
Managing the Life Cycle of Plans

Biplav Srivastava
IBM India Research Laboratory

Block 1, IIT, New Delhi 110016, India
sbiplav@in.ibm.com

Jussi Vanhatalo Jana Koehler
IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{juv,koe}@zurich.ibm.com

Abstract

The scalability of recent planning algorithms allows develop-
ers to automate planning tasks, which so far have been re-
served to humans. However in real-world applications, syn-
thesizing a plan is just the beginning of a complex life-cycle
management process. Plans must be organized in large col-
lections, where they can be grouped along different purposes
and are amenable to the search, inspection, evaluation, and
modification by human experts or automated reasoning sys-
tems. Eventually, plans will outlast their utility and be re-
placed.
We present our solution to plan life cycle management for an
autonomic computing application. We focus in particular on
the automatic synthesis of plan metadata for plans containing
conditional and parallel actions, well-structured loops,and
non-deterministic choices. The plans are of unknown origin,
i.e., their underlying action model, which could provide us
with pre- and postconditions, is not available. New analysis
techniques are presented that uniformly generate metadatafor
plans, thus allowing a system to embed plans into context and
organize them in meaningfully structured plan repositories.

Introduction
Configuring computing systems is an error-prone and costly
step in setting up an IT solution. Individual components
must be assembled and tuned to deploy a working solution.
The main driving force behind our work is to provide intel-
ligent support to system administrators and automate large
parts of the configuration process with the goal of allowing
an autonomic computing system to reconfigure itself. Plans
originate from human experts similar to scripts capturing
best practices or are generated by automatic planning sys-
tems responding to system requirements. Techniques from
AI planning, scheduling and domain-based dependency rea-
soning can be used to generate, analyze, and execute config-
uration change management (CM) plans (Kelleret al. 2004).
Figure 1 introduces a CM system called CHAMPS, which
applies these techniques to support system administratorsin
their complex activities. In a typical scenario, the system
administrator will enter a change request into the CHAMPS
system. From the request, a query is generated that is exe-
cuted over a repository of plans, which have been enriched

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

with metadata. These metadata can be provided by humans
or are automatically generated by a plan analysis process
we describe in more detail in this paper. If the query suc-
ceeds, one or more candidate plans are sent to a scheduling
component, which will produce a change plan. If the query
fails, the planner is activated to find a new change plan. The
change plan is either executed automatically or it is proposed
to the system administrator. The mode of execution depends
on the information contained in the query, the change plans
retrieved and their metadata information. Plans that require
no human intervention and perform non-critical updates of
an IT system that do not require human confirmation are ex-
ecuted automatically. All other plans require approval by the
system administrator before they are executed.

IT System

Planning and
Scheduling

1) Request for change

= query

2) Query-based

retrieval

3b) Execution and

monitoring (automatic)

4) Automatic software update

System Administrator
3a1) Change plan proposal

(semi-automatic)

3a2) Approved

Plan
Repository

Execution Engine
Tivoli Orchestrator

Plans &
Metadata

Figure 1: Change management using AI Planning.

To successfully run the application, a large set of CM
plans needs to be managed. In particular, the plans need
to be organized for storage and retrieval and visualized for
human inspection and execution. A human administrator
needs to know how a plan performed during previous exe-
cutions, why it may be suitable in the current situation, how
it relates to other plans available in the same domain, and
whether the plan has critical features that may lead to exe-
cution bottlenecks. Such information is not contained in the
plan itself and can only be derived from associated metadata.
The uniformity of the metadata is critical for the quality of
change management and should be provided by automatic
plan analysis methods. Generating metadata by hand is a
very costly and time-consuming activity and can easily lead

IAAI-05 / 1569



to inconsistent and unusable information.

