
Length-Lex Ordering for Set CSPs

Carmen Gervet∗ and Pascal Van Hentenryck
Brown University, Box 1910, Providence, RI 02912

Abstract

Combinatorial design problems arise in many application ar-
eas and are naturally modelled in terms of set variables and
constraints. Traditionally, the domain of a set variable is spec-
ified by two sets (R,E) and denotes all sets containing R and
disjoint from E. This representation has inherent difficulties
in handling cardinality and lexicographic constraints so im-
portant in combinatorial design. This paper takes a dual view
of set variables. It proposes a representation that encodes di-
rectly cardinality and lexicographic information, by totally
ordering a set domain with a length-lex ordering. The solver
can then enforce bound-consistency on all unary constraints
in time Õ(k) where k is the set cardinality. In analogy with
finite-domain solvers, non-unary constraints can be viewed
as inference rules generating new unary constraints. The re-
sulting set solver achieves a pruning (at least) comparable to
the hybrid domain of Sadler and Gervet at a fraction of the
computational cost.

Introduction
Combinatorial design problems arise in a variety of applica-
tions in coding, sport scheduling, combinatorics, networking
and cryptography (Colbourn, Dinitz & Stinson 1999). Many
of these problems are NP-hard and are naturally modeled as
set CSPs. In other words, they typically feature set-variables
of fixed cardinalities and a variety of set-constraints such as
inclusion, disjointness, and intersection. Moreover, they are
often highly symmetric and hence lexicographic constraints
are a natural vehicle to reduce the search space.

Since their inception in constraint programming (Puget
1992; Gervet 1997), set solvers have used a subset-bound
representation for domains. A set domain is a pair (R, E)
–where R and E are sets– that denotes the set of sets
{s | R ⊆ s ⊆ U \ E}, where U is the set of all possible
elements. It is convenient for implementing inclusion and
disjointness constraints, but it faces inherent difficulties in
handling cardinality and lexicographic constraints. Indeed,
subset-bound domains are not expressive enough to repre-
sent cardinality or lexicographic information, which must be
represented as constraints. Moreover, these constraints can-
not be made bound-consistent and do not prune the search

∗Partly funded by the Royal Academy of Engineering.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

space effectively. The problem is further exacerbated by the
inherent difficulty of breaking symmetries in set CSPs as
shown in (Sellman & Van Hentenryck 2005). These limita-
tions have been recognized by several researchers. (Azevedo
& Barahona 2000) added a cardinality component to subset-
domains for their digital design applications and proposed
inference rules for pruning the search space using cardi-
nality information. Unfortunately, the only interactions be-
tween the cardinality and subset-bound components occur
upon instantiation. (Sadler & Gervet 2004) addressed this
limitation by proposing a hybrid set domain with three com-
ponents (SB, C, L), where SB is a subset-bound domain,
C is the cardinality information, and L is a co-lexicographic
representation of the domain. The consistency of the three
domains is maintained by intra-domain constraints. The hy-
brid domain strengthens constraint propagation in the pres-
ence of cardinality information, allows for more effective
symmetry-breaking, but has two limitations. First, the intra-
domain constraints are complex and computationally expen-
sive as they are polynomial in n = |U | which is typically
much greater than the cardinality k of the sets. Second, the
lexicographic ordering is only partially integrated with the
cardinality information, restricting the potential pruning of
cardinality constraints.

Note that 0-1 matrix models in (Frisch et al. 2002;
Hnich et al. 2004) can be used to encode the characteristic
function of the subset-bound domain and to state cardinality
and lexicographic constraints. However, the resulting repre-
sentation takes O(n) space and is equivalent to subset-bound
domains semantically and operationally. Finally, it is impor-
tant to mention the work of (Hawkins, Lagoon & Stuckey
2005) on explicit domain representation using BDDs. These
representations are effective for some classes of set con-
straints but have difficulties handling cardinality constraints
efficiently.

This paper takes a dual view of set variables. It proposes
a set domain that directly represents cardinality and lexico-
graphic information, while using constraints to reason about
inclusion and disjointness. The key technical idea is to use a
length-lex ordering that totally orders the sets first by length
and then lexicographically. As a result, arc consistency on
cardinality and lexicographic constraints can be enforced in
time O(k). Moreover, it is also possible to enforce bound-
consistency on unary constraints for inclusion and disjoint-

48

ness in time Õ(k), giving an elegant integration of inclu-
sion, disjointness, cardinality, and lexicographic constraints.
Finally, in analogy with finite-domain solvers (Van Henten-
ryck 1989), non-basic constraints can be viewed as inference
rules that generate basic constraints that once again interact
through the length-lex domain and produce a pruning at least
comparable to the hybrid domain.1 As a result, the length-
lex domain enjoys four fundamental advantages besides its
simplicity and elegance.

