
On the Use of Partially Ordered Decision Graphs
for Knowledge Compilation and Quantified Boolean Formulae∗

Hélène Fargier
IRIT-CNRS, Toulouse
email: fargier@irit.fr

Pierre Marquis
CRIL-CNRS, Université d’Artois, Lens

email: marquis@cril.univ-artois.fr

Abstract

Decomposable Negation Normal Form formulae
(DNNFs) form an interesting propositional fragment,
both for efficiency and succinctness reasons. A
famous subclass of the DNNF fragment is the OBDD
fragment which offers many polytime queries and
transformations, including quantifier eliminations
(under some ordering restrictions). Nevertheless, the
decomposable AND nodes at work in OBDDs enable
only sequential decisions: clusters of variables are
never assigned “in parallel” like in full DNNFs. This
is an serious drawback since succinctness for the
full DNNF fragment relies on such a “parallelization
property”. This is why we suggest to go a step further,
from (sequentially) ordered decision diagrams to
(partially) ordered, decomposable decision graphs,
in which any decomposable AND node is allowed,
and not only assignment ones. We show that, like
the OBDD fragment, such a new class offers many
tractable queries and transformations, including quan-
tifier eliminations under some ordering restrictions.
Furthermore, we show that this class is strictly more
succinct than OBDD.

Introduction
Knowledge compilation is considered in many AI applica-
tions where short on-line response times are expected. It
consists in turning (during an off-line phase) the initial data
into a form that ensures the tractability of the requested
queries and transformations. This principle is for instance
used in many state-of-the-art approaches to product config-
uration where the set of possible products is compiled (Falt-
ings & Weigel 1999)(Pargamin 2002)(Amilhastre, Fargier,
& Marquis 2002).

The class of decomposable negation normal form formu-
lae (DNNFs, (Darwiche 2001)) is a propositional fragment
which is considered as an interesting target for knowledge
compilation since it offers many tractable queries while be-
ing very succinct. A famous subclass of DNNF is the OBDD
∗We would like to thank the anonymous reviewers for many

helpful comments. Pierre Marquis has been partly supported by the
IUT de Lens, the Région Nord/Pas-de-Calais through the IRCICA
Consortium, and the European Community FEDER program.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fragment, which offers more tractable queries and transfor-
mations, especially quantifier eliminations (under some or-
dering restrictions) (Coste-Marquis et al. 2005). The price
to be paid concerns the succinctness issue: the OBDD frag-
ment is strictly less succinct than the DNNF one, which
means that some propositional formulae have OBDD rep-
resentations exponentially larger than their DNNF represen-
tations.

OBDDs are Boolean decision diagrams in which decision
nodes are sequentially ordered. This is the very property
that allows the class to be polynomially closed for quan-
tifier eliminations under some ordering restrictions. Other
structures exist that are able to take advantage of the de-
composability property, like DNNFs do, and that share with
OBDDs a property of ordering. Let us mention cluster trees
(Pargamin 2002), BDD trees (McMillan 1994) tree-driven
automata (Fargier & Vilarem 2004), synthesis trees (Falt-
ings & Weigel 1999) and AND/OR search graphs (Dechter
2004). Notice that the first two fragments are propositional
ones while the last ones allow non Boolean domains. Note
also that, in these five languages, decision variables are not
linearly ordered.

The present paper aims at defining and investigating (par-
tially) ordered, decomposable graphs in the NNF frame-
work. The basic motivation behind this work was to define
a proper superset of OBDD , in which decomposability is
exploited in a less restricted way. In the following, we show
that like OBDD, the class of such (partially) ordered, de-
composable graphs enable many polytime queries and trans-
formations, including quantifier eliminations under some re-
strictions, while being strictly more compact than OBDD.
For space reasons, only some of the proofs are sketched.