So far, there has been very little research on generating
metadata for plans. A tool is presented in (Kim, Gil, &
Spraragen 2004) that interactively works with a user to val-
idate sequential workflows. The analysis determines plan
properties such as whether a plan isjustified, satisfied, or
correct. The procedures resemble plan-pruning criteria dur-
ing flaw refinement steps in partial-order planning and en-
sure that a correct workflow has all the desirable proper-
ties including that it is acyclic. The tool has access to the
action specifications and is integrated with the means-end
planner Prodigy to complete partially sketched plans. One
of the first approaches that considers plans independently
of plan synthesis is (Pollack 1992), where the author talks
about the uses of plans, once they are obtained. The work
on plan modification described in (Kambhampati 1990) clas-
sifies techniques to compute an explanation of plan correct-
ness and to make the rationale behind planning decisions
explicit. (Myers 2004) generalizes plans as relations among
planning elements, which are actions, postconditions, and
parameters. The idea is to generalize causal links so that
qualitative relationships can be more easily communicated
from/to users. (Garland & Lesh 2002) look at the problem
of evaluating plans when the underlying actions are incom-
pletely modeled. They define four types of risk based on the
structure of the plan provided that any action’s specification
can be corrected in the future. Plans are compared based
on their assessed risks, and a ranking is derived. A data-
base for PDDL-2 plan fragments is described in (Yamanet
al. 2004) with the focus on maintaining consistency of the
plan database. The database uses a query language based on
a plan-specific relational algebra, whereas we use an expres-
sive object-oriented query language in our solution. Model-
checking techniques for the verification of workflows are in-
vestigated in (Fu, Bultan, & Su 2004).

Our solution differs from and extends previous work in
the following way: Our metadata not only extend the metrics
defined in (Kim, Gil, & Spraragen 2004), but are also com-
puted for expressive workflows represented in BPEL4WS
(Curbera & others 2002), which can contain loops as well as
conditional and parallel branches. Our methods are targeted
at managing collections of plans when the specification of
actions as well as the planning technique are not available.
We also analyze plans by comparing them with other avail-
able plans and based on their performance in previous ex-
ecutions. Such executions can be gathered from real-world
system runs or from simulations that consider different exe-
cution conditions. Based on their associated metadata, plans
are stored in a repository similar to a case base from where
they can be retrieved in a very flexible way.

The plan analyzer and repository are currently made avail-
able inside IBM as part of the CHAMPS toolkit for CM.The
plan analyzer will be made available externally as part
of the Java-based programmatic planning frameworkPlan-
ner4J(Srivastava 2004), which also implements a variety of
planners in Java sharing a common infrastructure. ThePlan-
ner4J features are provided through the publicly available

ABLE agent building toolkit1(Srivastava, Bigus, & Schlos-
nagle 2004) and are being employed in many applications
requiring diverse planning capabilities. The plan repository
is available on request as an Eclipse plugin from the authors.

Change Management Workflows
Change management requires complex activities, which do
not map directly to simple sequences of actions. A workflow
representation seems to be more appropriate and also facili-
tates the automatic or semi-automatic execution of the plan.
A typical example is the installation and configuration of
a multiple-machine deployment of a J2EE-based enterprise
application along with its supporting middleware software
such as web servers, application servers, and databases. We
discuss an online bookstore application from the Transac-
tion Processing Council’s Web (TPC-W) benchmark (TPP-
Council 2002), which is a two-tiered application consisting
of a web application server running 14 servlets and a data-
base server working with 10 database tables. The servlets
are hosted by a servlet container, which depends on the web
application server and the operating system. The database
system also depends on the operating system. The two ap-
plication tiers can be on distinct machines and operating sys-
tems. Several plans are needed to install this application.
First, a plan comprising configuration information gather-
ing steps must be executed. It is followed by two plans,
which run in parallel and install the various components of
the two tiers. Finally, clean-up steps are needed. The sub-
plan installing the web application tier sets up the operating
system, application server, servlet containers, and servlets.
The subplan to install the database tier sets up the operating
system, database server, and database tables. Actions in one
subplan can depend on the successful execution of actions
in the other subplan.

