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The objective of this project is to control water delivery and 
distribution at Nooksack Falls Hydroelectric Station (NFHS) 
in order to maximize efficiency of the system, thereby 
increasing energy generation. Two machine learning 
algorithms will be applied. (1) Q-learning - a reinforcement 
learning approach to obtain a set of roughly optimal 
configurations. (2) Recurrent Neural Network (RNN) - rough 
configurations gathered by the Q-learning agent will be used 
to train the RNN.  The RNN will refine these configurations 
as well as enabling lifelong learning. The significance of this 
project is to demonstrate the practical utility of the machine 
learning techniques described above when applied to real-
world processes such as NFHS. 

Utility process control has advanced towards increasing 
productivity and reliability, while decreasing operating costs 
by replacing humans with automated systems. When NFHS 
began operation in 1906, it required 24-hour manned 
operation, a job shared by several men with families living 
on site. In the 1970s a system of electromechanical relays, 
DC positioning motors, and low pressure hydraulics were 
added, decreasing the need for operator attendance. In 2003 a 
more sophisticated set of controls were added including: high 
pressure hydraulics, a programmable logic controller (PLC), 
and a host of relay and analog sensors providing information 
on plant state. 

The evolved control configuration outlined above is 
typical of modern utility process control. Sensor inputs, along 
with a control scheme devised by plant operators and 
engineers are programmed into the PLC, which operates the 
plant according to adjustable set-points. This works well for 
static processes, those without a great variance of operating 
conditions. However, NFHS is a dynamic process. 
Fluctuating river flow conditions, waterborne debris, 
equipment wear, and mechanical problems are variables 
impacting NFHS's energy production. For the process to 
remain optimal, set-points should be adjusted accordingly.  

 

Figure 1. Kilowatt Production 
When discussing optimization it is helpful to revisit the 

main goal: maximize energy (kilowatt) production given 
current resources. According to the formula in Figure 1, an 
increase in variables Head (H), Flow (Q), or Efficiency (E) 
will increase kilowatt production. Optimization for NFHS 
can be divided into two pieces relative to these variables: H 
and Q - delivery of water, E - distribution of water.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. NFHS Process Diagram 
Water delivery is optimized by maximizing both H and 

Q from Figure 1. Figure 2 shows how H and Q relate to 
NFHS. Head is the vertical height from the water level in 
the Surge Tank to the level where the water leaves the 
runner nozzle. Qout is the flow rate of water passing through 
the penstock that is available to be distributed amongst 
runners R1-6. Head is adjusted by controlling the water level 
in the Surge Tank.  This is accomplished by adjusting Qout 
via nozzles N2-6. Qtanks is the maximum rate at which water 
flows between the tanks. This is controlled primarily by the 
difference in tank levels, also known as the pressure 
gradient. As water is diverted from the river it travels a 
distance of 2,600 feet between the dam and the turbine, 
losing an elevation of 206 feet. This diversion includes a 
combination of box section flume, wood pipe, steel pipe, 
and unlined rock tunnel. The wood and steel pipe section 
existing between the two tanks (see Qtanks in Figure 2) is the 
most restrictive section of water conveyance and limits the 
flow available to the Surge Tank regardless of river flow or 
Qin. Let's look at some cases that show how these variables 
interact in order to clarify the problem.  

Case 1: Due to recent heavy rainfall, river flow is higher 
than normal. The extra river flow increases Qin which 
increases water level at the Rock Trap, increasing the 
pressure gradient between the Rock Trap and the Surge 
Tank. The increased pressure differential allows Qtanks to 
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equal or exceed maximum turbine flow. This allows us to set 
the Surge Tank level (head water level set-point) to its 
maximum (maximizing H) and open up all adjustable nozzles 
N2-6 (maximizing Qout). 

Case 2: Due to cold temperatures and lack of 
precipitation Qin is lower than normal.  From years of 
experience, the station operator knows that the current Qin 
will sustain a Surge Tank level of 50% and a Qout of 40%. 
Although this is sustainable it is not necessarily optimal.  The 
optimal solution lies in one of two directions: lose Head and 
gain Qout, or lose Qout and gain Head. Located somewhere in 
the middle of this ratio lies an optimal configuration. 