DNNFs and OBDDs
Let X be a finite set of propositional variables. We denote
by φ[xi←ψ] the formula obtained by replacing in the propo-
sitional formula φ all the occurrences of the propositional
variable xi by the propositional formula ψ and call it the
conditioning of φ by xi ← ψ. In the following, condition-
ing is used under the form φ[xi←true] and φ[xi←false] (this
corresponds to the instantiation of xi to a truth value).

NNFs A formula in NNF is a rooted, finite directed
acyclic graph (DAG) where each leaf node is labelled by

42

true, false , ¬x, or x with x ∈ X . Each internal node is
labelled by ∧ (AND node) or ∨ (OR node) and can have
many children.

In NNFs, a leaf is thus either a constant or a literal – in
the latter case, it represents the assignment of a variable.

Assignment An assignment node N is an AND node of
the form x ∧ α (resp. of the form ¬x ∧ α).

One can assume without loss of generality that α is not of
the form y or ¬y with y ∈ X (if α is a literal, it can always
be replaced by the assignment node α ∧ true). With this
proviso, the notations var(N) = x and tail (N) = α are not
ambiguous.

The term decision node is dedicated to OR nodes which
give an alternative between possible assignments of the same
variable (case analysis):

Decision node A decision node N is an OR node of the
form (¬x ∧ α) ∨ (x ∧ β).1 var(N) denotes the variable x.

A binary decision diagram (BDD) is an NNF formula in
which all the AND nodes are assignment nodes and all the
OR nodes are decision nodes. The success of BDDs is due
to two successive subclasses, free BDDs and ordered BDDs,
which are BDDs respectively satisfying the read-once prop-
erty and the ordering property w.r.t. a total order — the latter
implying the former:

Read-once property An NNF formula φ is read-once iff
for any assignment node N in φ, var (N) does not occur in
tail(N).

Ordering Let < be a strict order on X . An NNF formula
φ is ordered w.r.t. < iff for every pair of decision nodes
M and N in φ, if M is an ancestor of N in φ, then
var (M) < var (N).2

Let us introduce some notations. Let BDD be the subset
of NNF of formulae that are BDDs, FBDD the subset of
BDD formulae that are read-once, OBDD< the subset of
FBDD of formulae being ordered w.r.t. a total order < and
OBDD the union of all OBDD< (for every <).

The success of the OBDD class is due to the fact it offers
many tractable queries, especially consistency (CO), validity
(VA), clausal entailment (CE), implicant check (IM), model
counting (CT), model enumeration (ME). Moreover, equiv-
alence (EQ) and entailment (SE) are tractable for OBDD<:
deciding whether two formulae from OBDD< are logically
equivalent is in P, as well as deciding whether an element of
OBDD< entails another one. This latter class is also poly-
nomially closed for (SFO) (single variable forgetting), (∧
BC) (bounded conjunction) and (∨ BC) (bounded disjunc-
tion) transformations and linearly closed for the condition-
ing transformation. This just means that computing a for-
mula from the class which is equivalent to the result of the

1Such a node is sometimes noted by ite(x, α, β).
2Note that such ordering property is more general than the one

considered in (Darwiche & Marquis 2001) since any NNF formula
and any strict order (not necessarily total ones) are considered.

transformation given some formula(e) from the class can be
achieved in polynomial (resp. linear) time.

The tractability of (EQ) for OBDD< is due to the fact
that, once a total order < is fixed, two formulae from
OBDD< are equivalent whenever their reduced forms are
identical, and the reduction transformation can be achieved
in polynomial time.

(Darwiche & Marquis 2001) have shown that the
tractability of OBDD (and more generally of FBDD) for
many queries is due to two general properties any FBDD
satisfies: decomposability and determinism.

Decomposability An NNF formula φ is decomposable iff
for each AND node N in φ, the conjuncts of N do not share
any variable.

Determinism An NNF formula φ is deterministic iff for
each OR node N in φ, the disjuncts of N are pairwise
logically inconsistent.

DNNF (resp. d −NNF) denotes the subset of NNF of
formulae satisfying decomposability (resp. determinism).
d −DNNF denotes the subset of NNF where both prop-
erties are satisfied.

