Building Applications Using End to End Composition of Web Services

Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran Karnik, Arun Kumar,

Ashish Kundu, Anupam Mediratta, Sumit Mittal and Biplav Srivastava
IBM India Research Laboratory
Block 1, II'T, New Delhi 110016, India
{avikas,cgirish,kdasgupta kneeran,kkarun,kashish,anupamme,sumittal ,sbiplav } @in.ibm.com

Description

Web services have received much interest in industry due to
their potential in facilitating seamless business-to-business
or enterprise application integration (S. Staab et al. 2003;
Srivastava & Koehler 2003). Web services offer standard-
ized interface description, discovery (using a registry like
UDDI) and messaging mechanisms. Also, the program-
ming tools and runtime environments for web services have
now matured. A component-oriented software development
approach where each piece of software is wrapped as a
web service would offer substantial benefits in application
integration and we demonstrate this for a mobile service
provider scenario.

Given the intense competition in the telecom sector, mo-
bile telephony service providers need to continually develop
compelling applications to attract and retain end-users, with
quick time-to-market. Often, if a competitor introduces a
new service, the service provider must offer a similar or
better service within days/weeks, to avoid losing customers.
Also, a service provider can attract enterprise customers by
offering custom-developed value-added services that lever-
age its telecom and IT infrastructure. Enterprise customers
typically offer significantly higher margins than consumers,
and are thus more attractive. Service providers therefore
need tools and standards-based runtime platforms to quickly
develop and deploy interesting applications for their clients.
This would assist in their transition towards “on demand”,
responsive businesses.

Mobile user applications often rely on several, relatively
simple building blocks — user profile look-ups, address
books, location-tracking services, accounting and billing
services, etc. Many of these building blocks are already
in place, but they are not easy to reuse and integrate into
new applications because they are not built using standard-
ized frameworks or component models. This leads to high
development costs, and substantial time-to-market for new
services. This could be alleviated by building applications
using the service-oriented architecture (SOA) paradigm, us-
ing web services as the underlying abstraction.

Two different approaches have been taken to standardize
and compose web services. The business world has adopted

Copyright (© 2005, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.

a distributed systems approach in which web service in-
stances are described using WSDL, composed into flows
with a language like BPEL ,and invoked with the SOAP pro-
tocol. Academia has propounded the Al approach of for-
mally representing web service capabilities in ontologies,
and reasoning about their functional composition using goal-
oriented inferencing techniques from planning (Mcllraith,
Son, & Zeng 2001). These approaches by themselves are
piecemeal, and insufficient. The former has focused on the
execution aspects of composite web services, without much
consideration for requirements capture and the development
process. The latter approach has stressed the feasibility of
service composition based on semantic descriptions of ser-
vice capabilities, but its output cannot be directly handed off
to a runtime environment for deployment.

Our service creation methodology, based on web ser-
vice composition techniques, consists of the following steps
(Agarwal et al. 2005):

1. Service Representation: Representing the available ser-
vices and their capabilities.

2. Requirements Specification: Specifying the desired func-
tionality of a new service.

3. Composition: Constructing a composition of available
services that provides the desired functionality.

4. Composite Service Representation: Representing the
new composite service and its capabilities so that it can
be programmatically deployed, discovered and invoked.

Our system takes an end to end view that synergistically
combines the Al approach and the distributed programming
approach currently adopted by academia and industry re-
spectively. It drives the composition process right from
specification of the business process, through creation of de-
sired functionality using planning techniques, through gen-
eration of a deployable workflow by selection and bind-
ing of appropriate service instances, to finally deploying
and running the composite service. This integrated solution
achieves the best of both worlds and provides scalability to
the composition process. We have built a service creation
environment that realizes this approach in terms of the fol-
lowing phases of composition:

1. Logical Composition: This phase provides functional
composition of service types to create new functionality

AAAI-05 Intelligent Systems Demonstrations/ 1672

Service
Specification

1Service Creation
Domain
Ontology

Environment

Logvlca
Composer
Abstract
Workflow (Plan)
y‘3|ca
Composer

Deployable
Workflow

A
‘ Execution Environment ‘

Figure 1: System Overview

that is currently not available.

