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Abstract 
Maintaining environmental stability in a dynamic system is 
a difficult challenge. In your living room, when you set your 
thermostat to 68 degrees the actual temperature cycles 
above and below 68 degrees. We attempt to use a Recurrent 
Neural Network (RNN) in an Aquarium Control System that 
reduces such environmental swings (see Figure 1). 

Introduction  

Artificial Neural Networks (ANNs) have been heavily used 
in control systems.  Early work with ANNs to fine tune a 
controller in highly non linear environments is surveyed by 
Panos Antsaklis [4].  More recent work uses Recurrent 
Neural Networks (RNN) in areas from network restoration 
when faced with physical changes [6] to scheduling jobs in 
a machine flow shop [7].  Neural Networks provide the 
control system with the ability to adapt to unseen 
circumstances.  More efficient learning algorithms have 
been developed to provide the performance needed for 
real-time systems. 

The Aquarium Control System (ACS) is a project that uses 
middleware to control and monitor environmental aspects 
of an Aquarium. This project will adapt the behavior of 
this control system using a RNN.  The RNN will learn and 
reduce these environmental swings in the aquarium.  

The Problem Addressed 

The Aquarium Control System uses a Programmable Logic 
Controller (PLC) to control the instruments and actuators 
attached to the system.  The environmental conditions it 
controls are the temperature, the salinity and the ph level of 
the aquarium.  The PLC is programmed with the thresholds 
for each of these readings. When the reading crosses a 
programmed threshold the corresponding actuator is turned 
on.  There is a lag between the time the reading crosses a 
threshold and the amount of time it takes for the actuators 
to change to be picked up in the readings.  
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Figure 1. Environmental Swings 

By the time the sensor picks up the changes the actuators 
have been on for too long and the environmental condition 
continues to rise or fall. This project will use a RNN to 
learn these curves and minimize the swings.  

Project Design 

In setting up the problem, one of the major challenges was 
that the desired output of the system is not known.  What is 
known is that the system should turn off the heater before 
the temperature reaches the threshold. Looking at the 
graph, one can observe that minimizing the swings in the 
graph is minimizing the rate of change of the measured 
input. Intuitively it makes sense that if the rate of change 
was increasing, the system needed to take action to slow it 
down. To come up with the desired output and the network 
error calculation, we calculate the error proportional to the 
slope of the input lines.   

We break up the graph into four quadrants: (1) the reading 
is above the threshold with a positive slope, (2) the reading 
is above the threshold with a negative slope, (3) the 
reading is below the threshold with a negative slope and 
(4) the reading is below the threshold with a negative 
slope.  In the 1st and 3rd quadrant, we know what the 
desired output is, either the temperature is hot and getting 
hotter and the heater should be shut off, or cold and getting 
colder and the heater should be turned on.  In the 2nd and 
4th quadrants however, we know we want to take the 
opposite action before we get to the threshold, but we don’t 
know when.  In these cases we train the network to take the 
opposite action proportional to the slope.  For example, in 
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the 2nd quadrant, where the temperature is falling, we 
calculate the instance error, with the following formula: 

Μ−−= )0)(1( OOOe kkkk , where M is the slope of 

the input line, and the expected output is 0(heater off). As 
the rate of change increases, the correction on the network 
to drive the output to 0 increases. 

The feedback in the RNN allows the network to encode 
some knowledge of previous states in the system. It has 
been shown that the memory encoded in the weights 
degrades over time, and “forgets” what has happened in the 
distant past.  There has been much work to look at these 
issues. [2,3,5].  Back propagation Through Time(BPTT) 
has shown promise in learning time series data.[3]  BPTT 
turns a feedback system into a feed forward system by 
calculating the output and error over time.   

Our network has three inputs: temperature, salinity and ph 
readings.  There are three output nodes for each of the 
actuators: heater, fresh water pump, and CO2 injector.  
There is one hidden layer, and a feedback loop from each 
of the hidden nodes back to itself.  The network uses the 
BPTT algorithm in the online phase of the project. Figure 2 
shows the architecture of the RNN.  
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Figure 2. RNN Design 

Approach 
Initialization Phase. When the system starts, the network 
will be trained on a training set, which uses the thresholds 
programmed into the PLC. By the end of the initialization 
the temperature output will output close to 1 when the 
temperature input is above the threshold and close to 0 
when it is below the threshold.  The same will be true for 
the salinity, and nitrogen output.  During this phase the 
hidden layer won’t have feedback and the network will be 
trained using Back propagation.  The initialization phase of 
the project has been implemented. 

Online Phase. Once the error of the system on the training 
set reaches an acceptable level, it will shift to the online 
phase.  During this phase the outputs of the network will be 
sent to the PLC to control the actuators.  The network will 
continue to learn, however the error calculation will 
change.  The error of the system will be calculated based 
on the difference of the n reading with the n-1 reading, for 
all of the sensors.  The correction of the system will be 
proportional to the difference in the two readings.  The 
system will be attempting to learn to minimize the 
variation in the readings. During this phase the feedback is 

added to the hidden layer and the BPTT algorithm will be 
used in a continuous learning mode. 

Testing 
We expect to find that the system using the neural 
networks performs better than the conventional approach. 
We will measure this success as the area above and below 
the threshold for the temperature, salinity and ph level for a 
24 hour period.   

We will run the system with the PLC operating in normal 
mode, based on the programmed thresholds, for a 24 hour 
period.  We will compute the areas for the three readings. 
We will then run the system with the RNN added to the 
control system and the areas above and below the threshold 
will be computed again.  

Conclusions 

Recurrent Neural Networks provide a promising technique 
for adapting control systems.  The Aquarium Control 
System, which has an open distributed architecture, is an 
excellent test bed for putting these assertions to the test.  
We expect to find that using the RNN will be successful in 
adapting the systems behavior to reduce the amplitude of 
the swings in temperature, salinity and ph levels. In future 
projects we would like to try other RNN algorithms and 
topologies.  We would also like to work on different error 
calculations for the online phase of the project. 
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