(CO), (CE) and (ME) (resp. (VA), (IM), (CT)) have been
proved to be tractable for DNNF (resp. d −DNNF), and
OBDD is obviously a subclass of d − DNNF . Decision
diagrams in their more general definition (i.e. BDDs) are
not decomposable, since nothing forbids in the expression
of (x∧α)∨(¬x∧β) that x occurs in α or β. Once the read-
once property has been added, i.e. when one moves from
BDD to FBDD or OBDD , decomposability is recovered.

Observe that the decomposability property is extremely
simple in OBDD and FBDD : for formulae from those
classes, an AND node has necessarily two children, a lit-
eral, and a decision node; so, decomposability implies
that Boolean variables are necessarily assigned sequentially.
Clusters of variables are never assigned “in parallel” (i.e. in-
dependently from each other), like in full DNNFs. This is an
serious drawback, since the succinctness of DNNF relies on
such a “parallelization property”.

Decision Graphs
In order to avoid this restriction, we need to relax one part of
the basic requirement on decision diagrams, i.e. the fact that
the tail of an assignment node is either a decision node or a
constant. In the following decomposable decision graphs,
the OR nodes will still be required to be decision nodes,
but AND nodes can be of any form, provided that they are
decomposable. For instance, a decomposable AND node
N ∧M , where N and M are decision nodes, can be the tail
of an assignment node. Technically, this amounts to using a
less demanding property than the one considered for BDDs.

Definition 1 (Simple decision) An NNF formula φ satisfies
the simple decision property iff for every node N in φ, if N
is an OR node, then it is a decision node.

Definition 2 (DGs and DDGs)
DG is the subset of NNF formulae satisfying the simple

decision property.

43

¬x true
�� @@
∧

x

¬y false
,, @@
∧

y true
�� TT
∧

""
HHH
∨

¬z false
,, ee
∧

z true
�� TT
∧

""
HHH
∨

�����
XXXXX
∧

(((((((((TT
∧

((((((((((
HHH
∨

Figure 1: A DDG representing x⇒ (y ∧ z).

DDG is the subset of DG formulae satisfying decompos-
ability.

DDGs combine the advantages of FBDDs and the “paral-
lelization property” of DNNFs. Non decomposable decision
graphs exist but do not have a great interest. An example of
a DDG representing the formula x ⇒ (y ∧ z) is given in
Figure 1.

Clearly enough, BDDs are decisions graphs and FBDDs
are decomposable decision graphs. To be more precise, we
have:

Proposition 1
BDD ⊂ DG.
OBDD ⊂ FBDD ⊂ DDG ⊂ d−DNNF .

From (Darwiche & Marquis 2001), we immediately get:

Corollary 1 (CO), (CE), (ME), (VA), (IM) and (CT) are
tractable for DDG .

Now, the previous definition of ordering applies to deci-
sion graphs:

Definition 3 (Ordered DDGs) Let < be a strict order on
X (not necessarily a total one). O −DDG< is the set of all
the DDG formulae ordered w.r.t. <. O −DDG is the union
of all O −DDG< (for every <).

Unlike the OBDD< case, the definition does no longer
imply that if y < z, then a given decision path either does
not make any decision on y or makes a decision on z after the
decision on y. Variables y and z can be assigned in parallel
branches. This is because of the possible presence of some
decomposable AND nodes.

Enabling partial orders < in O −DDG< is a way to
achieve more compact representations thanks to conditional
independence (e.g. in the formula x ⇒ (y ∧ z), y is inde-
pendent from z given x and this is exploited in the repre-
sentation depicted in Figure 1). The price to be paid is that
no fragment O −DDG< is complete (i.e. enables the rep-
resentation of every propositional formula), whenever < is
not total (just consider the formula x ⇔ (y ⇔ z) in which
no variable is independent from another one given the re-
maining variable: such a formula cannot be represented in
O −DDG< when < is not total).

