) around the Cα atoms 
determined in CAPRA, and retrieves their best matches 

from a database of solved cases. The known structures of 
the matches are used to model the side chains in a 
piecewise manner. 

(3) POST-PROCESSING routines refine the initial 
model built by LOOKUP. Two main routines in this sub-
system are: 

• sequence alignment, where the sequence of residues 
in the initial model produced by LOOKUP is 
aligned with the known sequence of amino acids of 
the protein (Smith and Waterman 1981). This 
enables another round of LOOKUP to make 
corrections in the amino acid identities initially 
determined. 

• real space refinement, where slight adjustments in 
the positions of atoms are made to better fit the 
density (Diamond 1971).  

TEXTAL™ usually produces a very reasonable first 
model of the protein, saving the crystallographer a lot of 
time. The model produced by TEXTAL™ can be manually 
improved, or used to generate better phase information and 
create a better electron density map, which can fed back to 
TEXTAL™. 

The performance of TEXTAL™ depends on the size and 
complexity of the model, and the quality of the data. 
TEXTAL™ and its sub-systems have been designed to 
work for a widely variety of proteins, of different sizes, 
with different structural components. TEXTAL™ usually 
outputs a reasonable model even with poor quality data 
(i.e. around 3Å resolution). Typically CAPRA builds about 
90% of the backbone, with less than 1Å root mean square 
distance error. TEXTAL™ usually models about 50% of 
the side chains with the correct identity. In cases where 
TEXTAL™ cannot find the exact amino acid, it typically 
places one that is structurally similar to the correct one. 
For a more detailed appraisal of the quality of modeling 
done by CAPRA and TEXTAL™, refer to (Ioerger and 
Sacchettini 2002; Ioerger and Sacchettini 2003; Holton et 
al. 2000; Gopal et al. 2003). 

Deployment, Use and Payoff 

Deployment through WebTex 
The first version of WebTex, the web-interface of 
TEXTAL™ (http://textal.tamu.edu:12321) was made 
available to the public in June 2002. Users have to register 
online for an account, and on approval, they can upload 
their electron density maps, specify options through a 
simple interface, and submit their jobs. These are 
processed on our server (on an SGI Origin 2000) at Texas 
A&M University, and the results are automatically emailed 
to users. Typically it takes a couple of hours to run 
TEXTAL™ on a medium-sized protein, and around 20 
minutes to run CAPRA. Users can also monitor online and 
in real-time the progress of their jobs, and view and 
download all the data files related to each of their runs. 
Unsuccessful runs are automatically detected and the user 
as  well as the systems  administrator are informed through  
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                     Protein crystal                    Collect data at synchrotron                 X-ray diffraction data           Electron density map 
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                                                                                                                                       Map with trace points                                        
          
                                                                                   
                                                                                 
 
 
 
 
 
 
 
 
                                                                                                                                   Cα atoms linked into chains 
                                                                                                                                    
 
 
 
                                                                                                                Output of CAPRA: model of backbone 
                                                      LOOKUP: Models side chains 
                                                                                                                                     
 
 
 
                                                                                                                                               
                                         POST-PROCESSING: Refines the model             
                                                                                                                               Output of  LOOKUP: Initial model 
 
 
              
                                                                                                                        Final output model                                          
                                                                                                                                                                                                       (can be manually refined, or                          
                                                                                                                                                                                                       used to improve phases, and  
                                                                                                                                                                                                       generate a better map). 
 
Fig. 1. Architecture of the TEXTAL™ system, showing the three main sub-systems: CAPRA, LOOKUP and POST-PROCESSING. Some 
modules, like UNIMOL and SEQUENCE ALIGNMENT, are optional. Several utilities (such as one to find disulfide bridges) that can be 
run independently of the flow displayed are not shown. 

SCALE MAP:  normalizes maps to enable comparison between maps.  

TRACE MAP: creates a skeleton of the map i.e. finds trace points along the medial axis. 

CALCULATE FEATURES: describes 5Å spheres around trace points using 76 features. 

PREDICT Cα POSITIONS: uses neural network to predict distances to true Cα atoms. 

BUILD CHAINS: heuristic search to select and link Cα atoms into chains. 

UNIMOL: removes redundant symmetry copies of chains. 

PATCH & STITCH CHAINS: links disconnected chains. 

