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Abstract

Optimal use of energy is a primary concern in field-
deployable sensor networks. Artificial intelligence al-
gorithms offer the capability to improve the perfor-
mance of sensor networks in dynamic environments
by minimizing energy utilization while not compro-
mising overall performance. However, they have been
used only to a limited extent in sensor networks pri-
marily due to their expensive computing requirements.
We describe the use of Markov decision processes for
the adaptive control of sensor sampling rates in a sen-
sor network used for human health monitoring. The
MDP controller is designed to gather optimal informa-
tion about the patient’s health while guaranteeing a min-
imum lifetime of the system. At every control step, the
MDP controller varies the frequency at which the data
is collected according to the criticality of the patient’s
health at that time. We present a stochastic model that
is used to generate the optimal policy offline. In cases
where a model of the observed process is not available
a-priori, we describe a Q-learning technique to learn the
control policy, by using a pre-existing master controller.
Simulation results that illustrate the performance of the
controller are presented.

Introduction
A sensor network consists of a set of spatially distributed
sensors that are able to communicate with each other using
a low-power wireless interface (Pottie & Kaiser 2000). The
exact communication structure and the relative distribution
of sensors are application and design dependent (Estrinet al.
2001; Mainwaringet al. 2002; Talukderet al. 2004). Due to
the primary application of sensor networks in mobile mon-
itoring or monitoring of vast structures, the size and weight
of each node needs to be compact and light. Therefore, sen-
sors in a wireless sensor network typically have a very lim-
ited amount of computing power and storage onboard (Pot-
tie & Kaiser 2000). Recent advances in the design of small,
wearable sensors and faster processors combined with bet-
ter signal processing techniques have made sensor networks
practicable in applications such as autonomous environment
monitoring (Mainwaringet al. 2002). These advancements
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also make sensor networks suitable for autonomous long-
term human health monitoring. For instance, a network
consisting of heartbeat and temperature monitors may be
“worn” by a patient with a history of heart ailment. This
would enable a doctor to study the long-term behavior of
these bio-signals or to automatically trigger an alarm if an
unusual signal pattern is detected. This long-term data may
also be useful in understanding the relationship between
physiological processes as measured by bio-signals and the
behavior patterns of the patient (Korhonenet al. 2001).

Limited advances in power technology however have cre-
ated a major obstacle in long-term monitoring capabilities
of sensor networks and have made energy the most critical
resource in sensor networks, including those used for health
monitoring. Additionally, a health monitoring application
often requires time-critical and immediate response which
imposes a new set of challenges that should be addressed
and solved prior to deployment in the real-world:

1. Limited Energy: The lifetime of a sensor network is lim-
ited by the battery capacity of its individual sensor nodes.
The power consumption at each node is dependent on
the amount of sensing and computation performed at that
node. Sensing at high rates limits the lifetime of the sys-
tem. In a health monitoring application, the system must
operate for at least some pre-fixed length of time before
running out of power.

2. Real-time Adaptive Sensing: In continuous health mon-
itoring, the desired quality of sensing varies depending on
the health status of the patient being monitored. During
periods of normal health, the sensor may be sampled at
a lower rate as compared to periods of abnormal signal
activity. This enables subsequent analysis of the signal at
critical times in sufficient detail.

3. Fault Tolerance to Component Failures: The system
must be resistant to component failures. The penalty for
failure in health monitoring is high as an individual’s life
is at stake. Since the sensors in the network communicate
using low-power radio transmissions, communication er-
rors are possible. A distributed sensing system that is re-
sponsible for health monitoring should not fail if one sen-
sor becomes disconnected from the rest of the network.

From the above discussion, it follows that energy is the
most critical resource in a health monitoring system and

IAAI-05 / 1529



should be used sparingly and only when necessary. Energy
is consumed during sensor operation, processing of data, and
transmission of data. The amount of energy that is utilized
during data acquisition is dependent on the sampling rate
of the sensor. Moreover, the sensor sampling rate also de-
termines energy consumed during data transmission since
higher sampling rates generate larger amounts of data to be
transmitted. We present a new event-based policy to deter-
mine the sampling rate of each sensor. In our system, the
sampling rate of the sensors is regulated according to both
(1) the current and projected health status of the patient and
(2) the required minimum lifetime of the system.