Observe that O −DDG and FBDD cannot be compared
w.r.t. set inclusion. For instance, x ∧ y is an O −DDG<

¬x true
,, @@
∧

x

¬z false

�� @@
∧

z true
,, SS
∧

���
aaa
∨ y
��

XXXXX
∧

¬y false

�� @@
∧

!!!
``````
∨

((((((((( SS
∧

((((((((((
HHH
∨

Figure 2: A second DDG (actually, an OBDD< formula)
ordered w.r.t. x < y < z and representing x⇒ (y ∧ z).

formula whatever <, but not an FBDD formula. On the
other hand, the FBDD formula

ite(x, ite(y, ite(z, 0, 1), 1), ite(z, 0, ite(y, 0, 1)))

is not an O −DDG formula.
Observe also that, unlike OBDD<, the canonicity of an

O −DDG< formula is not guaranteed any longer since the
way in which AND nodes partition the next variables is not
constrained. For instance, the order x < y < z allows sev-
eral representations of the formula x ⇒ (y ∧ z) (see Fig-
ures 1 and 2). As a consequence, the definition is not strong
enough to ensure the tractability of (EQ).

In order to deal with this problem, we introduce a more
restricted fragment. We first need to constrain further the
admissible orders:

Definition 4 (Tree orders) A strict order < on X is a tree
order iff (X, <min) is a tree where <min is the smallest bi-
nary relation on X w.r.t. ⊆ such that the transitive closure
of <min is <.

Obviously enough, every total order on X is a tree order.
We also need a stronger notion of ordering:

Definition 5 (Strong ordering) Let < be a tree order. A
NNF formula φ is strongly ordered w.r.t. < iff it is ordered
w.r.t. < and for every pair of variables y and z from X , if
z < y, then for every decision node N in φ s.t. var (N) = y,
there exists a decision node M in φ s.t. var (M) = z and M
is an ancestor of N .

Definition 6 (Strongly ordered DDGs) Let < be a tree or-
der. SO −DDG< is the set of all strongly ordered DDGs
w.r.t. <. SO −DDG is the union of all SO −DDG< (for
every tree order <).

Let us step back to the previous example as a matter of
illustration. The DDG of Figure 1 is not strongly ordered
w.r.t. x < y < z but it is strongly ordered w.r.t. the tree
order x < y and x < z.

Ordered fragments can be compared as follows:

Proposition 2
OBDD ⊂ SO −DDG ⊂ O −DDG.
For each total order < on X , OBDD< = SO−DDG<.

44



The strong ordering requirement being sufficient to fully
specify both the sequencing of decision nodes and the way
AND nodes separate the variables, it guarantees the exis-
tence of a unique reduced form. The reduction algorithm is
roughly the same as the one applying to OBDDs (see e.g.
(Sieling & Wegener 1993)). We have:

Proposition 3 (EQ) is tractable for SO −DDG<.

It can also be shown that SO −DDG< is polynomially
closed for variable forgetting (but it is not known to be poly-
nomially closed for negation). So, going from OBDD< to
SO −DDG<, one does not lose much in efficiency. Inter-
estingly, one can gain a lot in succinctness, as shown by the
following theorem.

Theorem 1 SO −DDG (and thus O −DDG) is strictly
more compact than OBDD .

Sketch of proof: It can be shown that any OBDD< formula
can be represented by a polyspace CSP automaton in the sense of
(Vempaty 1992) and reciprocally. The two classes are equivalent
in terms of spatial compactness. In (Fargier & Vilarem 2004) a
tree-structured CSP is presented that cannot be represented by any
polyspace CSP automaton. On the other hand, any tree-structured
CSP can be represented by a polyspace SO − DDG< formula
(with a log representation of its domains). So, there exists a for-
mula whose representation is of polynomial size in SO − DDG
but not in OBDD . �

Quantifier Elimination
We now focus on two further transformations (quantifier
eliminations) which prove useful for solving the valid-
ity problem for quantified boolean formulae, and can be
achieved efficiently when quantified O −DDG< formulae
are considered.

Quantified Boolean Formulae