In the CHAMPS system, plans are represented in the
workflow language BPEL4WS (Curbera & others 2002). A
BPEL4WS workflow is a specification of a coordinated set
of activities where the activities may themselves be auto-
mated or manual. The specification contains information
about partners and their roles, message types, variables, and
activities. Two categories of activities are distinguished—
basic and structured activities. Basic activities are exe-
cutable and correspond to the actions in a plan. BPEL4WS
has activities toinvokea web service,receivea message
from another service,reply to a service,throwan exception,
terminatethe execution of a flow,wait for an event to hap-
pen, or simply to donothing. Structured activities group ba-
sic activities within asequence, a conditionalswitch, awhile
iteration, a non-deterministic choice calledpick, or a parallel
flow. With these constructs, the control and data flow of the
workflow are precisely specified.

Figure 2 shows an example of a BPEL4WS workflow,
which we will use throughout the paper. It installs the sin-
gle servletInstall-ServletBestSell. The workflow contains a
top-level flow into which two sequences are embedded that
run in parallel inside the flow. The upper sequence installs

1http://www.alphaworks.ibm.com/tech/able

IAAI-05 / 1570



the application server. It contains three basic activitiesin-
stalling the Linux operating system, the Websphere Appli-
cation Server (WAS), and finally the desired servlet. The
lower sequence installs the database server. It contains two
basic activities installing the AIX operating system and the
DB2 database followed by another flow, in which four basic
activities are embedded that install database tables, possi-
bly in parallel. The dashed arrows denote explicit synchro-
nization dependencies between activities in BPEL4WS. In
the example, the database tables must be installed before the
servlet installation can start, which is the last activity of the
upper sequence. All basic activities are of the typeinvoke
and represented as squares. They describe executable sys-
tem scripts.

Install-OSRedHatLinux

Sequence:

InstallDatabaseServer

Install-WAS51 Install-ServletBestSell

Install-OSAIX Install-DBMSDB2UDB81
Flow:

InstallTables

Flow:

InstallJ2EEBestSell

Install-Authors

Install-Orders

Install-Orderline

Install-Item

Sequence::

InstallApplicationServer

Figure 2: A workflow to install theBestSellservlet.

Analysis of Plans without Explicit Action
Model

We developed a comprehensive plan analysis method that
takes BPEL4WS workflows or PDDL plans as input and
generates an output report summarizing the analysis results.
Results contained in the report are further processed to gen-
erate metadata of various formats that are associated with
the workflow or plan. The workflows can originate from hu-
mans, i.e., a semantic action model of the pre- and postcon-
ditions of each action may not be available. Furthermore,
the initial situation for which the plan was generated and the
goal it is supposed to achieve are seldomly available. This
lack of information, which does not occur in AI planning
solutions, poses particular challenges for the plan analysis.

Function: AnalyzePlan
Input: P - Plan or Workflow
Optional Inputs: A - Action Specification,R - Plan Repository
Output: O - Output Report
Optional Output:A - (Derived) Action Specification

01. If P is a workflow
02. P = ConvertWorkflowToPlanStructure(P )
03. (Additional output)L - Set of all links inP

04. End-if
05. If A is not specified
06. A = DeriveActivitySpecifications(P , L)
07. End-if
08. O = AnalyzePlanInternal(P , A, R)
09. ReturnO {OptionallyA}

Figure 3: Top-level procedure for plan analysis.

Figure 3 summarizes the main steps performed dur-
ing plan analysis. If the plan analysis is invoked with

a BPEL4WS workflow, the plan structure underlying the
workflow is extracted first using the procedureConvert-
WorkflowToPlanStructure(). AnalyzePlan()can leverage ex-
isting specification of actions (A) in the plan, but it does not
require them. IfA is not available,DeriveActivitySpecifi-
cations()determines pre- and postconditions of the actions
based on ordering constraints between the activities con-
tained in the BPEL4WS workflow and contextual informa-
tion that is available from the semantic model of BPEL4WS.
In AnalyzePlanInternal(), the syntactic properties of the plan
structure are analyzed further. The analysis can also com-
prise a comparison of the plan,P , with previously built and
analyzed plans from a given repository of plans (R). The
output is an analysis report that reveals hidden propertiesof
plans, while keeping the input plan unchanged. In the fol-
lowing subsections, the various phases of the plan analysis
are explained in more detail.

