

Boosting Sex Identification Performance

Shumeet Baluja
1, 2
 Henry Rowley

1

shumeet@google.com har@google.com

1
Google, Inc.

2
Carnegie Mellon University, Computer Science Department

Abstract

This paper presents a method based on AdaBoost to identify the

sex of a person from a low resolution grayscale picture of their

face. The method described here is implemented in a system

that will process well over 109 images. The goal of this work is

to create an efficient system that is both simple to implement

and maintain; the methods described here are extremely fast and

have straightforward implementations. We achieve 80%

accuracy in sex identification with less than 10 pixel

comparisons and 90% accuracy with less than 50 pixel

comparisons. The best classifiers published to date use Support

Vector Machines; we match their accuracies with as few as 500

comparison operations on a 20×20 pixel image. The AdaBoost

based classifiers presented here achieve over 93% accuracy;

these match or surpass the accuracies of the SVM-based

classifiers, and yield performance that is 50 times faster.

Introduction

Perhaps the single most requested set of images from

search engines are those that contain people. The queries

for people range from specific individuals, such as

celebrities, actors, musicians, and politicians, to general

queries such as adult-content and stock-photography

images. Considering the enormous number of images that

are indexed in search engines today (commonly well

above 10
9
images), it is impossible to manually label all of

the content. Because of the strong interest in being able

to retrieve images of people, we are attempting to create a

variety of filters to better categorize and recognize the

people that appear in images. One basic filter is to

determine the sex of the person in the image.

Because of the large number of images that must be

examined, speed is a key concern when deciding whether

an approach can be used in practice. Recent work has

shown that the pose of a face can be determined with high

accuracy by simply comparing the intensities of a few

pixels in grayscale images (Baluja, Sahami, and Rowley,

2004). These pose-classifiers are trained with AdaBoost.

AdaBoost works by choosing and combining weak

classifiers together to form a more accurate strong

classifier. The weak classifiers used to distinguish pose

were pixel comparison operations applied to pairs of

pixels in a 20×20 image. Two comparison operators (and

their inverses) were used: equal to and less than.

Classification of faces into one of five pose classes was

possible with 92% accuracy using just 30 pixel

comparisons; 99% accuracy was possible using 150

comparisons. Because of the efficiency of the AdaBoost

approach, we apply it to this task. Sample images for this

domain are shown in Figure 1.

Figure 1: Samples male (top) and female (bottom) aligned 20×20

pixel face images which will be used in this paper, along with a

representative sample at the original resolution.

In the next section, we describe a few recent pieces of

related work. Section 3 describes AdaBoost and the

features used in detail. Section 4 presents the data that is

used for training and testing, and the various experiments

conducted to explore the differences in performance

obtained by altering the pre-processing steps. The

experimental results are given in Section 5. Section 6

gives a detailed breakdown of the timing comparisons.

Finally, we close this paper with conclusions and

suggestions for future work in Section 7.

IAAI-05 / 1508

Previous Work

There have been several pieces of recent work on

determining sex from facial images that have been tested

on large data sets. Three approaches are described here.

(Shakhnarovich, Viola, and Moghaddam, 2002) applied

AdaBoost to the features used by the face detection

system created by (Viola and Jones, 2001) on 24×24 pixel

images collected by crawling the web. They obtained an

accuracy of 79%.

(Gutta, Wechsler, and Phillips, 1998) applied a hybrid

system of RBFs and decision trees to FERET images at a

resolution of 64×72 pixels, and achieved an accuracy of

96%. The training and testing sets were augmented with

artificially generated images (by adding random noise and

random rotations). In this paper, for efficiency, we

concentrate on lower resolution images. We also do not

augment the testing or training sets.

(Moghaddam and Yang, 2002) used SVMs on the FERET

database of face images and achieved accuracies as high

as 96.6%. These are the highest reported to date. This

accuracy is much higher than in Shakhnarovich’s work

for two reasons: the FERET images are very clean

(noise-free, fairly consistent lighting, no background

clutter, etc), and because images of the same person may

have appeared in both the training and test sets for the

FERET experiments. This may have allowed the SVM to

recognize individual faces rather than generalizing

properly for this domain. In our experiments, we will

control for this explicitly – this will be explored further in

the experiments section.