A quantified Boolean formula (QBF) Φ is of the form
q1x1q2x2 . . . qnxnφ where φ is a usual propositional for-
mula built up from X and called the matrix of Φ.3 The prefix
q1x1q2x2 . . . qnxn consists of universal ∀ and existential ∃
quantifiers and propositional variables xi of X . In the fol-
lowing, we consider only polite and closed formulae, i.e. we
assume that two distinct quantifiers do not bear on the same
variable and that all the variables in φ are quantified. The
strict order induced by the prefix q1x1q2x2 . . . qnxn of such
a formula is x1 < . . . < xn.

The semantics of a closed QBF formula Φ is a truth value,
recursively defined as follows:

• if Φ does not contain variables (i.e. consists of connec-
tives and the constants true and false), its truth is defined
by the truth table for the connectives.

• A formula Φ = ∃xΨ is true iff Ψ[x←true] is true or
Ψ[x←false] is true.

• A formula Φ = ∀xΨ is true iff Ψ[x←true] is true and
Ψ[x←false] is true.

3In this paper, uppercase Greek letters Φ, Ψ, . . . will denote
QBFs, and lowercase letters φ, ψ, . . . propositional formulae.

The decision problem QBF ”Given a (prenex, closed, po-
lite) QBF Φ, is Φ true ?” is the canonical PSPACE-complete
problem. As such, many decision problems considered in
AI (e.g. deciding inference relations – like circumscription
or some paraconsistent inference relations, see (Egly et al.
2000) – or determining whether a plan exist for several kinds
of plans, see (Rintanen 1999)) can be reduced to it.

The restriction of QBF to instances whose matrices are
from OBDD< where < is the total order induced by their
prefixes has been shown tractable (Coste-Marquis et al.
2005). In the following, we show that this still holds for
ordered DDGs.

Last Variable Elimination in QBFs
Complete algorithms for QBF are based on two different
paradigms: branching, that is the key point of backtrack
algorithms, and quantifier elimination. Roughly, branch-
ing methods act on outermost quantifiers first while vari-
able elimination bear on the innermost ones first: they aim
at transforming the formula Φ involving a variable x into
another one that does not contain x but is equivalent to Φ.

Polytime quantifier elimination actually offers more than
solving the decision problem QBF, but enables the polytime
computation of solution policies for QBFs (roughly, one can
compute in polynomial time the truth value that must be
given to every existentially quantified variable y in Φ from
the truth values given to all the universally quantified vari-
ables preceding y in the prefix, so as to make Φ true). See
Proposition 3 in (Coste-Marquis et al. 2006).

When the variable to be eliminated is existentially quan-
tified, this amounts to an operation of forgetting (sometimes
also called ”existential abstraction”).

Definition 7 (Forgetting)
forget(φ, x) = φ[x←true] ∨ φ[x←false].

Proposition 4 Let Φ be a quantified Boolean formula of
the form q1x1 . . . qn−1xn−1∃xnφ. Φ is true iff q1x1 . . .
qn−1xn−1 forget(φ, xn) is true.

As such, the size of the formula forget(φ, x) is not signifi-
cantly greater than the one of φ (about twice as big) but it can
become huge after a repeated sequence of forgettings. More-
over, forget(φ, x) does not necessarily belong to the same
class as φ. For instance, if φ is a CNF formula, forget(φ, x)
is not. It should then be transformed into a CNF formula,
replacing the n1 clauses involving the literal x and the n2

clauses involving the literal ¬x by (at most) n1×n2 clauses
without x (obtained by resolution upon x). The CNF class
is thus polynomially (but actually not linearly) closed for
the forgetting operation of a single variable. A direct conse-
quence is that forgetting all the variables one after the other
can lead to an exponentially sized data structure. On the con-
trary, the DNF class as well as the Blake class (prime im-