Extracting the Plan Structure
In PDDL, plans are represented as a sequence of time steps,
where each time step can have parallel actions. This basic
plan structure has been formalized as an IPlanSolution plan
interface in (Srivastava 2004) and found to be common while
representing different types of plans such as contingent, met-
ric, and hierarchical plans. We adopt this plan structure for
analysis, but in addition distinguish different types of actions
that correspond to the activity types in BPEL4WS.

The procedureConvertWorkflowToPlanStructure()takes
the root of the parsed workflow fragment and creates the
plan structure. Figure 4 shows the IPlanSolution structure
for the example of Figure 2. Each activity at the same level
of nesting in the workflow occurs in the same time step. The
activities that are nested directly inside a flow all occur in
the same time step following the step containing the flow.
Activities that are nested inside a sequence are mapped to
subsequent time steps.

0: INSTALLJ2EEBestSell[Flow]
1: INSTALLApplicationServer[Sequence]

INSTALLDatabaseServer[Sequence]
2: INSTALLOSRedHatLinux73[Invoke]

INSTALLOSAIX52[Invoke]
3: INSTALLASWAS51[Invoke]

INSTALLDBMSDB2UDB81[Invoke]
4: INSTALLServletBestsell[Invoke]

INSTALLTables[Flow]
5: INSTALLOrders[Invoke]

INSTALLOrderline[Invoke]
INSTALLItem[Invoke]
INSTALLAuthors[Invoke]

Figure 4: The BPEL4WS workflow as an IPlanSolution plan
structure. Action types are in brackets.

The procedure also computes state-dependency links be-
tween the basic activities of the workflow, which become the
(executable) actions of the plan as is shown in Figure 5. The
links denote that a state is preserved from the producer ac-
tivity to the consumer activity. If the same state will hold
for multiple consumers, as for example in the case of aflow,
the corresponding links are said to haveequivalent causa-
tion. State-dependency links can be derived directly from
BPEL4WS synchronization links, e.g., those that lead to

IAAI-05 / 1571



Install-ServletBestsellin the example, or are derived from
the semantics of the structural activities. Activities nested
within flow will have the same starting state, whereas ac-
tivities nested withinswitchandpick have different starting
states. The ending state of a preceding basic activity is the
starting state of the next basic activity inside asequence. An
init action that precedes every action and agoal action that
succeeds every action in the plan are also added. They rep-
resent initial and goal states similar to the init and goal plan
steps in a partial-order plan.

Install-OSRedHatLinux Install-WAS51

Install-

ServletBestSell

Install-OSAIX

Install-
DBMSDB2UDB81

Install-Authors

Install-Orders

Install-Orderline

Install-Item

init
goal

a

b

c

d

e

f

Figure 5: State-dependency links of the example. Two
groups of links with equivalent causation occur, illustrated
by two types of dashed lines.

If user-supplied action specificationsA are available, the
pre- and postconditions are directly associated with the ac-
tions in the plan. Otherwise, they are derived byDeriveAc-
tivitySpecifications()explained below.

Deriving Action Specifications
The analyzer has only access to syntactic structural infor-
mation plus some limited semantic knowledge of the un-
derlying workflow model. Whereas explicit pre- and post-
conditions would have provided detailed information about
the dependencies of actions in a plan, only very limited de-
pendencies can be derived from the links and the seman-
tics of structured activities. Thus, complete insight intothe
causalities underlying a plan is impossible. For example,
there is no way to discover properties such as that “the same
postcondition of a producer is used by multiple consumers”.
With explicit pre- and postconditions, the producer would
have a postcondition that is the precondition of all the con-
sumers. The state-dependency links have unique, but arbi-
trary names and thus do not allow us to further reason about
the states. Consequently, the computed action specifications
may contain pre- and postconditions that are neither neces-
sary nor sufficient. The analysis may derive more precondi-
tions than necessary because all conditional dependenciesof
aswitchactivity are considered as its required preconditions.
The postconditions may not be sufficient because there is no
guarantee that full causation of an activity is available inthe
given workflow. However, the pre- and postconditions serve
as a good starting point for considering the role of an activity
in the workflow and hence for providing metadata.