1. The domains take O(k) space and their bounds satisfy all
unary constraints unlike subset-bound solvers.

2. The domains directly account for cardinality and lexico-
graphic constraints critical in combinatorial design.

3. Bound-consistency on all traditional unary constraints can
be enforced in time Õ(k).

4. All constraint types prune the domains.
Moreover, all the algorithms presented herein can be adapted
to multisets, providing similar benefits for this important
structure as well.

The Length-Lex Domain
Notations We assume that sets take their value in a uni-
verse U of integers {1, . . . , n}. Set variables are denoted
by X, Y, Z, possibly subscripted. Elements of U are de-
noted by the letters e, x and sets are denoted by the letters
m, M, s, t. A subset m of U of cardinality k is denoted
{m1, m2, ..., mk} where m1 < m2 < m3... < mk. There-
fore, mj denotes the j-th smallest value in m. We call k-set
any set of cardinality k.

Length-lex Ordering The length-lex ordering totally or-
ders sets first by cardinality and then lexicographically.

Definition 1 A length-lex ordering � on sets of integers is
defined by:
s � t iff s = ∅ ∨ |s| < |t| ∨

|s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} � t \ {t1}).
Example 1 The subsets of {1, 2, 3} are ordered as
∅ � {1} � {2} � {3} � {1, 2} � {1, 3} � {2, 3} � {1, 2, 3}.
A length-lex domain is a pair 〈m, M〉 that denotes all the
sets not smaller than m and not greater than M .
Definition 2 A length-lex domain is a pair 〈m, M〉 satisfy-
ing m � M and denoting the set

{s | m � s � M}.
Observe that the cardinality of any set s in 〈m, M〉 satisfies
|m| ≤ |s| ≤ |M |. As a consequence, the domain directly
captures cardinality information.
Example 2 Consider a variable X with domain
〈{1, 2}, {1, 2, 3}〉. Variable X can take the sets
{{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. If the cardinality of
X is constrained to be strictly smaller than 3, its domain
can be updated to 〈{1, 2}, {2, 3}〉, which denotes all sets of
cardinality 2.

1A formal comparison is difficult, since the hybrid model uses
a co-lexicographic ordering for technical reasons.

Fundamental Operations on Domains
Once set-variables use the length-lex representation, their
domains can be pruned very much like in traditional finite
domains. This is a significant innovation for set solvers
whose bounds do not usually represent possible (set) values
and are not easily amenable to pruning. Example 2 already
showed how cardinality constraints can prune a domain. In
general, the pruning of a domain 〈m, M〉 consists of finding
the first successor of m and the first predecessor of M sat-
isfying some condition such as the inclusion or exclusion of
a set of elements and cardinality restrictions. Set constraints
use a number of first and last functions to compute these
successors and predecessors and to prune the domains.

For space reasons, this paper only presents first functions
and restricts attention to k-sets (which is typically the case
in combinatorial design). The algorithms for arbitrary car-
dinalities can be derived in a similar fashion. The first func-
tions share the same overall structure as the algorithm for
finding the length-lex successor of a k-set (Kreher & Stin-
son 1999) (see Algorithm 1). The algorithm assumes that m
has a successor and proceeds in two steps: a location phase
and a reconstruction phase. The location phase (lines 1–3)
determines the index i in the set as the start of the reconstruc-
tion. The reconstruction phase determines the new values for
mi, . . . , mk.

Algorithm 1 succ�(m): k-set successor algorithm
1: k← |m|, m′ ← m, i← k;
2: while (i ≥ 0) and (mi = n− k + i) do
3: i← i− 1;
4: for j = i to k do
5: m′

j ← (mi + 1) + j − i;
6: return m′

Example 3 Let m = {1, 3, 6, 7} and U = {1, ..., 7}. The
first phase identifies that the successor of m must start its
reconstruction phase for i = 2, since 6 and 7 cannot be
increased. The reconstruction phase fills the positions 2–
4 with values mi + 1, . . . , mi + 3 to obtain succ�(m) =
{1, 4, 5, 6}.