plicates formulae) and the DNNF class are linearly closed
for variable forgetting. So, one can say that these classes are
tractable for variable forgetting while CNF is not (Darwiche
& Marquis 2001).

It must be noticed that quantifier elimination is not
sound in general for variables other than the most internal
one: ∀x1∃x2∀x3 φ is equivalent to ∀x1∃x2 φ[x3←true] ∧

45



φ[x3←false] but not to ∃x2∀x3φ[x1←true] ∧ φ[x1←false]. The
restrictions SAT and TAUT (the validity problem for proposi-
tional formulae) of QBF are very particular cases where any
variable can be chosen for elimination (since all variables
are quantified in the same way).

Obviously, Proposition 4 cannot be used would xn be uni-
versally quantified. One cannot forget universally quantified
variables but they must be ”ensured” thanks to an operation
dual to forgetting (this operation is sometimes called ”uni-
versal abstraction”).

Definition 8 (Ensuring)
ensure(φ, x) = φ[x←true] ∧ φ[x←false].

Proposition 5 Let Φ be a quantified Boolean formula of
the form q1x1 . . . qn−1xn−1∀xnφ. Φ is true iff q1x1 . . .
qn−1xn−1 ensure(φ, xn) is true.

CNF is linearly closed for variable ensuring: if φ is a
conjunction of clauses, computing a formula equivalent to
ensure(φ, xi) just requires to shorten the (non valid) clauses
of φ bearing on xi. Most of the state-of-the-art QBF solvers
dealing with CNF matrices take advantage of this property
when eliminating the internal ∀ quantifiers. Contrastingly,
neither DNNF nor DNF is polynomially closed for variable
ensuring unless P = NP (see (Coste-Marquis et al. 2005)).

Last Variable Elimination in DDGs
Single variable forgetting or ensuring is generally not a lin-
ear transformation for OBDDs or for O-DDGs. However,
such transformations can be achieved in linear time when
the last variable of the structure is considered.

Definition 9 (Final assignment node) An assignment node
is final iff its tail is a constant.

Definition 10 (Final variable) A variable x is final in φ iff
any assignment node in φ that bears on x is final.

An important property is:

Proposition 6 DDG , OBDD<, O −DDG< and
SO −DDG< are linearly closed for forgetting a final
variable and ensuring a final variable.
Sketch of proof: The key is that the forgetting/ensuring opera-
tions distribute over the binary connectives in DDGs, until reaching
the decision nodes that bear on the variable under concern:

• If N = α ∧ β is a decomposable AND node, then
forget(α ∧ β, x) ≡ forget(α, x) ∧ forget(β, x) and
is also a decomposable AND node. Indeed, if α
bears on x, β does not (decomposability assumption), so
forget(α ∧ β, x) ≡ (α[x←true] ∧ β) ∨ (α[x←false] ∧ β)

≡ β ∧ (α[x←true] ∨ α[x←false])
≡ β ∧ forget(α, x).

Similarly, when β bears on x we get forget(α ∧ β, x) ≡
α∧ forget(β, x). When neither α nor β bears on x, forget(α∧
β, x) ≡ α ∧ β. The three cases are then summarized by
forget(α ∧ β, x) ≡ forget(α, x) ∧ forget(β, x).

• If N = (y ∧ α) ∨ (¬y ∧ β) is a decision node, and x 6= y, then
forget((y ∧ α) ∨ (¬y ∧ β), x) ≡ (y ∧ forget(α, x)) ∨ (¬y ∧
forget(β, x)).

• If N = α ∧ β is a decomposable AND node, then ensure(α ∧
β, x) ≡ ensure(α, x)∧ensure(β, x). It is still a decomposable
AND node.

• If N = (y ∧ α) ∨ (¬y ∧ β) is a decision node, and x 6= y, then
ensure((y ∧ α) ∨ (¬y ∧ β), x)

≡ ((y ∧ α) ∨ (¬y ∧ β))[x←true]

∧((y ∧ α) ∨ (¬y ∧ β))[x←false]

≡ ((y ∧ α)[x←true] ∨ (¬y ∧ β)[x←true])
∧((y ∧ α)[x←false] ∨ (¬y ∧ β)[x←false])

≡ (y ∧ α[x←true] ∧ y ∧ α[x←false])
∨(y ∧ α[x←true] ∧ ¬y ∧ β[x←false])
∨(¬y ∧ β[x←true] ∧ ¬y ∧ β[x←false])
∨(¬y ∧ β[x←true] ∧ y ∧ α[x←false]))

≡ (y ∧ α[x←true] ∧ α[x←false])
∨(¬y ∧ β[x←true] ∧ β[x←false])

≡ (y ∧ ensure(α, x)) ∨ (¬y ∧ ensure(β, x)).

So, the forget (resp. ensure) operation for variable x
distributes over the connectives until either reaching a leaf