Architecture for Patient Monitoring
In this work, we describe our real-time control of sensor
operation in a sensor network based system for continuous
long-term health monitoring, using a fault-tolerant two-stage
control procedure. Multiple sensors are each connected to a
node of the sensor network. Each node continuously trans-
mits the sensed data via radio links to a central processing
unit in the form of a handheld computer. The sensors that
have been interfaced with the network include body tem-
perature, heart-rate, blood oxygenation, and interstitial fluid
(ISF) alcohol level sensors. The energy consumed at each
sensor node depends on the sampling rate at that sensor. For
instance, the ISF alcohol sensor requires a pump to draw
out ISF before a measurement can be made. This is an
energy-intensiveprocess and hence reducing the duration for
which the pump is in operation increases the lifetime of that
node. The handheld computer has a centralized controller
that makes coordinated control decisions. Additionally, each
sensor node has a local controller that commences operation
in the event of communication loss that invalidates the cen-
tralized controller. Figure 1 shows the components of the
health monitoring system and Figure 2 shows the sensors
and handheld computer attached to a person.
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Figure 1: Block diagram of the health monitoring system.

We have earlier used Model Predictive Control (MPC) to
implement the centralized controller to regulate the sensing
frequencies of all the sensors (Talukderet al. 2004). Access
to the state of the entire system allows the centralized con-
troller to make optimal coordinated control decisions. This
two-tier controller architecture contributes to the robustness
of the system as a whole. During periods of complete net-
work connectivity, the centralized controller regulates the in-
dividual sensing rates taking into account the data criticality

Figure 2: Person wearing sensors. The handheld computer
is attached at the waist.

and reliability of each sensor. However, if a sensor is unable
to communicate with this central node, its local controller
then begins regulating the sensing rates so as to guarantee
operation until the desired system lifetime. The focus of this
paper is on the design of the local controller at each sensor.

We use the framework of Markov Decision Processes
(MDP) (Russell & Norvig 2003) to control the sampling rate
at each sensor. Each sensor node is equipped with an MDP
controller to regulate the sensing frequency at that node ac-
cording to the criticality of the data being measured. The
controller also takes the minimum desired lifetime of the
system as an input. The battery consumption is continuously
monitored so that the system is in operation for at least the
desired length of time. The main advantage of the MDP con-
troller is that its policy can be computed offline. Only the
policy table needs to be stored in the network node. Gen-
erating a control signal when the system is deployed corre-
sponds to looking up the appropriate pre-calculated action
(the sampling rate) from the policy table. Thus, the opera-
tion of this controller places a minimal computational load
on the network node.

Other candidates for controller design include Partially
Observable Markov Decision Processes (POMDPs) (Kael-
bling, Littman, & Cassandra 1998) and MPC (Garcia, Prett,
& Morari 1989). POMDPS have a greater representational
power than MDPs as they can model the uncertainty in ob-
serving world state. MPC has been used extensively for in-
dustrial control of processes. However, algorithms to gener-
ate the control signal using these techniques are too compu-
tationally intensive to be run in real-time using the limited
computing resources available at the sensor nodes.

Generating an optimal policy for the MDP controller re-
quires that the rate of energy consumption with respect to
sensing frequency and a stochastic model of the criticality
of the data be known in advance. If this information is not
available, we make use of the centralized controller to train
the controller at each sensor.
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Related Work
Markov decision processes have been used elsewhere for
control of physical systems. Zilbersteinet al. use MDPs
to plan the path of a lunar rover (2002). As in our work, the
ability to compute the entire policy offline and thus make
only limited use of the computing power onboard the rover
was listed as one of the advantages of this scheme. The state
vectors used in modeling of the rover control problem rep-
resented the passage of time and resources and the quality
of the scientific work being performed by the rover at every
step. The Markov model was further factored into a hierar-
chical model to speed up the learning process.