The successor algorithm runs in O(k) time and all the first
functions share the same two-phase organization, although
the phases are in general more complex. Function first-
r�(m,R) (Algorithm 3) computes the first successor of m
that contains all elements in R (or m itself if it contains R).
It uses an auxiliary recursive algorithm LR (Algorithm 2)
to find the location of the reconstruction phase. For a call
LR(m, R, i, p), R1, . . . , Rp−1 are present in m1, . . . , mi−1

and the function must determine if there exists a location
j ≥ i for the reconstruction phase that can accommodate
Rp, . . . , R|R|. When p > |R|, m contains R and no recon-
struction is necessary (lines 1–2). If there is no room left for
Rp, . . . , R|R| or Rp < mi, the reconstruction phase must
start earlier than i (lines 3–4). If mi < Rp, then the func-
tion is called recursively with i+1 to determine if a location
greater than i can be found (lines 6–8). If no such location
exists, the function returns (i, p), since mi can be increased
(line 9). Finally, if mi = Rp, LR is called recursively with

49

i + 1 and p + 1 since Rp is in m (line 12). This recursive
call may fail, in which case a location smaller than i must be
found since we cannot increase mi without losing Rp. Once
the location i is found, algorithm first-r�(m,R) starts the re-
construction from i like the successor algorithm 1. However,
it must make sure to include all elements of R. This explains
the loop conditions on line 6 and the insertion of the remain-
ing elements in R in lines 11–13. The function runs in time
O(k log |R|), which is Õ(k).

Algorithm 2 LR(m, R, i, p)
1: if p > |R| then
2: return (k + 1, p);
3: else if k − i < |R| − p ∨ mi > Rp then
4: return (⊥, p);
5: else if mi < Rp then
6: (i′, p′)← LR(m,R, i + 1, p);
7: if i′ 6= ⊥ then
8: return (i′, p′);
9: else

10: return (i, p);
11: else
12: return LR(m, R, i + 1, p + 1);

Algorithm 3 first-r�(m,R)
1: (i, p)← LR(m, R, 1, 1);
2: if i = ⊥ then
3: m′ ← ⊥;
4: else
5: v ← mi + 1;
6: while k − i > |R| − p ∧ i ≤ k do
7: m′

i ← v;
8: if m′

i = Rp then
9: p← p + 1

10: i← i + 1, v ← v + 1;
11: while i ≤ k do
12: m′

i ← Rp;
13: i← j + 1, p← p + 1;
14: return m′

Example 4 Consider m = {1, 3, 6, 7}, R = {3, 4}, and
U = {1, ..., 7}. The call LR(m, R, 3, 2) fails because
m3 > R2, which implies that LR(m, R, 2, 1) also fails
(since m2 = R1). Since m1 < R1, LR(m, R, 1, 1) returns
(1, 1). The reconstruction is simple in this case since all el-
ements of R are among the smallest ones and the algorithm
returns {2, 3, 4, 5}.

Function first-e�(m,E) (Algorithm 5) computes the first
successor of m that does not include any element in E (or
m itself if it is disjoint from E). It uses an auxiliary recur-
sive algorithm LE (algorithm 4) to find the location and a
function denoting ”availability”

av (v) = {e ∈ U \ E | e > v}
Intuitively, av(v) represents the set of elements in U greater
than v and not in E. We will show later on how to implement
the algorithms without this function that depends on U . Ob-
serve first that the location cannot be after the smallest index

i such that mi ∈ E. However, it may not be possible to start
at i if there are not sufficiently many elements available in
av(mi) to fill positions i, ..., k. To find out the location with
greatest index, the algorithm proceeds recursively from left
to right. If i = k + 1, m is disjoint from E and no recon-
struction is necessary. Otherwise, if mi /∈ E, the algorithm
is called recursively with i + 1 (line 4 in Algorithm 4). If it
succeeds and returns j 6= ⊥, j is the desired location. Oth-
erwise, if mi ∈ E or the recursive call fails, the algorithm
determines if there are enough elements to start at location i,
which is the purpose of line 7. The reconstruction phase in
Algorithm 5 fills the remaining positions with the smallest
elements in av(mi). It remains to show how to implement
function av efficiently. Observe first that

|av (mi)| = n − mi − |{e ∈ E|e > mi}|.