that does not bear on x (leaving it unchanged) or a deci-
sion node N on x – say N = (x ∧ α) ∨ (¬x ∧ β)). But
x is a final variable by hypothesis. Thus α and β are con-
stants. Then forget((x ∧ α) ∨ (¬x ∧ β), x) ≡ α ∨ β and
ensure((x∧α)∨(¬x∧β), x) ≡ α∧β. In other words, forgetting
(resp. ensuring) x amounts to replacing the decision nodes on x by
constants. These constants can then be propagated up in the graph
so as to simplify it. The bottom up propagation is done in linear
time with respect to the size of the graph, it does not increase its
size (but may rather decrease it) and does not change its properties:
the decision ordering is not changed, and the remaining nodes are
either decomposable AND nodes or decision nodes. �

The importance of the O −DDG fragment compared to
the full DDG one as to QBF comes from the following
lemma and theorem, based on Propositions 4, 5, and 6.

Lemma 1 If x does not have any successors w.r.t. <, then
it is a final variable for any formula from O −DDG<.

Theorem 2 Let < be any total, strict order on X . QBF.
The restriction of QBF to formulae with matrices from
O −DDG< and with prefixes inducing < is in P.

A Glimpse at Extended DDGs
In the previous sections, we have shown how OBDD can
be generalized, defining more compact but still efficient
classes of propositional formulae, namely O −DDG and
SO −DDG .

Other characteristics of decision diagrams can be en-
larged, without losing the tractability of the class for last
variable eliminations – for instance, one can introduce non-
decision OR nodes, provided that, like AND nodes, they are
decomposable. In the sequel, we focus on such extended de-
cision graphs and show how the tractability results for (CO),
(ME), (CE), (VA), (CD) and last variable eliminations can
be extended to them.

First, a new class of OR nodes can be straightforwardly
considered without questioning the distributivity of ensuring
over binary connectives offered by DDGs: decomposable
OR nodes.

Definition 11 (Decomposable OR node) An OR node is
decomposable iff its disjuncts do not share any variable.

Proposition 7 If α ∨ β is a decomposable OR node then
forget(α ∨ β, x) ≡ forget(α, x) ∨ forget(β, x) and
ensure(α ∨ β, x) ≡ ensure(α, x) ∨ ensure(β, x).

46



Hence the fragment of NNFs that are both OR and AND
decomposable gives rise immediately to a tractable restric-
tion of QBF. However, this fragment is not very interesting
since it contains only monotone formulae. A more interest-
ing fragment is obtained by enabling both decomposable OR
nodes and decision nodes:

Definition 12 (Extended DDGs) An extended, decompos-
able decision graph is an NNF formula in which every node
is either a constant, a decision node, a decomposable AND
node or a decomposable OR node.

Proposition 8 The class of extended DDGs is linearly
closed for final variable ensuring and for final variable for-
getting.
Sketch of proof: Propositions 6 and 7 show that both the
ensuring operation and the forgetting operation for x distribute
over binary connectives until a decision node on x is reached.
Such a node does not have any successor since x is final. The
decision node is then replaced by a constant. The simplification
by backward propagation of the constants is then performed. It
is linear in the size of the graph. Since this does not question
the properties of decomposability or decision, we get a (possibly
smaller) extended DDG. �

Now, a notion of ordered extended decision graph is ob-
tained in a straightforward way by adding the ordering re-
quirement. As a direct corollary of the previous proposition,
we get:

Corollary 2 Let < be any total, strict order on X . The re-
striction of QBF to formulae with matrices from the class of
extended DDGs that are ordered w.r.t. < and with prefixes
inducing < is in P.

Clearly enough, the class of extended DDGs is tractable