2. Physical Composition: This phase enables the selection
of component service instances based on non-functional
(e.g. quality of service) requirements, that would then be
bound together for deploying the newly created composite
service.

This basic approach to automating the process of service
creation is illustrated in Fig. 1. A Service Registry con-
tains information about services available in-house as well
as with participating 3rd-party providers. The capabilities
of each available service type are described formally, using
domain-specific terminology that is defined in a Domain
Ontology. When a new service needs to be created, the
developer provides a Service Specification to the Logical
Composer module. Driven by the specified requirements,
the Logical Composer uses generative planning-based auto-
mated reasoning techniques to create a composition of the
available service types. Its goal is to explore qualitatively
different choices and produce an abstract workflow, i.e. a
plan (assuming a feasible plan exists) that meets the speci-
fied requirements.

In order to turn the plan into a concrete workflow that can
be deployed and executed, specific instances must be chosen
for the component services in the plan. The Physical Com-
poser uses scheduling and compilation techniques in select-
ing the best web service instances to produce an executable
workflow. The focus is now on quantitatively exploring the
available web service instances for workflow execution. It
queries the registry for deployed web service instances, to
accomplish this task.

The workflow generated by the service creation environ-
ment must then be deployed onto a runtime infrastructure,
and executed in an efficient and scalable manner. This is
especially important in environments like that of a mobile
service provider, where the number of end-users is likely to
be very high. The state of the art is to execute the workflow
using a workflow engine such as WebSphere Process Chore-
ographer?, with data flowing back and forth from this engine

http://www.sof tware.ibm.com/wsdd/zones/was/wpc.html

to the component web services. Our Execution Environ-
ment instead orchestrates the workflow in a decentralized
fashion, with partitions of the flow executing concurrently,
in network-proximity with the component services they in-
voke. These flow partitions are generated automatically by
a Decentralizer tool, using static analysis of the input BPEL
flow. The communication amongst these partitions is de-
signed to minimize network usage, while retaining the orig-
inal flow semantics. This, in conjunction with the added
concurrency, results in better scalability and performance.
For more details on our Execution Environment, please re-
fer to (Chafle et al. 2004). The demo focuses on the Logical
and Physical composition stages.

In summary, we demonstrate an end to end working proto-
type of how web services composition can be leveraged for
business process integration by synergistically combining
the strengths of goal-oriented reasoning and performance
driven instance selection (Agarwal et al. 2005) by: (a) On-
tology matching, composition at the type level with service
matchmaking (b) Composition at the physical level with in-
stance selection (c) Deployment onto a decentralized work-
flow orchestration infrastructure. In Al planning, the po-
tential advantage of resource abstraction, whereby causal
reasoning is decoupled from resource reasoning, is well-
established (Srivastava, Kambhampati, & Do 2001). Our
work can be seen as applying the same idea to web services
composition. Specifically, we differentiate web services at
the twin levels of web service types and instances. Our
phased approach is easier for the user to work with and lim-
its the impact of frequent deployment and runtime changes
on the goal-driven composition.

References

Agarwal, V.; Dasgupta, K.; Karnik, N.; Kumar, A.; Kundu,
A.; Mittal, S.; and Srivastava, B. 2005. A service creation
environment based on end to end composition of web ser-
vices. In Proceedings of the 14th International World Wide
Web Conference, Japan.

Chafle, G. B.; Chandra, S.; Mann, V.; and Nanda, M. G.
2004. Decentralized Orchestration of Composite Web Ser-
vices. In Proceedings of the 13th International World Wide
Web conference, NewYork.

Mcllraith, S.; Son, T. C.; and Zeng, H. 2001. Semantic
Web Services. IEEE Intelligent Systems, Special Issue on
the Semantic Web. 16(2):46-53.

S. Staab et al. 2003. Web services: Been there, done that?
IEEE Intelligent Systems 72—-85.

Srivastava, B., and Koehler, J. 2003. Web Service Com-
position - Current Solutions and Open Problems. ICAPS
2003 Workshop on Planning for Web Services.

Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001.
Planning the project management way: Efficient planning
by effective integration of causal and resource reasoning in
RealPlan. Artificial Intelligence 131(1-2):73-134.

AAAI-05 Intelligent Systems Demonstrations / 1673