If E is represented as a sorted array, it suffices to compute
the index of the largest element e ∈ E smaller or equal to mi

giving us |{e ∈ E|e > mi}| in O(log |E|) time. The recon-
struction can implement lines 4–5 by starting Algorithm 5
from mi+1 and inserting elements mi+2, ... whenever they
are not in E. The overall complexity is O(k + |E| log |E|)
(including the sorting) which is Õ(k) when |E| is O(k).

Algorithm 4 LE(m, E, i)
1: if i = k + 1 then
2: return i;
3: if mi 6∈ E then
4: j ← LE(m,E, i + 1);
5: if j 6= ⊥ then
6: return j;
7: if |av(mi)| ≥ k − i + 1 then
8: return i;
9: else

10: return ⊥;

Algorithm 5 first-e�(m,E)
1: m′ ← m;
2: i← LE(m, E, 1);
3: if i 6= ⊥ then
4: for j = i to k do
5: m′

j ← av(mi)j−i+1;
6: return m′;
7: else
8: return ⊥;

Example 5 Consider m = {1, 7, 8}, U = {1, ..., 8}, and
E = {3, 5, 7}. The call to LE with i = 2 fails as only 8
is available to fill positions i = 2, i = 3. The call to LE
with i = 1 succeeds as av(1) = {2, 4, 6, 8} and there are
only three positions to fill. The reconstruction phase gives
{2, 4, 6}.

Finally, we also show the algorithm for computing the suc-
cessor to m of cardinality c, when the cardinality is not fixed.
There is no location phase here and the reconstruction is
simple.

50

Algorithm 6 first-c�(m, c)
1: m′ ← m
2: if |m| = c then
3: return m;
4: else if |m| < c ∧ |M | ≥ c then
5: for j = 1 to c do
6: m′

j ← j;
7: return m′

8: else
9: return ⊥;

The Set Solver
A set solver with length-lex domains may follow the archi-
tecture of fd-solvers (Van Hentenryck & Deville 1991). The
solver is organized around the domain store and includes ba-
sic and non-basic constraints. The set of basic constraints is
{s ⊆ X, s ⊕ X, |X | ≤ d, |X | ≥ c, X � Y } where ⊕ de-
notes disjointness and � the length-lex lexicographic con-
straint. The set-solver maintains at least bound-consistency
on basic constraints. The non-basic constraints use the do-
main store to generate new basic constraints that tighten the
constraint store. The rest of the paper defines (a subset of)
the operational semantics of the set-solver using a structural
operational semantic (SOS) style. The SOS semantic ma-
nipulates configurations 〈γ, σ〉, where γ is a conjunction of
constraints and σ is the domain store (i.e., a conjunction of
domain constraints). The semantic is specified in terms of
rewriting rules of the form

Conditions
〈γ, σ〉 7−→ 〈γ′, σ′〉

that specifies that 〈γ, σ〉 can be rewritten into 〈γ′, σ′〉 when
the conditions hold. The SOS semantics is specified in terms
of the reflexive and transitive closure of the transition re-
lation, which is denoted by

?7−→. In other words, given a
configuration 〈γ, σ〉, the set-solver returns a configuration
〈γ?, σ?〉 such that 〈γ, σ〉 ?7−→ 〈γ?, σ?〉.

The following rules specify the semantics of conjunction
in the constraint and domain stores.

〈γ1,σ〉7−→σ′

〈γ1∧γ2,σ〉7−→〈γ2,σ′〉
〈γ1,σ〉7−→〈γ′

1,σ′〉
〈γ1∧γ2,σ〉7−→〈γ′

1∧γ2,σ′〉

〈γ,σ1〉7−→〈γ′,σ′
1〉

〈γ,σ1∧σ2〉7−→〈γ′,σ′
1∧σ2〉

σ 7−→σ′

〈γ,σ〉7−→〈γ,σ′〉

The domain store must be consistent or the solver fails.

¬(m � M)
X ∈ 〈m, M〉 7−→ ⊥

Basic Constraints
The semantics of the basic constraints is as follows.