for (CO), (ME), (CE) and linearly closed for conditioning
since it is a subset of DNNF . It is also tractable for (VA)
since it is linearly closed for final variable ensuring.

Other Related Work and Conclusion
If we make abstraction of the domains arities and of the rep-
resentation of counter-models, it appears that SO −DDGs
are not completely unknown structures (but O −DDGs
are): they are equivalent to tree-driven automata (Fargier
& Vilarem 2004) and to AND/OR search graphs (Dechter
2004). Although also based on a tree structure, cluster trees
(Pargamin 2002) are slightly different: they use a hierar-
chy of arrays rather than a hierarchy of graphs. But it can
be shown that, compiling each array into a small OBDD,
each cluster tree can be turned into an equivalent polynomi-
ally sized SO −DDG formula. The converse transforma-
tion is more expensive in the worst case (since an OBDD
formula can account for exponentially many models). Fi-
nally, it seems that tree BDDs (McMillan 1994) form a dif-
ferent kind of data structure, in which the tree of variables is
used from the leaves to the root. This allows for a polytime
transformation for negation that is unlikely for O −DDG or
SO −DDG. On the other hand, tree BDDs are not known
as leading to a tractable restriction of QBF.

The contribution of the present paper is twofold. First,
we have formally defined several classes of decision graphs,

focusing on ordered and decomposable ones. We have
proved that they enable several polytime queries and trans-
formations, which shows them as interesting target classes
for knowledge compilation. Second, we have shown that
OBDD is not the most general propositional fragment
which is polynomially closed for final variable elimination:
decomposable AND nodes are not required to be limited to
assignment nodes and decomposable OR nodes can be al-
lowed while preserving this property. All these results con-
tribute to complete the knowledge compilation map from
(Darwiche & Marquis 2001), which is probably far from be-
ing exhausted.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSP - ap-
plication to configuration. Artificial Intelligence 135(1-
2):199–234.
Coste-Marquis, S.; Le Berre, D.; Letombe, F.; and Mar-
quis, P. 2005. Propositional fragments for knowledge com-
pilation and quantified boolean formulae. In Proceedings
of AAAI-05, 288–293.
Coste-Marquis, S.; Fargier, H.; Lang, J.; Le Berre, D.; ;
and Marquis, P. 2006. Representing policies for quantified
boolean formulae. In Proceedings of KR-06, to appear.
Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. In Proceedings of IJCAI-01, 175–
182.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.
Dechter, R. 2004. And/or search spaces for graphical mod-
els. Technical report, ICS Technical Report.
Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S. 2000.
Solving advanced reasoning tasks using quantified boolean
formulas. In Proceedings of AAAI-00, 417–422.
Faltings, B., and Weigel, R. 1999. Compiling constraint
satisfaction problems. Artificial Intelligence 115(2):257–
287.
Fargier, H., and Vilarem, M.-C. 2004. Compiling CSPs
into tree-driven automata for interactive solving. Con-
straints 9:263–287.
McMillan, K. 1994. Hierarchical representation of discrete
functions with application to model checking. In Proceed-
ings of CAV-94, 41–54.
Pargamin, B. 2002. Vehicle sales configuration: the cluster
tree approach. In Proceedings of ECAI’02 Workshop on
Configuration, 35–40.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intelligence Research
10:323–352.
Sieling, D., and Wegener, I. 1993. Reduction of OBDDs
in linear time. Information Processing Letters 48(3):139–
144.
Vempaty, N. 1992. Solving constraint satisfaction prob-
lems using finite state automata. In Proceedings of AAAI-
92, 453–458.

47