Using Ada-Boost with Pixel-Comparisons

It is common in vision tasks to compute a variety of

features that represent a large number of pixels. In

contrast, we use only extremely simple features: the

relationship between two pixels. Five types of pixel

comparison operators (and their inverses) are used:
1

1. pixeli > pixelj

2. pixeli intensity within 5 units (out of 255) of pixelj

3. pixeli intensity within 10 units (out of 255) of pixelj

4. pixeli intensity within 25 units (out of 255) of pixelj

5. pixeli intensity within 50 units (out of 255) of pixelj

1 Note that adding other types of comparisons is easy. Also note that

adding more comparison types only increases the training time and not
the run time. Assuming that the comparison operations use roughly

equal CPU time, only the number of features employed will impact the

actual classification speed at runtime, not which features are used or the
number of unique comparison types that are available.

Each comparison yields a binary feature. This feature is

used as a weak-classifier. A weak classifier is only

required to have accuracy slightly better than random

chance. For this study, the result of the comparison is

trivially considered the output of the classifier: an output

corresponds to “male” if the comparison is true, “female”

if it is false. Numerically these outputs are represented as

1 and 0 respectively.

There exist weak classifiers for each pair of different

pixels in the image for each comparison operator. For

20×20 pixel images, this means there are 2*5*400*399 or

1,596,000 distinct weak classifiers. Even accounting for

symmetries, this still yields an extremely large number of

classifiers to consider. The goal, given this large set of

features, is to minimize the number of features that need

to be computed when given a new image, while still

achieving high identification rates.

We use AdaBoost to combine multiple weak classifiers

together to form a single strong classifier with better

accuracy. The AdaBoost training algorithm is an iterative

procedure for picking a classifier to add at each step and

also its associated weight. The final strong-classifier is a

thresholded linear function of the selected weak-

classifiers.

The main steps of the AdaBoost algorithm are shown in

Figure 2. Essentially, it is a greedy learner that at each

step selects the best weak classifier for the weighted

errors of the previous step. The weight changes in Step 4

are such that the weak classifier picked in Step 3 would

have an error of 0.5 on the newly weighted samples, so it

will not be picked again at the next iteration. Once all the

weak classifiers are selected, they are combined to form a

strong classifier by a weighted sum, where the weights are

related to the reweighting factors that were applied in

Step 4 (normalized to sum to one).

One of the time consuming steps in this algorithm is

computing the accuracy of all the weak classifiers in each

iteration. Although the number of candidate classifiers

effects only the training-time and not the run-time, there

are a few easy methods to improve the training time. One

approach is presented in (Wu, Rehg, and Mullin, 2003):

the error rates for each weak classifier are kept fixed,

rather than being reevaluated in each iteration. Another

approach for reducing training times is to randomly select

which weak classifiers will be evaluated at each iteration,

and select the new classifier from only those that were

evaluated. At each iteration, the set of classifiers to

evaluate is randomly chosen again. In the experiments

reported here, we explored this approach. In addition to

running the experiments that evaluated all of the

classifiers in every iteration, we also experimented with

evaluating only 10% and 1% of the weak classifiers

during each iteration.

IAAI-05 / 1509

As a baseline to compare against, we also applied SVMs

to the pixel data; this approach parallels the one taken in

(Moghaddam and Yang, 2002). The SVM implementation

we used was SVM Light (Joachims, 1999); the

parameters used will be discussed with the experiments.

Figure 2: A boosting algorithm - adapted from (Viola, Jones, 2001).

Note that the weak classifiers used here are simply the comparison

operators, and the final classifier output is based on a weighted sum

of these weak classifiers.

Training and Test Data

The training data for this algorithm is taken from the

Color FERET database (Phillips et al., 2000). This

database contains images of 994 people (591 male, 403

female). We use only frontal images labeled “fa” and

“fb” in the database that also have their eye coordinates

labeled in the database, for a total of 2409 faces images

(1495 male, 914 female).

Following previous approaches, we partition the sets of

images 5 different ways. Each partition uses 80% of the

data for training and 20% for testing, in such a way that

each sample is used only once as a test image. For the

“unmixed” data sets, we make sure that images of a

particular individual appear only in the training set or test

set for a partition of the data. For the “mixed” data sets,

there is no such restriction, and the images are mixed

randomly. One would expect that the unmixed case is a

harder task than the mixed case, since for the mixed case

the classifier has the opportunity to memorize or

recognize individual faces rather than using more general

features. For our tests, the unmixed data sets are the more

important because of their applicability to the expected

performance when analyzing billions of images with large

numbers of faces unseen during training.

The images are taken with a variety of sizes of faces,

lighting conditions, and positions. The following steps

are used to normalize each image for input to the

classifier:

1. Convert the image to grayscale by averaging the red,

green and blue color components.