REFINE CHAINS: improves geometry of chains by considering bond lengths and angles.

SEQUENCE ALIGNMENT: Aligns residue sequence from LOOKUP with true sequence.

REAL SPACE REFINEMENT: moves atoms slightly to improve the fit to the density. 

Retrieves matching cases from a database and fits these solved side chains to each Cα 
atom determined by CAPRA. 
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system generated emails – unsuccessful runs are rare, and 
inevitably occur for reasons like input data uploaded is in 
the wrong format, input files are too large, etc.  

WebTex is freely available to non-profit users, but 
access has been granted only to those who share 
membership with the TEXTAL™ group in various 
structural genomics consortia. Limited access to WebTex 
has been necessary because TEXTAL™ is a 
computationally intensive system (LOOKUP, in 
particular). In fact, restrictions are imposed on the size of 
maps that can be uploaded, and on the number of 
concurrent jobs that can be submitted. Currently CAPRA 
jobs can be submitted without an account, since it is 
relatively inexpensive. Another practical consideration is 
our obligation to maintain confidentiality of users’ data, 
and reassure users about the same. During the period from 
June 2002 to March 2005, 403 jobs have been submitted 
and successfully processed on WebTex. These jobs have 
been submitted by 114 users from 65 institutions (both 
academic and industrial) in 18 countries.   

The payoff of TEXTAL™ is mostly in terms of time 
saved to solve a structure; while a crystallographer may 
spend several days and sometimes weeks of painstaking 
effort for interpreting one map, TEXTAL™ produces a 
solution in a couple of hours, without human intervention. 
Even if the model produced by TEXTAL™ is only 
partially accurate, it provides a reasonable initial solution, 
which can be manually refined by the crystallographer to 
produce a more complete model. The benefits are hard to 
quantify, since they vary largely with the size and quality 
of maps, and they depend on the crystallographer working 
on the map. But the benefits of TEXTAL™ to users are 
evident, as suggested by the consistency with   which   
maps are submitted to the WebTex site; the maximum 
number of maps that have been submitted by a single user 
is currently 30 (submitted over a span of about 2 years).  

Deployment through PHENIX 
PHENIX (Python-based Hierarchical ENvironment for 
Integrated Xtallography) is an international initiative to 
develop a software package for automated x-ray crystal 
structure determination, especially at medium to low 
resolution (Adams et al. 2004; http://www.phenix-
online.org). The PHENIX software provides a variety of 
algorithms to proceed from reduced intensity data to a 
refined molecular model, and facilitate structure solution 
for both the novice and expert crystallographer. The 
architecture of the PHENIX system is depicted in Fig. 2. 
The Python scripting language (http://www.python.org) 
provides the backbone of the system. The Boost.Python 
library (Abrahams and Grosse-Kunstleve 2003) is used to 
integrate C++ code into Python. On top of this, the data 
objects, crystallographic tasks, strategies (or network of 
tasks), and finally a graphical user interface are 
constructed. The Project Data Storage makes use of the 
pickle mechanism in Python to store data on the file 
system.  

The main components and developers of the PHENIX 
system are: 
• CCTBX: The Computational Crystallography Toolbox 

provides a suite of programs for high-throughput 
structure determination, implemented at the Lawrence 
Berkeley National Laboratory (Adams et al. 2003; 
http://cci.lbl.gov/index.html). The developers of 
CCTBX have also been involved in the design and 
implementation of the underlying architecture and 
user-interface of the PHENIX software.   

• PHASER: A program for phasing macromolecular 
crystal structures using maximum likelihood methods, 
developed at the University of Cambridge  
(http://www-ructmed.cimr.ac.uk/phaser/index.html; 
Read 2001). 

• SOLVE and RESOLVE: These systems are being 
developed at Los Alamos National Laboratory 
(http://www.lanl.gov). SOLVE aims at automated 
crystallographic structure solution (Terwilliger and 
Berendzen 1999), and RESOLVE performs statistical 
density modification, local pattern matching, 
automated model building, and prime-and-switch 
minimum bias phasing (Terwilliger 2000; Terwilliger 
2002).  

• TEXTAL™: The automated electron density map 
interpretation component, developed at Texas A&M 
University (http://textal.tamu.edu:12321; Ioerger and 
Sacchettini 2003). 