Figure 6 describes the procedure for basic activities. We
interpret state-dependency links as a possible causal depen-
dency on states before and after an action. The precondi-
tions of the earliest action(s) can be interpreted as the initial

Function: DeriveActivitySpecifications
Input: P - Workflow,L - Set of links
Output: A - Action Specification with pre- and postconditions

01. For each basic activityn in P

02. Createa, a specification corresponding ton
03. Populatea as follows:
04. For each link inL whosesourceis n

05. Include the link’s name in postconditions ofa

06. End-for
07. For each link inL whosetarget is n

08. Include the link’s name in preconditions ofa

09. End-for
10 Adda in A

11. End-for
12. ReturnA

Figure 6: Derivation of action specifications.

conditions on which the plan is applicable and the postcon-
ditions of the latest action(s) are interpreted as the goalsthat
the workflow supports. The following pre- and postcondi-
tions are derived for the actionInstall-ServletBestSell:

Action (Install-ServletBestSell)
:parameters ()
:precondition: a & b & c & d & e
:postcondition: f

Pre- and postconditions of subplans, which represent
those parts of a plan that are nested within a particular struc-
tured activity, e.g., the flows or sequences contained in the
example, can be derived by common methods of temporal
projection (Nebel & Bäckström 1994). In addition, we dis-
tinguishstructural pre- and postconditions, which contain
the names of activities that are nested inside a structural ac-
tivity. This analysis yields more information about what a
structured activity actually does. An exception are basic
activities of typereceive, which specify the waiting of the
workflow for a message sent by a partner—its name is added
to the structural preconditions.

Action (InstallApplicationServer[Sequence])
:parameters ()
:preconditionweakest projected preconditions . . .
:structural precondition
:postconditionstrongest projected postconditions . . .
:structural postcondition

Install-OSRedHatLinux[Invoke]
Install-WAS51[Invoke]
Install-ServletBestSell[Invoke]

Figure 7: Action specification for activity Se-
quence:InstallApplicationServer.

Figure 7 shows the specification for the sequential ac-
tivity InstallApplicationServer. The structural precondition
is empty as there is no nestedreceiveactivity. The struc-
tural postconditions contain the names of the three nested
basic activities. The “normal” pre- and postconditions are
calculated from the pre- and postconditions of the nested
activities—they are omitted from the figure due to space re-
strictions.

Deriving Plan Metadata
Given the plan and the (possibly derived) action specifica-
tions, various methods are used inAnalyzePlanInternal()to

IAAI-05 / 1572



analyze the plan. We currently supportstructural analysis
of a given plan and acomparative analysis, which compares
the plan with other plans available from the plan repository.
Additional analysis methods, e.g., taking into account ex-
ecution behavior, can easily be added, but depend on the
CHAMPS application.

Structural Plan Analysis determines the following prop-
erties for a plan:

1. Length of the planas the total number of time steps.

2. Concurrency of the planas the average and maximum
number of parallel actions in the time steps.

3. Exposed postconditions: postconditions that are not con-
sumed in the next step after being produced are undesir-
ably exposed.

4. The duration of a postcondition is the number of time
steps between its producer and consumer.

5. A plan issatisfiedif all of its actions are satisfied. An
action is satisfied if all its preconditions are supported by
links from some other action.

6. A plan is justified if all its actions are remote-linked to
the goal action, i.e., there is a path of links between each
action and the goal action and no action is redundant.

7. A plan is safe if all its links are safe, i.e., not
deleted/clobbered by a negative postcondition of another
action (threat) between its producer and consumer steps.

8. A plan isminimally correctif it is safe, satisfied and jus-
tified.

9. A plan has acritical condition (edge)if it is only sup-
ported by one producer.

10. A plan has acritical action (node)if at least one of its
preconditions is critical.

Properties 1 and 2 give statistics about the plan. Prop-
erties 3 and 4 are very helpful when a plan spans multiple
environments, e.g., machines, and when it can have security
implications. Properties 5 and 6 follow the terminology and
definitions given in (Kim, Gil, & Spraragen 2004), Prop-
erty 7 is standard from partial-order planning while Prop-
erty 8 summarizes the collective validity of Properties 5 to7.
We have defined the last two properties to obtain insight into
the most crucial elements of the plan. This list is by no
means complete, and more properties can be added depend-
ing on the application. Additional structural properties,such
as finding the most constrained actions having the largest
number of pre- and used postconditions, can be easily com-
puted.