2. Compute a rigid transform which maps the labeled eye

locations to (5,5) and (15,5) for a 20×20 window, and

(1.5,8) and (10.5,8) for a 12×21 window as used in

(Moghaddam and Yang, 2002).

3. Scale image by averaging blocks of pixels down to the

smallest size larger than that specified by the rigid

transform.

4. Sample each of the pixels for the target window using

bilinear interpolation.

5. (Optional) Normalize the intensities of the image to

have a mean of 127, standard deviation 64, clipped at

0 and 254.

6. (Optional) Mask the image by setting pixels

corresponding to black pixels in the mask to 127 (see

Figure 3). When a mask is used, the normalization in

the previous step does not take the masked pixels into

account when computing the mean and standard

deviation.

7. For the SVM experiments, the range of input values

was mapped to -1 to 1.

For the optional steps 5 and 6, we will report results

separately for the experiments that include the steps and

those that do not.

Figure 3: Masks used to normalize face images for (left) 12×21 pixel

and (right) 20×20 pixel windows.

Input: samples (x1,y1) .. (xn,yn) where xi are the images and yi = 0
for the female and 1 for male samples.

Initialize weights w1,i = 0.5/F, 0.5/M for yi = 0,1 respectively,

where F and M are the number of female and male samples.

For t = 1,…,T (maximum number of weak classifiers to use):

 1. Normalize weights wt,i such that Σi wt,i = 1.0

 2. For each weak classifier, Cj, see how well it predicts the
classification. Measure the error with respect to the weights wt:

errort = Σi wt,i | Cj(xi) – yi |

 3. Choose the weak classifier (denoted Ct) with the lowest errort.

 4. Update the weights:

 if example is classified incorrectly:

 wt+1,i = wt,i

 else

 wt+1,i = wt,iBt

 where

t

t

t
error-1

error
B =

 5. Go to step 2

The result of the strong classifier is:

≥ ∑∑

==

otherwise:0

)(log5.0)(C *)(log:1
 :)S(

T

1t

B
1

T

1t

tB
1

tt
x

x

IAAI-05 / 1510

Experiments

In this section we summarize a large set of experiments

with varying types of preprocessing on the data and

various types of classifiers.

We first applied SVMs to this problem to provide a

baseline, and for comparison with earlier work showing

state of the art accuracies with SVMs. All numbers given

are for SVMs with Radial Basis Function (RBF) kernels.

In order to find the best setting for the SVM, we tried a

variety of settings for the parameters. The settings given

to SVM Light for gamma (related to the RBF radius)

ranged from 0.001 to 0.100 (in steps of 0.001), and for C

(the tradeoff between margin and training error) were the

default and 100,000. Based on the preprocessing steps in

the previous section, there are eight different ways to

generate train and test images: with or without

normalization, with or without masking, and at a size of

20×20 or 12×21 pixels. For each of these cases, tests of

all parameters values were tried. Since each parameter

setting required 5 SVMs to be trained (for the 5-fold cross

validation), this resulted in a total of 5*8*200=8,000

SVMs being trained.
2
 The preprocessing that gave the

best accuracy was with normalization, no masking, and a

size of 20×20 pixels; the accuracy for this case as a

function of the parameters is shown in Figure 4.

For all the results reported below, setting C to 100,000

gave the highest test accuracy (with very little or no error

on the training set). The number of support vectors varied

quite significantly, ranging from 300 to 600, out of

around 1,900 training samples.

2 These experiments were done to find the best parameter settings for the

SVMs, as well as the best preprocessing options. This baseline will be

used for the remainder of the experiments to ensure that we compare
AdaBoost with the best possible SVMs.

The AdaBoost classifier was trained three times, with a

limit of 1000 weak classifiers. The training runs differed

in the number of weak classifiers that were randomly

selected for evaluation in each iteration. We examined the

performance achieved from evaluating 1%, 10% and

100% of all possible weak classifiers per iteration. The

results are given in Table 1. The first row is for the

preprocessing that gave the best SVM result. The

remaining rows each change one preprocessing parameter

from that best case.

Table 1: Classification accuracy for a variety of test sets.

Data Processing Steps Training Algorithm

AdaBoost
(1000 Weak-

Classifiers)
Normalized
Intensities

Mask
Used?