Long-term human health monitoring systems have been
built using different technologies (Korhonenet al. 2001;
Ogawa, Tamura, & Togawa 1998). The system implemented
by Korhonenet al. records signals such as heart-rate, and
blood pressure (2001). However, the data from the sen-
sors must be entered directly into a computer with the aid
of the patient and therefore requires the participation of
the patient. On the other hand, in the system designed by
Ogawa, Tamura, & Togawa, the environment inhabited by
the patient (for instance, the bed) was instrumented with
sensors to record health information without the aid of the
patient (1998). However, this means that the data can be
collected only when the patient is within that environment.
The advantage of using a wireless network of sensors is that
sensors may be attached without regard to the location of
the central data repository. Moreover, sensors may be phys-
ically added to or removed from a wireless monitoring sys-
tem with relatively less effort as compared to a wired sys-
tem or an instrumented environment. Other sensor network-
based systems that are currently being developed for health
monitoring include CodeBlue (Malanet al. 2004), Life-
Guard (Montgomeryet al. 2004), and Ubimon (Nget al.
2004). However, these systems do not regulate energy usage
by explicitly adapting the sampling rates of sensors.

Sensor networks have also been used for “health” mon-
itoring in other application domains. A two-tiered sensor
network architecture has been used for monitoring the state
of physical structures (Kottapalliet al. 2003). Power saving
is listed as the main advantage of this two-tier architecture.

Markov Decision Process modeling
A Markov Decision Process (MDP) is a 4-tuple(S, A, P, R).
S is a finite set of states. The world exists in exactly one of
the states inS. A is a finite set of actions that may be exe-
cuted at any state.P is a probability function that defines
how the world state changes when an action is executed:
P : S × A × S → [0, 1]. The probability of moving from
states to states′ after executing actiona ∈ A is denoted
p(s, a, s′). The probability of moving to a state is depen-
dent only on the current state (the Markov property).R is
the reward function:R : S × A → R. R(s, a) is the real-
valued reward for performing actiona when in states. A
policy is defined as a function that determines an action for
every states ∈ S. The quality of a policy is the expected
sum of future rewards. Future rewards are discounted to en-
sure that the expected sum of rewards converges to a finite

value, i.e., a reward obtainedt steps in the future is worth
γt, 0 < γ < 1 compared to receiving it in the current state.
γ is called the discount factor. Thevalue of a states under
policy π, denoted byV π(s), is the expected (discounted)
sum of rewards obtained by following the policyπ from s.
The value function determines the action to be executed in
states under policyπ:

argmaxa∈A(R(s, a) + γ
∑
s′∈S

p(s, a, s′)V π(s)

A policy is optimal if the value of every state under that
policy is maximal. If all the model parameters are known,
the optimal policy can be computed by solving the Bellman
equations:

V (s) = max
a∈A

(
∑
s′∈S

p(s, a, s′)[R(s, a) + γV (s′)])

The Bellman equations are solved using the Value Iteration
algorithm. In this algorithm, the value function is initial-
ized to arbitrary valuesV0(s). At iterationk > 0, the value
function is updated as follows.

Vk(s) = max
a∈A

(
∑
s′∈S

p(s, a, s′)[R(s, a) + γVk−1(s′)])

As k → ∞, Vk converges to the optimal policy values.
The state of a sensor mote is represented by the state

vector(t, h, p). t ∈ {t1, t2, . . . , tT } indicates the time the
system has been in operation. Since only a finite num-
ber of time-steps can be explicitly modeled,tT corresponds
to the guaranteed lifetime desired from the system.h ∈
{h1, h2, . . . , hH} is a measure of the patient state as mea-
sured in the previous time-step, andp ∈ {p1, p2, . . . , pP }
is the amount of energy consumed. At every state, the sys-
tem monitors patient health by sampling from the sensor at
a particular rate. Denote the set of sampling rates byA.