Water distribution is optimized by maximizing efficiency 
of the turbine. As shown in Figure 2, the system contains a 
single turbine with six runners R1-R6, each with an upper and 
lower nozzle. All lower nozzles and R1's upper nozzle are 
fixed. That is, 100% open at all times. Upper nozzles N2-N6 
are adjustable, capable of 0-100% flow adjustment. The goal 
of water distribution is to control flow through the nozzles 
N2-6 in order to match Qin and maintain the current head 
water level set-point. Each runner is of varying condition 
(wear) and efficiency (different design) so when Qout is 
limited (all the nozzles are not wide open), E will increase if 
water flow is distributed to the most efficient runners, and 
more energy will be produced.  

The process described previously is one with thousands 
of optimal configurations as a function of river input.  Were 
this process to exist in a controlled environment with no 
equipment unknowns it would be relatively simple to 
perform physical calculations to obtain optimal 
configurations. The fact that NFHS exists in an uncontrolled 
environment (e.g. debris from river can enter system, river 
flows can vary widely) using legacy equipment with 
unknowns (e.g. individual runner efficiency) makes machine 
learning an ideal solution for determining optimal operation 
set-point configurations.   

The first step in learning is to create a set of roughly 
optimal configurations. Since we have no data a priori we 
take a reinforcement learning approach, making Q-learning 
an ideal candidate. With Q-learning, the outcome associated 
with taking a particular action in any state encountered is 
learned through dynamic trial-and-error exploration of 
alternative actions and observation of the relative outcomes. 
Two agents will be used: Agent one is responsible for water 
delivery, controlling the Surge Tank level (Head) and being 
rewarded for sustainable increases in Qout * Head (see Figure 
2). Agent two is responsible for water distribution, 
controlling adjustable nozzles N2-6 and being rewarded for 
increases in E. Although the agents will be learning in 
tandem, since each agent is completely independent of the 
other they will not share information. 

One major shortcoming for Q-learning in this project is 
its inability to handle continuous outputs. To overcome this 
limitation the output from adjustable nozzles N2-6 are divided 
into a series of discrete outputs. For example, N2's 0-100% 
analog range is converted to discrete output range 
{0%,10%,20%,...,100%}. This may seem like an undesirable 
loss in resolution, and it is, but as resolution decreases the 
probability of the Q-learning algorithm's success increases. 
Once we have these roughly optimal discrete valued 
configurations they may be used to train their respective 
RNN implementation.  

The motivation for switching to a neural network 
implementation is to achieve a greater resolution in optimal 
set-point configurations. Neural networks with one or more 
hidden units have been proven capable of approximating 
any bounded continuous function to within an arbitrarily 
small error (Cybenko 1989), (Hornik, Stinchcombe, and White 
1989). It is easy to see that the continuous output setting of 
N2=83.4% will allow for a more optimal configuration 
than the discrete output setting of N2=80%.   

When choosing amongst varying neural network 
architectures, it was important to keep limitations of the 
training data in mind. Since NFHS exists in an uncontrolled 
environment, it is improbable that the data provided by the 
Q-learning agents accounts for all possible environmental 
conditions. For example, debris could make its way through 
the system and partially clog N3. This effectively reduces 
the efficiency of R3. It is important for the network to be 
able to notice this change in R3 and adjust optimally.  

 

 

 

 

 

 

 

 

 

 

Figure 3. NFHS RNN Architecture 
The RNN architecture shown in Figure 3 is an ideal 

candidate due to its feedback loop, allowing for information 
to be temporarily memorized by the network. This feedback 
loop paradigm, in combination with pre defined internal 
rules, and an external performance input, allows the RNN 
architecture to provide lifelong learning behavior. Let's look 
at the RNN for nozzle control more specifically.  If a clog 
occurs in N3 kilowatt output will decrease to a lower than 
expected value.  This causes our external performance input 
to produce a low value which in turn violates an internal 
performance rule of the network.  The network then 
switches into learning mode, in which it randomly modifies 
individual nozzle settings in an attempt to improve kilowatt 
output.  This occurs for a predefined period of time or until 
the performance input no longer violates the internal 
performance rule.  
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