For our example plan in Figure 2, the intermediate plan
representation illustrated in Figure 5 is generated along with
the action specifications. The result of the structural analysis
is shown in Figure 8. Further details at individual action or
link levels are also provided by the analysis, but not shown
here.

Information obtained by the plan analysis can now be
used as metadata to manage the plan. Salient features of
the processing that can also be used as metadata are:

* Analysis performed at Thu Jan 06 17:28:35 IST 2005
—————————————————–
* Plan analysis completed = true
* Is plan minimally correct ? = true
* Time taken for analysis = 0

DETAILED REPORT BELOW:

* Avg. concurrent actions in plan = 3.0
* Max. concurrent actions in plan = 4.0

* Plan length = 6
* Min. length branch = 4
* Min. sequential plan length = 6
* Max. sequential plan length = 6

* Total conditions not consumed = 0.0
* Total conditions consumed = 9.0
* Total duration of consumed conditions = 13.0
* Detailed consumed & exposed report:
a, duration = 1; b, duration = 1
c, duration = 1; d, duration = 1
...

* Are actions of the plan justified ? = true
* Are links of the plan satisfied ? = true
* Are links of the plan safe ? = true

* Critical actions =
Install-WAS51, Install-DBMSDB2UDB81, Install-ServletBestSell
Install-Orders, Install-Orderline, Install-Item, Install-Authors

* Critical predicates =
links a, b, c, ...

Figure 8: Output of structural analysis.

1. Properties of a set of states as metadata. New state-
dependency links were created to make the ordering (and
thereby causation) among actions explicit. The links rep-
resent states between actions and new metadata involving
properties of possible states can be recorded, e.g., equiva-
lent causation.

2. The specifications of actions and their properties as meta-
data. ActionsInstall-Orders, Install-Authors, Install-
Item, andInstall-Orderlineare executed in the same con-
text (pre- and postconditions). Hence, they may be per-
forming similar things and, if additional metadata sug-
gests, they may be interchangable.

3. New statistics from analysis output as metadata.Install-
ServletBestSellis the most constraining action. This is
deducible by a simple count of the number of pre- and
postconditions of an action.

As noted in the introduction, the benefit of our approach
is that the metadata is automatically produced and hence,
uniform and reproducible, as the plan may get altered over
time.

Comparative Plan Analysis Plan Analysis can also be
performed using a repository of previously stored plans,
which may optionally have been annotated with metadata
from previous analyses. Some of the interesting analyses in
the presence of other plans are:

1. Plans that achieve similar goals.

2. Plans that share actions.

3. Plans that were derived from workflows of similar struc-
ture.

4. Plans that share metadata.

IAAI-05 / 1573



Similarity information is either explicitly available from
some metadata annotations, where it was perhaps provided
by a human, or it must be computable from the information
contained in the plan, its action specifications, and the se-
mantics of the underlying workflow language. In our appli-
cation, we retrieve similar plans by querying the plan repos-
itory, which returns all plans matching the query. We de-
scribe the repository architecture and its querying process in
more detail below.

Plan Repository
For AI planning research, plans are isolated objects. In plan-
ning applications, plans must usually be associated with ad-
ditional information in order to make them usable in the
real world. For example, our CM workflows represented
in BPEL4WS must be associated with web service specifi-
cations in the WSDL standard (Christensen & others 2002),
XML schema, and metadata that determines when a plan
is considered for execution or when its life cycle expires.
The plan repository supports such associations and allows
plans to be grouped in folder-like structures. Figure 9 shows
the association of BPEL4WS documents with documents of
other types and the maintenance of the association links be-
tween these documents in a descriptor document.