Window
Size

Best
SVM

1% 10% 100%

Yes No 20×20 93.5% 93.6% 94.4%* 94.0%

Yes Yes 20×20 92.5% 91.5% 91.7% 91.7%

No No 20×20 92.3% 94.2% 93.8% 94.3%

Yes No 12×21 90.7% 91.5% 91.4% 91.0%

As can be seen, in all but the second case, the AdaBoost

algorithm gives slightly better accuracy than the SVM

result. Overall, the best accuracy for both types of

classifiers seems to be the first set of experiments, with

normalized but unmasked images of 20×20 pixels.

The differences in the performances are small – we are

not interested in claiming that one method is better in

accuracy than another. Rather, what is most interesting is

the difference in the amount of computation required. An

SVM measures the distance from the test sample to every

support vector, which for a 20×20 pixel image and 300

support vectors leads to at least 400*300=120,000 pixel

comparisons. The AdaBoost classifier with 1000 weak

classifiers uses only 1000 pixel comparisons, yielding

results that should be orders of magnitude faster.

Figure 4 shows how the accuracy of the classifier varies

as the number of weak classifiers it contains is varied. As

can be seen, we match the accuracy of the SVM classifier

on the normalized, non-masked, 20×20 data at 500 weak

classifiers.

The previous best reported results for this domain are in

(Moghaddam and Yang, 2002), which use SVMs. For the

experiments conducted in this paper, we carefully

controlled the separation of individuals (not just images)

between the test and train sets. In Moghaddam and

Yang’s work, unlike the above results, pictures of

individual people may appear in both the training and test

sets (people have multiple pictures in our image set),

which makes the task both easier and much less

applicable to the problem that we are interested in – being

Figure 4: Accuracy of SVM while varying the C and gamma

parameters.

IAAI-05 / 1511

able to recognize identify the sex of people for whom we

have not trained our classifiers. For completeness, Table

2 shows the results of our algorithms on data where

individuals appear in both the training and test sets. For

the first test, we used the best preprocessing from Table 1;

for the second test we used preprocessing matched as

closely as possible to earlier reported work.

Table 2: Classification accuracy for test sets in which the people are

mixed across training and test sets.

Data Processing Steps Training Algorithm

AdaBoost
(1000 Weak-

Classifiers)
Normalized
Intensities

Mask
Used?

Window
Size

Best
SVM

1% 10% 100%

Yes No 20×20 97.1% 96.3% 96.6% 96.4%

Yes Yes 12×21 96.9% 94.6% 94.4% 95.6%

As can be seen, when allowed to train on the same people

who are in the testing set, the SVM gives better accuracy

than the AdaBoost algorithm – perhaps because the SVM

has a greater capacity to memorize individual faces and

their correct classifications. (Moghaddam and Yang,

2002) gives an accuracy of 96.6% on their data, which is

close to that reported in the second line of Table 2 for the

SVM. In that work, the SVMs used about 20% of the

training vectors, while in our experiments, 650 – 950

support vectors were used out of approximately 1,900

training vectors. The high number of support vectors also

suggests the possibility that the SVM is overfitting.

Timing Results

In this section, we give the performance of the algorithms

in terms of time required to classify an image for both of

the window sizes examined. For each window size

(20×20 & 12×21), we give the timing results for SVM

classifiers which after training had approximately 300,

600 and 900 support vectors. For the classifiers trained

with AdaBoost, since we explicitly control how many

features are used, we show timing results using 10, 100,

500 & 1000 features.
3

Table 3: Timing Results for 3 SVMs with 300, 600 & 900 support

vectors, and for Ada-Boost with 10, 100, 500 & 1000 features.

Window Size Classification Method
Time

(µ sec)

339 support vectors 581

654 support vectors 1107 SVM

897 support vectors 1515

10 features 0.16

50 features 0.87

500 features 9.47

20×20

AdaBoost

1000 features 19.53

338 support vectors 392

656 support vectors 769 SVM

899 support vectors 1025

10 features 0.16

50 features 0.81

500 features 9.43

12×21

AdaBoost

1000 features 20.29

As can be seen in Table 3, the difference in timings

between the fastest SVM (with approximately 330

support vectors) and the AdaBoost classifier which gives

3
 It should be noted that for the timing results we used SVM-Light (Joachims,
1999) in its original form, and we compared it to unoptimized AdaBoost code.

Figure 4: Accuracy as the number of weak classifiers in the

AdaBoost classifier is varied. Top: Full graph. Bottom: First

100 weak classifiers enlarged.