Inclusion A constraint s ⊆ X reduces the domain 〈m, M〉
of X by taking the first successor of m containing s and the
first predecessor of M that contains s. Note that s ⊆ m′ and
s ⊆ M ′ and the constraint is bound-consistent wrt the new
domain.

m′ = first-r�(m, s), M ′ = last-r�(M, s)〈
s ⊆ X, X ∈ 〈m, M〉

〉
7−→

〈
s ⊆ X, X ∈ 〈m′, M ′〉

〉

Disjointness A constraint s⊕X is similar, uses first-e and
last-e, and is bound-consistent.

m′ = first-e�(m, s), M ′ = last-e�(M, s)〈
s ⊕ X, X ∈ 〈m, M〉

〉
7−→

〈
s ⊕ X, X ∈ 〈m′, M ′〉

〉

Cardinality The cardinality constraints prune the domain
once and are completely solved. This is a real strength of
the length-lex domain.

m′ = first-c�(m, c)〈
|X | ≥ c, X ∈ 〈m, M〉

〉
7−→

〈
∅, X ∈ 〈m′, M〉

〉

M ′ = last-c�(M, d)〈
|X | ≤ d, X ∈ 〈m, M〉

〉
7−→

〈
∅, X ∈ 〈m, M ′〉

〉

Lexicographic Symmetries can be broken by imposing
length-lex lexicographic constraints. These constraints are
arc-consitent and represent another great strength of the do-
main.

m′
Y = max(mX , mY), M ′

X = min(MY , MX)〈
X � Y, {X ∈ 〈mX , MX〉, Y ∈ 〈mY , MY 〉}

〉
7−→〈

X � Y, {X ∈ 〈mX , M ′
X〉, Y ∈ 〈m′

Y , MY 〉}
〉

Note that the min and max are taken on the length-lex order-
ing. We are in position to present the main result on basic
constraints. Observe that all constraints are monotone and
contractant, so that there is a unique fixpoint when applying
these rules.

Theorem 1 (Bound Consistency) Let
〈
γ, σ

〉
be a con-

figuration and 〈γ?, σ?〉 be the configuration such that
〈γ, σ〉 ?7−→ 〈γ?, σ?〉. Then, the basic constraints in γ? are
bound-consistent wrt σ? and σ? does not contain any unary
cardinality constraints.

Note also that each transition rule takes time Õ(k).

Required and Possible Elements
It is interesting to discuss the required and excluded ele-
ments in a configuration 〈γ, σ〉. Some of the required ele-
ments can be deduced from the unary inclusion constraints
in γ. However, the lexicographic, cardinality, and disjoint-
ness constraints may have reduced the domain, implying
that some elements are now required. These required ele-
ments may be computed in time O(k) and highlight another
strength of the representation. We now specify inductively
the set req(X,〈γ, σ〉) of required elements of a set-variable
X in 〈γ, σ〉.

51

req(X,
〈
γ, σ

〉
) = req(X, γ) ∪ req(X, σ);

req(X, γ1 ∧ γ2) = req(X, γ1) ∪ req(X, γ2);
req(X, σ1 ∧ σ2) = req(X, σ1) ∪ req(X, σ2);
req(X, s ∈ X) = s;
req(X, X ⊆ 〈m, M〉) = R(〈m, M〉);
req(X, •) = ∅ otherwise.

It remains to show how to compute the required elements
in a domain. The following rules can be used to compute
R(D) where

D = 〈{m1, . . . , mi}, {M1, . . . , Mi}〉 (i ≤ k).

If M1 > m1 + 1, then

R(D) = ∅.
If M1 = m1 + 1 ∧ m1 + i < n, then

R(D) = ∅.
If M1 = m1 + 1 ∧ m1 + i = n, then

R(D) = {mj | mj = n − (i − j) & 1 ≤ j ≤ i}. (1)

Otherwise, if M1 = m1, then

R(D) = {m1} ∪ R(〈{m2, . . . , mi}, {M2, . . . , Mi}〉). (2)

Example 6 Consider 〈{1, 2, 4, 5}, {2, 3, 4, 5}〉 and U =
{1, 2, 3, 4, 5}. From (1), {4, 5} is required. Finally, consider
〈{1, 3, 4, 6, 7}, {1, 4, 5, 6, 7}〉 and U = {1, ..., 7}. From (2)
and (1), {1, 6, 7} is required.

It is also possible to compute the set P(D) of elements in U
that may belong to a domain. More precisely, P(D) can be
defined inductively as follows. Let

D = 〈{m1, . . . , mi}, {M1, . . . , Mi}〉 (i ≤ k).