The probability of transitioning from state
(ti, hi, pi) to state (tj , hj , pj) while sampling at rate
a ∈ A, p((ti, hi, pi), a, (tj , hj , pj)), is defined as
pT (ti, tj)pH(hi, hj)pP (pi, a, pj) where

pT (ti, tj) =

{
1, if i = j = T
1, if j = i + 1
0, otherwise

pH(hi, hj) =




psame
H , if i = j

2pchange
H , if i = H, j = H − 1

pchange
H , if |i − j| = 1

0, otherwise

pP (pi, a, pj) =




1, if i = P
pP (a), if i = j
1 − pP (a), if j = i + 1
0, otherwise

Thus, the state feature representing time is advanced at ev-
ery time-step until the desired lifetime is reached by the sys-
tem.psame

H andpchange
H model the change in patient’s health

status stochastically. The rate at which energy is consumed
by the system is modeled with probabilitiesP (a), a ∈ A.
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Figure 3: State transitions in the MDP model.The current
state is labeled(t, h, p). The transitions of the model frag-
ment below are for the case whenti = tT .

The rate is higher for higher sensing rates. The reward func-
tion depends only on the sensing rate and the health status of
the patient. Intuitively, the sensing rate should be higher dur-
ing critical times. There is also a penalty,−Rpowerout, for
the system running out of power before the desired lifetime.
Thus, the reward function is defined as:

R((t, h, p), a) =
{
−Rpowerout, if p = P, t < T
kR.a.h, otherwise

wherekR is a constant of proportionality. These model up-
date rules are illustrated in Figure 3.

MDP learning using centralized controller
Generating an optimal policy using value iteration requires
a stochastic model describing the time evolution of the crit-
icality of the data and the energy consumption of the sen-
sor. If such a stochastic model is not available, we learn the
policies using reinforcement learning. The reinforcement is
obtained from our pre-existing global controller. The MPC
mechanism that is used to implement this centralized con-
troller is described in detail in (Talukderet al. 2004).

Q-learning is a reinforcement learning procedure to de-
termine the optimal policy of an MDP when the model pa-
rameters are unknown (Sutton & Barto 1998). For every
state-action pair(s, a), define its “Q” value as

V (s) = max
a∈A

Q(s, a)

Unlike value iteration which required the model transition
probabilities to calculate the optimalV values, Q-learning
calculates theQ values from a given state-action sequence
and its corresponding rewards. When the agent performs
actiona in states, receives reinforcementr and moves to
states′, the following update rule is applied:

Q(s, a) ← Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′) − Q(s, a))

Table 1: Parameters determining the transition probabilities
psame

H 0.7
pchange

H 0.15
pP (a) 0.5 +

(
0.9−0.5

20

)
a

whereα, 0 < α < 1 is the learning rate. TheQ values
converge to their optimal values if every state-action pair is
updated an infinite number of times.

During the learning phase, the agent has to make a trade-
off between exploration and exploitation of the policy that is
being learned, i.e., whether to execute the learned policy at
a state or to act randomly to explore an untested action. One
solution is to select the action to be executed from a Boltz-
mann distribution based on the Q-values of the candidate ac-
tions (Sutton & Barto 1998). In our system, we have access
to the centralized controller which produces a reinforcement
signal for any state of the MDP policy table. Hence, in our
learning phase, we select states that have not received rein-
forcement and generate actions from this state. This ensures
that the Q-values for all states converge faster as compared
to the case where the states are always updated in the order
in which they appear in a learning trial.

Results
We now present simulation results using a Markov model
obtained by discretizing the guaranteed lifetime of the sys-
tem into T = 50 time-steps, battery capacity intoP =
30 levels, and criticality of the patient’s health status into
H = 20 levels. Thus, this model has 30,000 states. Our
health monitoring system is implemented using commer-
cially available Mica2 motes which has a program memory
of 128KB (Hortonet al. 2002). Thus, the entire MDP policy
table can be fitted into memory. The transition probabilities
are determined by the parameters listed in Table 1.