The PHENIX industrial consortium, which consists of 
commercial organizations that actively collaborate with the 
development groups, currently include Chiron Corp., 
Genentech Inc., Glaxo-Smith-Kline, Plexxikon Inc., 
Wyeth Ayerst Research. 
 
 

 
 

Fig. 2. Architecture of the PHENIX system. 
 

The first alpha test version of PHENIX was released in 
July 2003, mainly to consortium members and selected 
users. Six more releases have been made since July 2003. 
The next release is scheduled for April 2005. The software 
is available for commonly used computing platforms: 
Redhat Linux, HP Tru64, SGI Irix 6.5 and currently under 
development, Windows and Macintosh OSX versions. 
PHENIX   is  a large-scale, ambitious   project  that   is  
expected  to  have significant  impact in the field of protein  
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crystallography. The main payoff is the availability of a 
wide and comprehensive range of high-throughput 
crystallography tools in an integrated computational 
environment. Researchers benefit substantially from the 
ease and flexibility to link various crystallographic tasks 
together, without having to resort to low-level 
programming.   

Deployment through Binary Distributions 
In September 2004, Linux and OSX versions of 
TEXTAL™ were made available for download from our 
website (http://textal.tamu.edu:12321) and on CD-ROM. 
TEXTAL™ site licenses can be procured from our 
website. License keys (based on MAC addresses of target 
machines) are automatically generated and emailed to 
applicants.  The distributions of TEXTAL™ provide more 
flexibility to the user as compared to WebTex; it allows 
TEXTAL™ modules to be invoked from the command 
line as well as through a Tcl/Tk-based interface called 
WinTex, and provides for many options. Another major 
advantage of the binary distribution over WebTex is that 
the user does not need to be concerned about ensuring 
confidentiality of usually valuable x-ray diffraction data. 
Since the release of the distributions in September 2004, 
31 TEXTAL™ licenses have been granted on a trial basis 
for a limited period.        

Development and Maintenance 
The TEXTAL™ project was initiated in 1998 as a 
collaboration between the departments of Computer 
Science and Biochemistry & Biophysics at Texas A&M 
University. Twenty researchers and programmers have so 
far been involved in the project, and the size of the 
TEXTAL™ staff averages to about 8. The TEXTAL™ 
software is about 100,000 lines of C/C++, Perl  and Python 
code. The development platforms include various versions 
of Irix, Linux, Macintosh, and Windows. We use the 
Concurrent Versions Systems, or CVS 
(http://www/cvshome.org) to coordinate the development 
of TEXTAL™, including integration with the PHENIX 
system. CVS enables tracking of code updates, allows 
developers to access the latest version of the code from 
anywhere, and allows multiple developers to work 
simultaneously on the same code in safety.  

Conclusion  
TEXTAL™ is an excellent illustration of effective 
integration of AI technology with other tools to solve a 
real, significant and difficult problem in an inter-
disciplinary fashion. In this paper, we have emphasized the 
importance and challenges of high-throughput protein 
crystallography in structural genomics, and the 
contribution of automated protein model-building systems 
like TEXTAL™. We described a variety of AI and pattern 
recognition techniques that were necessary to address the 

various facets of this complex problem: neural network, 
heuristic search, case-based reasoning, nearest neighbor 
learning, linear discriminant analysis, feature extraction 
and weighting. We argue that many of the AI issues dealt 
with, and techniques developed, can be used in other 
domains, typified by the need to recognize visual patterns 
(especially in 3D), noisy inputs, expensive and extensive 
domain knowledge encoded in growing databases, 
computationally costly case matching and retrieval. 
Furthermore, we alluded to many practical issues of 
deployment: maintaining a trade-off between accuracy and 
speed of modeling; multiple interfaces and modes of 
deployment to meet varying needs of users; secure system 
maintenance and integration, especially with distributed 
development; data confidentiality, license agreements and 
other legal issues; support for multiple platforms; etc.   

TEXTAL™ is continuously being enhanced; existing 
modules are being improved, and new features added. 
Recent developments include: transformation of the 
skeleton (or trace) of a density map such that a 
symmetrically unique protein macromolecule is covered; 
identification of non-crystallographic symmetry; and   
simplex optimization (Nelder and Mead 1965) to improve 
modeling in LOOKUP.  
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