IAAI-05 / 1512

comparable performance (with 500 features) is

significant; the AdaBoost classifiers are approximately

only 1.6% (9.47/581) as expensive to run with 20×20

images and approximately 2.4% (9.43/392) as expensive

to run with 12×21 images. In both cases, there is

approximately a 50 times improvement in speed.

There is little change in speed with window size for the

AdaBoost classifier; this is because the number of

features that is examined is independent of window size.

With SVMs, this is not the case, since the entire image is

examined. Note that the most accurate SVM result

obtained is not based on the number of support vectors

alone; rather, the number of support vectors varies with

the training parameters. The best performance was

obtained in the 20×20 case with 339 support vectors, and

in the 12×21 case with 656 support vectors.

Also shown in Table 3 is the speed of AdaBoost when the

number of features examined is reduced; if our

application only requires lower accuracies, significant

speed gains can be obtained. Also given for reference is

the speed with 1000 features.

Conclusions and Future Work

We have presented a method to distinguish between male

and female faces that matches (and slightly exceeds) the

performance obtained with SVMs. However, the

classification is achieved with a fraction of the

computational expense; the classifiers presented here are

1-2 orders of magnitude faster (approximately 50 times)

than SVMs.

Due to space restrictions, we are unable to present the

extensive studies measuring the robustness of the

classifiers to translation, scale and rotation. To

summarize: in our tests, we varied the angle of the face

from ±45°, scaled the images by 0.2 to 5, and examined
translations from ±3 pixels in X and Y. Despite the fact

that AdaBoost was used to select only individual pixels to

compare, in every case, the AdaBoost classifiers

performed as well, or better than, the SVM classifiers.

Of course, the larger the variation, the larger the

performance degredation.

We achieve 80% accuracy in identification with less than

10 pixel comparisons and 90% accuracy with less than 50

pixel comparisons. Results which match those of SVMs

are obtained with as few as 500 comparison operations on

a 20×20 image. These results support earlier work which

has found pixel comparisons are effective in determining

the pose of a face.

There are at least three areas for immediate future

exploration. The first is to evaluate this approach in the

context of a complete face detection system. The images

used here from the standard FERET database are fairly

clean and well aligned; using this system to classify faces

that are found with a face detection system (Rowley,

Baluja & Kanade, 1998) will require the classifier to

handle much more variability in the data. The second

future direction is to explore the use of different features.

For example, following numerous previous approaches,

box-like features may prove to be useful. Finally, the

third direction is to explore the use of new types of

classifiers. In this study, we used very simple pixel

comparisons that mapped directly to a classifier; however,

more complex transforms of the pixels may provide

benefits as well. It will be interesting to measure and

understand the tradeoffs between weak-classifier

complexity and number of classifiers in terms of accuracy,

robustness and speed.

Acknowledgements

Portions of the research in this paper use the FERET

database of facial images collected under the FERET

program (Phillips et al., 2000).

References

Baluja, S, Sahami, M., Rowley, H., “Efficient Face

Orientation Discrimination” International Conference on

Image Processing, 2004.

Gutta, S., Wechsler H., and Phillips, P. J. “Gender and

ethnic classification”. IEEE Int. Workshop on Automatic

Face and Gesture Recognition, pages 194-199, 1998.

Joachims, T. “Making Large-Scale SVM Learning

Practical”. Advances in Kernel Methods – Support Vector

Learning, 1999.

Moghaddam, B. and Yang, M.H. “Learning Gender with

Support Faces”. IEEE T.PAMI Vol. 24, No. 5, May 2002.

Phillips, P.J., Moon, H., Rizvi, S.A., and Rauss, P. “The

FERET Evaluation Methodology for Face Recognition

Algorithms”. IEEE PAMI, Vol. 22, p. 1090-1104, 10,

2000.

Rowley, H A., Baluja, S., and Kanade, T. “Neural

Network-Based Face Detection”. T. PAMI Vol. 20, No. 1,

pages 23-38, January 1998.

Shakhnarovich, Gregory, Viola, Paul A., and Moghaddam,

Baback. “A Unified Learning Framework for Real Time

Face Detection and Classification”. Int. Conf. on

Automatic Face and Gesture Recognition, 2002.

Viola, Paul and Jones, Michael J. “Robust real-time

object detection”. Proceedings of the IEEE Workshop on

Statistical and Computational Theories of Vision, 2001.

Wu, Jianxin, Rehg, James M., and Mullin, Matthew D.

“Learning a Rare Event Detection Cascade by Direct

Feature Selection”. NIPS 16, 2003.

IAAI-05 / 1513