In a real application, these parameters would be deter-
mined by the specific characteristics of the domain. For
instance, in a physical activity monitoring system, periods
where heart-rate increases beyond 120bpm are the most rele-
vant since at that range there is a linear relationship between
heart-rate and calorie expenditure (Saris 1986). The num-
ber of modeled time-steps,T , would be determined by how
often the sampling rate of a sensor can be changed and the
desired life-time of the system.

Policy from Value Iteration
Figure 4 shows the sensing frequency and energy consump-
tion at every time-step from one simulation trial. Note that
the available energy did not drop to zero during the length
of the trial. The patient criticality data was obtained from a
sensor that measures ISF alcohol levels.

We explored the effect of a mismatch between the
stochastic energy consumption model that is used in the
MDP controller and the actual rate of energy consumption.
Figure 5 shows the energy consumed during the lifetime of
the system using the same patient criticality data used in Fig-
ure 4. As the mismatch between the model and the real
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Figure 4: Sensing frequency generated by the MDP and en-
ergy consumed (y-axis) at every time-step (x-axis).

energy consumption rate increases, the energy used by the
system increases. However, the system does not run out of
power before the desired lifetime until the mismatch reaches
200%. The sensing frequencies at every time-step during
the trials with mismatched energy consumption models is
shown in Figure 6. As the amount of mismatch increases,
the sensing frequency at times close to the end of the system
lifetime do not increase with an increase in the criticality of
the patient’s health status.
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Figure 5: Energy consumed during the lifetime of the sys-
tem when the energy consumption model used in the MDP
controller does not match the actual consumption rate.

Policy from Q-learning
We performed similar simulation trials when the policy was
learned using Q-learning with the centralized controller pro-
viding the reinforcement. Figure 8 shows the energy con-
sumption when there is a mismatch between the model and
the real energy consumption rate. As in the earlier case, the
system does not run out of power before the desired lifetime
until the mismatch reaches 200%.
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Figure 6: Event criticality and sensing frequencies during
the lifetime of the system when there is a mismatch between
the energy consumption model and the actual energy con-
sumption rate. (The frequencies have been offset relative to
each other to enhance viewability).

A comparison of the power consumption rates when the
policy is obtained from value iteration and from learning in-
dicates that the learned policy exhausts the sensor power at
the end of the desired lifetime while in the case of the value
iterated policy, some power remains. This reflects a bias
in the MPC controller (that was used to generate reinforce-
ment) to exhaust power at the end of the desired lifetime.

Conclusions and Future Work
We described how a Markov decision process can be used to
control of sensor sampling rates in a sensor network for hu-
man health monitoring. The controller was able to guarantee
the minimum lifetime of the system by varying the resolu-
tion at which the data is sampled according to a model of
the future criticality of the patient’s health. We presented a
stochastic model that was used to generate the optimal pol-
icy offline. The entire policy can be fitted into the program
memory of a node in the sensor network and since execution
of the policy requires only a memory lookup, this mech-
anism utilizes minimal computational resources. In cases
where a model is not available, we described how the con-
trol policy could be learned from a pre-existing controller.

We are currently developing algorithms to enable the
learning of MDP control policies that take into account
the influence of sensors in the network on each other
(i.e., the learning of multi-agent MDP policies). In multi-
agent MDPs, the actions are distributed among different
agents (Boutilier 1999). For our health monitoring appli-
cation, we will learn individual policies without the aid of
a joint model but from the outputs of the centralized con-
troller. As the number of states required for control in a par-
ticular application may be larger than the memory capacity
of a sensor node, we are developing policy approximation
methods to reduce the memory requirements of the policy.
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Figure 7: Sensing rate obtained from the learned policy and
energy consumed (y-axis) at every time-step (x-axis).
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Figure 8: Energy consumed during the lifetime of the system
when the energy consumption model used during learning
does not match the actual consumption rate.
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