Metadata - XML(s)

Partner Links - WSDL(s)

Public Interface - WSDL

Message Types - XSD(s)

Organization

0..1

0..*

0..*

0..*

0..1Plan

BPEL

Descriptor

XML

Figure 9: Putting plans into context by associating informa-
tion in the repository.

Figure 10 shows the architecture of the repository (Van-
hatalo 2004). The query engine and data persistence mech-
anism are pluggable components. In the current prototype
implementation, all information is persisted in a file system,
but a database will be used in the future. The CHAMPS
application, Planner4J, and the Plan Analysis component
manipulate the plans as Java objects. The repository pro-
vides the serialization mechanism for these objects using the
Eclipse Modeling Framework (Eclipse-Org. 2004) with the
advantage that any application can work with the informa-
tion stored in the repository without being aware of its inter-
nal serialization which is hidden by the repository API.

As a novel feature, the repository API provides an object-
oriented query mechanism, which allows applications to
query items in the repository without knowing how these
items are physically stored. The current implementation
uses query engines based on the Object Constraint Language
(OCL) (Warmer & Kleppe 2003). This design frees develop-
ers from the XML burden and allows them to concentrate on
the object model of the application, which they usually know
very well. A major advantage of OCL over XQuery is its

Eclipse

Repository API

Repository GUI

CHAMPS

External

Query Engine

EMF / XSD / (SDO)

SWT / JFace

File

System
Java OCL

Data Handler

Query Engine 

Adapter

Figure 10: Repository architecture showing components and
the technology used.

ability to navigate in the data model following all the associ-
ations in an object model, while XQuery forces any applica-
tion to formulate its query based on the tree structure of the
underlying serialization-specific XML schema. The repos-
itory works with two OCL engines–an open-source OCL
query engine from the University of Kent (Akehurst & Pa-
trascoui 2004) and an IBM-internal OCL query engine.

Using the Kent OCL engine, the querying performance
of the repository was tested on a sample collection of 165
BPEL4WS workflows associated with 1056 other XML doc-
uments occupying approx. 5 MB on the hard disk. On an
IBM ThinkPad A31p laptop with 1 GB of main memory and
an Intel Pentium 4 (1.70GHz) processor, 165 workflows can
be queried within 2.8 sec. The time needed to query the files
increases linearly with the number of files. This is a satisfac-
tory performance for our prototype when taking into account
that so far no database or indexing mechanisms are used.

Using Metadata to Manage the Plan Life Cycle
The repository groups each plan (in our case a BPEL4WS
workflow) and its metadata into a folder-like structure called
an organization. The organizations form a tree structure
similar to a directory structure of a file system. This enables
the storage of related plans under the same organization sub-
tree, and speeds up queries by focusing on particular subsets
of organizations.

Often a plan is searched from the repository based on
the metadata that is stored in a separate document. The
query mechanism takes this into account, thus enabling a
query into the metadata, but returns a reference to the re-
lated plan instead of the reference to the metadata satisfying
the query. Instead of references, the EMF objects, e.g., the
entire BPEL4WS plan, can directly be returned for further
processing, e.g., plan execution.

As an example query, we search for all plans that con-
tain the Install-ServletBestSellactivity and that are mini-

IAAI-05 / 1574



mally correct. To answer this query, plan as well as metadata
documents must be queried. First, the plans containing the
Install-ServletBestSellactivity are found by executing the
following OCL query over all the plans in the repository:

context process::TProcess inv:
TActivity.allInstances()->exists(a |
a.name=’Install-ServletBestSell’)

The query parameters are set such that for each matching
plan a reference to its metadata is returned as the query re-
sult. Second, we query this subset of metadata with an OCL
query that finds all the minimally correct plans:

context planner::PlannerMetaData
inv: self.minimallyCorrect

The query parameters are now set such that the plans that
are associated with the matching metadata document are re-
turned. This flexibility of the query mechanism allows appli-
cations to easily inspect, retrieve, replace plans stored in the
repository, and to reorganize the repository organizations.