Observe first that P(D) can never include any element
smaller than m1. If M1 > m1 + 1,

P(D) = {m1, .., n}
as all the elements of U belong to some sets starting with
m1 + 1. If M1 = m1 + 1, P(D) is the union of

P(〈{m1, . . . , mi}, {m1, n − i + 2, . . . , n}〉, (3)

i.e., the elements in the sets starting with m1, and

P(〈{m1 + 1, . . . , m1 + i}, {M1, . . . , Mi}〉 (4)

i.e., the elements in the sets starting with m1 + 1. Case 3
produces the sets

{m1} ∪ {m2, . . . , n}
while case 4 gives the element

{m1..Mi} if Mi−1 = m1 + i + 1
{m1..n} if Mi−1 > m1 + i + 1.

Finally, if M1 = m1,

P(D) = {m1} ∪ P(〈{m2, . . . , mi}, {M2, . . . , Mi}〉).
Observe that the above derivation generates at most O(k)
intervals and it is possible to design an algorithm comput-
ing P(D) running in O(k) space and O(k log k) time (and
hence in Õ(k) time by sorting the intervals).

Non-Basic Constraints
Non-basic constraints can be defined as inference rules that
generate basic constraints using the domain store. Space re-
quirements prevent us from discussing all traditional con-
straints and we focus on the binary disjointness constraints.
The goal of the section is to demonstrate that pruning rules
for inclusion, disjointness, and cardinality constraints syner-
gically cooperate in reducing the domains efficiently.

Binary Disjointness The disjointness constraint X ⊕ Y
imposes that required elements in X cannot appear in Y
and vice-versa. The following transition rule implements the
traditional subset-bound pruning and generates the implied
unary constraints in O(k) time.

γX ≡ req(Y, 〈γ, σ〉)⊕X
γY ≡ req(X, 〈γ, σ〉)⊕ Y

D

X ⊕ Y ∧ γ, σ
E

7−→
D

〈X ⊕ Y ∧ γX ∧ γY ∧ γ〉, σ
E (5)

The disjointness constraint also implies some cardinality re-
strictions that prune the length-lex domains actively. In-
ference rules about cardinalities have been published in
(Azevedo & Barahona 2000) for many constraints. In par-
ticular, the disjointness constraint implies |X | + |Y | ≤ p,
where p represents the number of values that may belong to
X or Y .

σ ⇒ X ∈ 〈mX , MX 〉 ∧ Y ∈ 〈mY , MY 〉
p = |P(〈mX , MX〉) ∪ P(〈mY , MY 〉)|
γX ≡ |X| ≤ p− |mY |
γY ≡ |Y | ≤ p− |mX |

D

X ⊕ Y, σ}
E

7−→
D

〈X ⊕ Y ∧ γX ∧ γY 〉, σ
E (6)

The inferred cardinality constraints can be generated in time
Õ(k) and may prune the length-lex domains, illustrating
the synergy between the subset-bound and cardinality infer-
ences.

Example 7 Consider the disjointness constraint X⊕Y and
the domain store
〈
X ∈ 〈{1, 2}, {1, 2, 3}〉 ∧ Y ∈ 〈{1, 2, 3}, {2, 3, 4, 5}〉

〉

Rule 5 used in subset-bound solvers does not make any de-
duction since there are no required elements in either vari-
able. Rule 6 produces the new domain store

X ∈ 〈{1, 2}, {2, 3}〉 ∧ Y ∈ 〈{1, 2, 3}, {3, 4, 5}〉
illustrating the pruning from cardinality constraints.

Global Constraints
The strength of the length-lex domain in pruning the do-
mains also benefits global constraints. Once again, space
restrictions do not allow us to discuss this topic in depth.
However, the section illustrates the significant domain re-
ductions that global constraints and length-lex domains can
jointly produce. It uses a global constraint disjoint�(X1..q)
combining disjointness and lexicographic constraints. Its se-
mantics, when the Xi’s are k-sets, is specified by

52

disjoint�(X1..q) ≡
∀1 ≤ i < j ≤ q : Xi ⊕ Xj ∧ Xi � Xj .

Assume that the implementation first generates all the binary
disjointness and lexicographic constraints for simplicity. We
will present two additional pruning rules that exploit the
fact that the sets are both disjoint and lexicographically or-
dered and dramatically improve the pruning of subset-bound
solvers. The first rule is simple and removes the smallest el-
ement of Xi from Xi+1.

