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Introduction

The ability to use tools is one of the hallmarks of intelli-
gence. Tool use is fundamental to human life and has been
for at least the last two million years. We use tools to extend
our reach, to amplify our physical strength, to transfer ob-
jects and liquids, and to achieve many other everyday tasks.
A large number of animals have also been observed to use
tools (Beck 1980). Some birds, for example, use twigs or
cactus pines to probe for larvae in crevices which they can-
not reach with their beaks. Sea otters use stones to open
hard-shelled mussels. Chimpanzees use stones to crack nuts
open and sticks to reach food, dig holes, or attack predators.
These examples suggest that the ability to use tools is an
adaptation mechanism used by many organisms to overcome
the limitations imposed on them by their anatomy. Despite
the widespread use of tools in the animal world, however,
studies of autonomous robotic tool use are still rare.

This abstract describes the empirical evaluation of one
specific way of representing and learning the functional
properties or affordances (Gibson 1979) of tools. A longer
version of this paper appears in (Stoytchev 2005).

Behavior-Grounded Affordance
Representation

The tool representation described here uses a behavior-based
approach (Arkin 1998) to ground the tool affordances in the
existing behavioral repertoire of the robot. The representa-
tion is learned during a behavioral babbling stage in which
the robot randomly chooses different exploratory behaviors,
applies them to the tool, and observes their effects on envi-
ronmental objects. The functionality of a tool is represented
with an Affordance Table of the form:

Grasping Behavior Exploratory Behavior Ostart Oend Replication

and its Parameters

and its Parameters Probability

In each row of the table, the first entry represents the
grasping behavior that was used. The second entry repre-
sents the exploratory behavior and its parameters. The next
two entries store the observation vector at the start and at the
end of the exploratory behavior. The last entry estimates the
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Figure 1: The figure shows the mobile manipulator and the
five tools used in the extension of reach experiments.

probability of replicating the observation vectors when this
sequence of behaviors is performed multiple times.

Experimental Environment

All experiments were performed using a CRS+ A251 manip-
ulator arm (Figure 1). The robot has 5 degrees of freedom
plus a gripper. In addition to that, the arm was mounted on
a Nomad 150 robot which allows the manipulator to move
sideways. The robot’s wrist, the tools, and the environmen-
tal object were color coded so that their positions can be
uniquely identified and tracked using computer vision. The
camera was mounted above the robot’s working area.

Five tools were used: stick, L-stick, L-hook, T-stick, and
T-hook (Figure 1). An orange hockey puck was used as the
environmental object (also called attractor). The choice of
tools was motivated by the similar tools that Kohler used in
his experiments with chimpanzees (Kohler 1931).

Exploratory Behaviors

Five exploratory behaviors were used: Extend arm, Contract
arm, Slide arm left, Slide arm right, and Position wrist. All
behaviors used here were encoded manually from a library
of motor schemas and perceptual triggers (Arkin 1998) de-
veloped for this specific robot. The behaviors result in dif-
ferent arm movement patterns as described below.
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The first four behaviors move the arm in the indicated di-
rection while keeping the wrist perpendicular to the table on
which the tool slides. These behaviors have a single param-
eter which determines how far the arm will travel relative to
its current position. Two different values for this parame-
ter were used (2 and 5 inches). The position wrist behavior
moves the manipulator such that the centroid of the attractor
is at offset (x, y) relative to the wrist.

Learning Trials

During the learning trials the robot was allowed to freely ex-
plore the properties of the tools. The exploration consists of
trying different behaviors, observing their results, and filling
up the affordance table. The initial positions of the attractor
and the tool were random. If the attractor was pushed out
of tool reach then it was manually placed in a new random
position. The learning time was limited to one hour per tool.
A good way to visualize what the robot learns is with
graphs like the ones shown in Figure 2. The figures show
the observed outcomes of the exploratory behaviors when
the T-hook tool was applied randomly to the hockey puck.
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Figure 2: Visualizing the affordance table. Each figure shows
the observed movements of the puck after a specific exploratory
behavior was performed multiple times. The start of each arrow
corresponds to the position of the puck in wrist-centered coordi-
nates (i.e., relative to the tool’s grasp point at the lower part of the
handle) just prior to the start of the exploratory behavior. The ar-
row represents the total distance and direction of movement of the
puck in camera coordinates at the end of the exploratory behavior.

Testing Trials

Two types of experiments were performed. They mea-
sured the quality of the learned representation and its adap-
tation abilities when the tool is deformed, respectively.
During testing trials, the best affordance for a specific
step in a tool task is selected using a greedy heuristic
search. MPEG movies from the experiments are available
at: (http://www.cc.gatech.edu/” saho/papers/AAAI_2005/).

Extension of Reach

In this experiment the robot was required to pull the attractor
over a color coded goal region. Four different goal positions
were defined. The first goal is shown in Figure 1 (the dark

square in front of the robot). The second goal was located
farther away from the robot. To achieve it the robot had to
push the attractor away from its body. Goals 3 and 4 were
placed along the mid-line of the table to the left and right of
the robot’s position shown in Figure 1.

In addition to that there were 4 initial attractor positions
per goal (located along the mid-line of the table, 6 inches
apart). The tool was always placed in the center of the ta-
ble. A total of 80 experiments were performed (4 goals x 4
attractor positions x 5 tools). The table below summarizes
the results. The values represent the number of successful
solutions per goal, per tool. Four is the possible maximum.

Tool Near | Far Left | Right
Goal | Goal | Goal | Goal
Stick 0 2 4 4
L-stick 4 2 4 4
L-hook 4 3 4 4
T-stick 3 3 4 4
T-hook 4 4 4 4

As can be seen from the table, the robot was usually able
to solve this task. The most common failure condition was
due to pushing the attractor out of tool’s reach. A notable
exception is the Stick tool which could not be used to pull
the object back to the near goal. The robot lacks the required
exploratory behavior (turn-the-wrist-at-an-angle-and-then-
pull) which can detect this affordance of the stick. Adding
the capability to learn new exploratory behaviors can resolve
this problem.

Adaptation After a Tool Breaks

The second experiment was designed to test the flexibility
of the representation in the presence of uncertainties. The
uncertainly in this case was a tool that can break.

To simulate a broken tool, the robot was presented with a
tool that has the same color as another tool with a different
shape. More specifically, the learning was performed with a
T-hook which was then replaced with an L-hook. Because
color is the only feature used to recognize tools the robot
believes that it is still using the old tool. The task of the
robot was the same as described in the previous subsection
(i.e., 16 experiments = 4 goals x 4 attractor positions).

The two tools differ in their upper right sections. When-
ever the robot tried to use affordances associated with the
missing parts of the tool they did not produce the expected
attractor movements. Thus, their probability of success was
reduced and they were excluded from further consideration.

The robot was successful in all 16 experiments.
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