Conclusion and Future Work
In this paper, we identify open AI research problems by dis-
cussing an autonomic computing application that requires
solutions for plan analysis and plan life-cycle management.
We demonstrate the need to look at plans beyond their syn-
thesis and to develop techniques that help to manage the life
cycle of plans within an application and based on the context
of their usage. We discuss that plans must be analyzed that
have no explicit action model, initial state and goals, and
which may be the outcome of an unknown planning system
(be it human or domain-dependent)—which is in major con-
trast to current AI planning solutions. We investigate and
extend plan analysis techniques that automatically generate
metadata annotations of plans. To the best of our knowledge,
metadata annotations to drive the life cycle of plans have not
been considered so far.

In particular, we consider more expressive representations
of plans in the form of workflows, which contain nested ac-
tivities and expressive control structures. The analysis in-
volves evaluating a plan in isolation and by comparison with
a collection of previous plans. A plan repository is pre-
sented that allows an application to organize large sets of
plans and that provides expressive query and retrieval mech-
anisms, which can exploit the metadata associated with a
plan. The interaction of plan analysis and plan life-cycle
management using the repository is discussed within an au-
tonomic computing application.

Future work will concentrate on increasing the range of
analyses and improved tool support. We are exploring tech-
niques to provide insight into the execution aspects of plans.
Moreover, the development of an integrated environment
for analyzing plans, selecting metadata, and querying plans
from a repository will be pursued further.

References
Akehurst, D., and Patrascoui, O. 2004. Ob-
ject constraint language library. Technical report,
http://www.cs.kent.ac.uk/projects/ocl/index.html.

Christensen, E., et al. 2002. The web services description
language WSDL. http://www.w3.org/2002/ws.
Curbera, F., et al. 2002. Business process execution
language for web services (bpel4ws). http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.
Eclipse-Org. 2004. Eclipse modeling framework.
http://www.eclipse.org/emf/.
Fu, X.; Bultan, T.; and Su, J. 2004. Analysis of interacting
bpel web services. In13th International World Wide Web
Conference (WWW’04). ACM Press.
Garland, A., and Lesh, N. 2002. Plan evaluation with in-
complete action descriptions. In18th National Conference
on Artificial intelligence, 461–467. AAAI Press.
Kambhampati, S. 1990. A classification of plan modifica-
tion strategies based on coverage and information require-
ments. InAAAI 1990 Spring Symposium on Case Based
Reasoning.
Keller, A.; Hellerstein, J.; Wolf, J.; Wu, K.; and Krishnan,
V. 2004. TheCHAMPS system: Change management with
planning and scheduling. InProceedings of the IEEE/IFIP
Network Operations and Management Symposium.
Kim, J.; Gil, Y.; and Spraragen, M. 2004. A knowledge-
based approach to interactive workflow composition. In
ICAPS-04 Workshop on Planning and Scheduling for Grid
and Web Services.
Myers, K. 2004. Toward a theory of qualitative reasoning
about plans. InICAPS-04 Workshop on Connecting Plan-
ning Theory with Practice.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection.Artificial Intelligence
66(1):125–160.
Pollack, M. E. 1992. The uses of plans.Artificial Intelli-
gence57(1):43–68.
Srivastava, B.; Bigus, J.; and Schlosnagle, D. 2004. Bring-
ing planning to autonomic applications with able. In1st
Intl. Conf. on Autonomic Computing (ICAC’04), 154–161.
Srivastava, B. 2004. A software framework for applying
planning techniques. InProc. Knowledge Based Computer
Systems, Hyderabad. Also as IBM Res. Report RI04001.
TPP-Council. 2002. Transaction processing performance
council benchmark W specification (web commerce) v1.8.
http//www.tpc.org/tpcw.
Vanhatalo, J. 2004. Building and querying a repository
of BPEL process specifications. Master’s thesis, Helsinki
University of Technology, Finland.
Warmer, J., and Kleppe, A. 2003.The Object Constraint
Language - Getting Your Models Ready for MDA. Pearson
Education, Inc., MA, USA.
Yaman, F.; Adali, S.; Nau, D.; Sapino, M.; and Subra-
manian, V. 2004. Plan databases: Model and algebra. In
Proc. International Conference on Foundations of Informa-
tion and Knowledge Systems (FoIKS 2004).

IAAI-05 / 1575


