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Abstract

For this demonstration, participants have the opportu-
nity to control a humanoid robot located hundreds of
miles away. The general task is to reach, grasp, and
transport various objects in the vicinity of the robot. Al-
though remote “pick-and-place” operations of this sort
form the basis of numerous practical applications, they
are frequently error-prone and fatiguing for human op-
erators. Participants can experience the relative diffi-
culty of remote manipulation both with and without the
use of an assistive interface. This interface simplifies
the task by injecting artificial intelligence in key places
without seizing higher-level control from the operator.
In particular, we demonstrate the benefits of two key
components of the system: a video display of predicted
operator intentions, and a haptic-based controller for au-
tomated grasping.

Introduction

“Thousands of teleoperators have been built and used suc-
cessfully.... But these teleoperators are poor and incom-
plete extensions of man, with only a small fraction of man’s
dexterity and man’s many degrees of freedom.” This quote
from Johnsen and Corliss (1971) describes the state-of-the-
art thirty years ago for robot control in uncertain environ-
ments. Although dramatic advances in hardware and intelli-
gent control have been made over the past several decades,
the essence of this quote remains true today. Robotic manip-
ulation of the world (or some distant world) is primitive in
comparison to what people could do themselves.

But despite its limitations, teleoperation remains the best
way to solve many robotics tasks that lack the relative cer-
tainty of factory automation. Examples include hazardous
waste disposal, planetary and undersea exploration, robot-
assisted surgery, and emerging applications such as elder
care. What these examples have in common is the need to
exploit the unique capabilities of both humans and robots;
neither can go it alone.
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The fundamental problems with remote manipulation are
at least twofold: (1) From the perspective of automatic con-
trol, variation in circumstances from one instance of a task
to the next makes general-purpose, automated solutions dif-
ficult to devise, even for a restricted class of tasks. The chal-
lenge for roboticists and artificial intelligence researchers is
to manage uncertainty. (2) From the perspective of manual
control, current forms of teleoperation suffer from consid-
erable mismatch between robots and human operators, in
terms of morphology, sensory input, and actuation. This
leads to movements that are fatiguing for the operator due
to excessive muscular and cognitive load.

Bridging the gap between automatic and manual con-
trol, is human supervisory control, whereby a human op-
erator intermittently takes control of a process that is oth-
erwise controlled by a computer (Sheridan 1992). Super-
visory control involves both autonomy and intelligence, al-
though the latter is normally attributed solely to the hu-
man operator. Approaches that also emphasize machine
intelligence include systems for mixed-initiative control,
e.g., (Adams, Rani, & Sarkar 2004), and adjustable auton-
omy, e.g., (Kortenkamp, Schreckenghost, & Bonasso 2000;
Scerri, Pynadath, & Tambe 2002). One goal of these ap-
proaches, and of supervisory control in general, is to devise
effective ways to shift more responsibility from human to
machine.

Demonstration Overview

Our recent work has focused on teleoperation (1) as a conve-
nient way to program robot skills by demonstration, and (2)
as an effective way to convey operator intentions for mixed-
initiative control. The latter is the focus of this Intelligent
Systems demonstration, and participants have the opportu-
nity to control Dexter, the UMass Amherst humanoid robot
shown in Figure 1.

Commands are sent to the robot using a glove-like input
device and standard TCP/IP communications. Feedback for
the operator takes the form of a real-time video display of
the robot’s workspace in Amherst. Limited bandwidth and
communication delays exacerbate the previously mentioned
problems with teleoperator interfaces, and we expect partic-
ipants to have considerable difficulty manipulating objects
with Dexter’s hands. Our goal for the demonstration is to
show that a relatively small amount of artificial intelligence
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Figure 1: Dexter, consisting of two seven-degree-of-
freedom manipulators, integrated three-fingered hands
with high-resolution tactile sensors, and a four-degree-of-
freedom stereo camera head. Not shown are several web-
cams and a glove-like input device that enable remote oper-
ation over the Internet.

can go a long way toward mitigating operator errors as well
as fatigue.

The first source of intelligence is a predictor display that
augments the video stream with important information for
human decision-making. Predictor displays are typically
used to overcome communication delays by overlaying, for
instance, a wire-frame model of the robot’s future move-
ments, e.g., (Kim & Bejczy 1993). However, predictor dis-
plays are also useful for conveying information about the
human operator (Rosenstein, Fagg, & Grupen 2004).

More specifically, we use a set of closed-loop controllers
to abstract and explain observed operator behavior in terms
of actions that the robot can generate itself (Fagg et al.
2004). In this context, controllers are passive entities—
monitors—that quantify the match between observed oper-
ator actions and putative operator intentions. In our imple-
mentation, we convey the degree of match between actions
and intentions by the size of circles superimposed in the op-
erator’s video display. After visual confirmation of the best
match, the operator turns control over to an automated sys-
tem that runs the corresponding controller as an active entity,
thereby generating movement to satisfy the intention.

Our controllers for automated movement implement a
second source of artificial intelligence, first by using a com-
puter vision system to guide coarse-grained movement of
Dexter’s hand toward the object that the operator intends to
manipulate. Once the fingertips make contact with the ob-
ject, a closed-loop controller then performs fine-grained mo-

tion of the arm and fingers to establish a robust grasp based
on the “feel” of the object rather than pre-specified geomet-
ric models (Platt Jr., Fagg, & Grupen 2002). The operator
can resume control at any time or else rest until the auto-
mated grasp completes, at which time he or she performs
the next phase of the task. Even a small amount of auton-
omy, injected at the right time, can have a dramatic effect on
the overall quality of the human-robot interaction.
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