σ ⇒ Xi ∈ 〈m,M〉 (1 ≤ i < q)
γ ≡ {m1} ⊕Xi+1

D

disjoint�(X1..q), σ}
E

7−→
D

{disjoint�(X1..q) ∧ γ, σ
E

The second rule reduces the upper bound of the domains
and ensures that sufficiently many elements are left for sub-
sequent sets to be both lexicographically smaller and dis-
joint.

1 ≤ i < j ≤ q
σ ⇒ Xj ∈ D
v = max(P(D))− k(j − i + 1) + 1
γ ≡ Xi � {v, n− k + 2, . . . , n}

D

disjoint�(X1..q), σ}
E

7−→
D

{disjoint�(X1..q) ∧ γ, σ
E

The global disjoint and partition constraints over k-sets
have been addressed by subset bound solvers using global
propagators that run in O(qn2) (Bessière & al. 2004;
Ilog Solver 1998). The following example contrasts their
respective pruning.

Example 8 Let U = {1, . . . , 10} and X1..3 have initial
domains 〈{1, 2, 3}, {8, 9, 10}〉. disjoint�(X1..3) with the
above rules produces the new domains

X1 ∈ 〈{1, 2, 3}, {2, 9, 10}〉
X2 ∈ 〈{2, 3, 4}, {5, 9, 10}〉
X3 ∈ 〈{3, 4, 5}, {8, 9, 10}〉.

Observe that X1 has only 64 sets in its domain. In contrast,
a subset-bound solver returns the domain

X1 ∈ [∅, {1, .., 10}]
X2 ∈ [∅, {2, .., 10}]
X3 ∈ [∅, {3, .., 10}]

and X1 has 210 sets in its domain. These global propaga-
tors do not prune here (they only prune when sub-partitions
are discovered) and the only reduction comes from the lexi-
cographic constraints.

This strength of the propagation in length-lex domains is de-
rived from two fundamental properties: (1) the domain and
the lexicographic constraints use the same ordering; 2) the
cardinality is intrinsic to the domain ordering and precedes
the lexicographic ordering.

It is also significant to mention that the length-lex order-
ing generalizes to multi-sets. The algorithms for finding
successors and predecessors saisfying a condition can be
slightly modified to account for the fact that a value may
occur multiple times.

References
Azevedo, F., Barahona, P. 2000. Modelling Digital Circuits
Problems with Set Constraints. in CL-2000.
Barnier, N., Brisset, P. 2001. Solving the Kirkman’s
Schoolgirl Problem in a Few Seconds. In CP-2001.
Bessière, C., Hnich, B., Hébrard, E., Walsh, T. 2004. Dis-
joint, Partition and Intersection Constraints for Sets and
Multiset Variables. In CP-2004.
Colbourn, C. J. , Dinitz, J.H., Stinson. 1999. Applications
of Combinatorial Designs to Communications, Cryptogra-
phy, and Networking. In Surveys in Combinatorics, Lon-
don Mathematical Society Lecture Note Series 187, Cam-
bridge University Press.
Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.
2002. Global Constraints for Lexicographic Ordering. In
CP-2002.
Gervet, C. 1997. Interval Propagation to Reason about
Sets: Definition and Implementation of a Practical Lan-
guage. In Constraints journal, volume 1(3). Kluwer.
Hawkins, P., Lagoon, V., Stuckey, P. 2005. Solving Set
Constraint Satisfaction Problems using ROBDDs. JAIR
Journal, 24.
Hnich, B., Kiziltan Z., Walsh, T. Combining Symmetry
Breaking with Other Constraints: lexicographic ordering
with sums. In Proc. of Int. Symposium on AI & Maths-
2004.
Ilog Solver 4.4, Reference Manual, Ilog SA, Gentilly,
France. 1998.
Kreher, D.L., Stinson, D.R. 1999. Combinatorial Algo-
rithms. The CRC Press Series on Discrete Mathematics
and its Applications.
Puget,J-F. 1992 PECOS a High Level Constraint Program-
ming Language In Proc. of Spicis.
Sadler, A., Gervet, C. 2004. Hybrid Set Domains to
Strengthen Constraint Propagation and Reduce Symme-
tries. In CP-2004.
Sellman, M., Van Hentenryck, P. 2005. Structural Symme-
try Breaking. In IJCAI-2005.
Van Hentenryck, P. Constraint Satisfaction in Logic Pro-
gramming. The MIT Press, 1989.
Van Hentenryck, P., Deville, Y. Operational Semantics of
Constraint Logic Programming over Finite Domains. in
PLILP-2001.

53

