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Reasoning plays an important role in many activities
which involve intelligence, and it may be anticipated that
automated reasoning will play a significant role in many ap-
plications of artificial intelligence. The importance of devel-
oping methods of automating reasoning has been recognized
since the inception of research on artificial intelligence. One
fruitful approach to this problem is to use the language and
methods of symbolic logic. Since a great variety of problems
can be expressed in symbolic logic, progress in developing
general purpose reasoning tools based on symbolic logic has
the potential to contribute to progress in many realms of ar-
tificial intelligence.

Work on automated deduction using symbolic logic has
been progressing steadily, but in recent years such work
has been presented primarily at conferences on automated
deduction (such as (Kirchner & Kirchner 1998; Ganzinger
1999; McAllester 2000; Voronkov 2002; Mayer & Pirri
2003; David Basin 2004)) rather than at conferences on arti-
ficial intelligence. While such work often focuses on prov-
ing theorems, it should be noted that procedures for automat-
ically proving theorems can play crucial roles as inference
mechanisms in more general automated reasoning tools.

We provide a demonstration of the TPS automated Theo-
rem Proving System. This system can be used to prove the-
orems of type theory, which is also known as higher-order
logic and which includes first-order logic. In a practical
sense type theory has greater expressive power than first-
order logic, and it is well suited to the formalization of vari-
ous disciplines, including mathematics and fields which use
mathematics. For example, inductive definitions can be ex-
pressed in a very simple and natural way in type theory.
Also, in type theory one can quantify over functions, such
as functions mapping states to states.

Our demonstration includes explanations of the notations
used by TPS, which are based on a formulation of type the-
ory (the typed A-calculus) which was introduced by Alonzo
Church (Church 1940) and is explained further in the text
(Andrews 2002).

TPs has been developed over several decades in collab-
oration with Dale Miller, Frank Pfenning, Sunil Issar, Carl
Klapper, Dan Nesmith, Hongwei Xi, Matthew Bishop, and
Chad E. Brown. TPS produces formal proofs (in natural de-
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duction style) in first- and higher-order logic interactively,
semi-automatically, and automatically. It excels at prov-
ing theorems of higher-order logic automatically (Bishop &
Andrews 1998; Bishop 1999a; 1999b; Andrews, Bishop, &
Brown 2000; Brown 2002; 2004).

A general discussion of automated theorem proving in
type theory may be found in (Andrews 2001). In automatic
mode, TPs first searches for an expansion proof, which
expresses in a nonredundant way the fundamental logical
structure underlying various proofs of the theorem, and then
transforms this into a proof in natural deduction style.

The purely interactive commands of TPS for applying
rules of inference are available in a separate program called
ETPS (Educational Theorem Proving System) which is used
by logic students to construct formal proofs.

Both TPS and ETPS are available from the web. For
more information see (Andrews et al. 1996), (An-
drews et al. 2004), (Andrews & Brown 2005), and
http://gtps.math.cmu.edu/tps.html.

Examples

Most of the examples to which TPS has been applied thus far
have a mathematical flavor, though nothing prevents it from
being applied to other types of examples. Some examples of
theorems which TPS can prove automatically are:

X5305:
VSoa- ~ 3goaa¥ foa- f € $DJja-sjNgj = f
This expresses Cantor’s Theorem that every set s has more
subsets than members. It asserts that there is no function g
which maps s onto the collection of all subsets of s. TPS’s
search for a proof leads it to the same clever diagonal argu-
ment as was used by Cantor to prove this theorem.

THM15B: Vf,,. 3¢, ITERATE+ fg Adx,. gz =
2 AVz,.gz=2Dz=2x]D3y.fy=y
This theorem asserts that if some iterate of a function f has
a unique fixed point, then f has a fixed point. An iterate of a
function f which maps a set to itself is a function which ap-
plies f repeatedly. For example, if g(z) = f(f(f(x))),
then g is an iterate of f. [ITERATE+ fg] means that g
is an iterate of f. ITERATE+ is defined (inductively) as
[)‘ foza/\gozavpo(aoz)'pf /\vjoza[pj o p. f © ]] > pg}
A fixed point of f is an element y such that f(y) = y. Inthe
process of proving THM15B, TPs applies its general logical
procedures to produce an inductive proof that g(f(z)) =
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f(g(x)) when g is an iterate of f. No knowledge or heuris-
tics about induction or iterates are built into TPS except for
the inductive definition of the set of iterates. TPS uses this
result to conclude that if x is the unique fixed point of g (so
g(x) = x), then g(f(x)) = f(g9(x)) = f(x),s0 f(x)is
also a fixed point of ¢, so f(z) = x, and f has a fixed point.

THM136:
V 7'00a TRANSITIVE [TRANSITIVE-CLOSURE 7]
This asserts that the transitive closure of a relation is transi-
tive. TRANSITIVE is defined as
ARoaaVXoVYVZy. RXY AN RY Z D> RX Z|,
and TRANSITIVE-CLOSURE is defined as
A ToaaA TaA YoV Poaa-7 € PATRANSITIVE p D payl.
When searching for proofs of theorems which contain defi-
nitions (abbreviations), it is a significant problem to decide
which instances of the definitions to instantiate (expand).
Often, one needs to instantiate some, but not all, of them,
and if one does instantiate all of them, one can cause the
search space to expand in a very undesirable way. This theo-
rem provides an example of this problem. TPS finds a proof
for this theorem by using a technique called dual instanti-
ation (Bishop & Andrews 1998). It involves making each
instance of a definition accessible to the search procedure
in both its instantiated and its uninstantiated form, and let-
ting the search procedure decide which to use, with a bias in
favor of the uninstantiated form.

THM145B: [TRANSITIVE <] AV S| Vza[s2z D
2 < Ugoa) 8] NVjaVka|[sk D k < j] D Us < j]
D VisaVaVyalr < y D fz < fy] D Jwa.w <
fwunN fu<w
This asserts that in a complete lattice (with [Uy(oa) Soa) as
lub s,q), every monotone function has a fixed point. TPS
finds the fixed point [ Uy (oa)-A Ua- % < faa u].

THM587: IND A PLUS-INDEQS 0,5,
SVaVy.lz+yl+y=z+[y+ vy
IND (the principle of induction) is defined as
VDo-p0, A Va,[px D p.S,z] D Vzpz, and
PLUS-INDEQS (the inductive definition of +) is de-
finedas A0, A S,,.Vn,[n+0 = n]AVaYm,.n+ Sm =
S[n + m]. It is natural and appropriate to try to prove
this by induction, but neither induction on x nor induction
on y works without some auxiliary lemmas. TPS decides
to derive Vu,.[z, + y.] + v = = + [y + u] from the
hypotheses by induction on u, and then derives the desired
conclusion from this.
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