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Abstract

Model counting is the classical problem of computing the
number of solutions of a given propositional formula. It
vastly generalizes the NP-complete problem of propositional
satisfiability, and hence is both highly useful and extremely
expensive to solve in practice. We present a new approach
to model counting that is based on adding a carefully cho-
sen number of so-called streamlining constraints to the input
formula in order to cut down the size of its solution space
in a controlled manner. Each of the additional constraints
is a randomly chosen XOR or parity constraint on the prob-
lem variables, represented either directly or in the standard
CNF form. Inspired by a related yet quite different theoretical
study of the properties of XOR constraints, we provide a for-
mal proof that with high probability, the number of XOR con-
straints added in order to bring the formula to the boundary of
being unsatisfiable determines with high precision its model
count. Experimentally, we demonstrate that this approach can
be used to obtain good bounds on the model counts for for-
mulas that are far beyond the reach of exact counting meth-
ods. In fact, we obtain the first non-trivial solution counts for
very hard, highly structured combinatorial problem instances.
Note that unlike other counting techniques, such as Markov
Chain Monte Carlo methods, we are able to provide high-
confidence guarantees on the quality of the counts obtained.

Introduction
Propositional model counting is the problem of computing
the number of models for a given propositional formula, i.e.,
the number of distinct variable assignments for which the
formula evaluates to TRUE. This problem generalizes the
well-known NP-complete problem of propositional satisfia-
bility, SAT, which has played a key role in complexity theory
as well as in automated reasoning. Indeed, computing the
exact model count is a #P-complete problem, which means
that it is no easier than solving a propositional formula with
an unbounded number of “there exist” and “forall” quanti-
fiers in its variables (Toda 1989). For comparison, recall
that SAT can be thought of as a propositional formula with
exactly one level of “there exist” quantification.

∗Research supported by Intelligent Information Systems Insti-
tute (IISI), Cornell University (AFOSR grant F49620-01-1-0076)
and DARPA (REAL grant FA8750-04-2-0216).
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Effective model counting procedures would open up a
range of new applications. For example, various proba-
bilistic inference problems, such as Bayesian net reason-
ing, can be effectively translated into model counting prob-
lems (cf. Roth; Littman, Majercik, & Pitassi; Darwiche
1996; 2001; 2005). Another application is in the study of
hard combinatorial problems, such as combinatorial designs,
where the number of solutions provides further insights into
the problem. Even finding a single solution can be a chal-
lenge for such problems: counting the number of solutions is
much harder yet. Using our counting method, we will obtain
the first non-trivial lower bounds on the number of solutions
of several complex combinatorial problems.

The earliest practical approach for counting models is
based on an extension of systematic DPLL-based SAT
solvers. By using appropriate multiplication factors and con-
tinuing the search after a single solution is found, Relsat
(Bayardo Jr. & Pehoushek 2000) is able to provide incre-
mental lower bounds on the model count as it proceeds, and
finally computes the exact model count. Newer tools such as
Cachet (Sang et al. 2004) often improve upon this by using
techniques such as component caching.

All exact counting methods, including Relsat and
Cachet, essentially attack a #P-complete problem “head
on” — by searching the raw combinatorial search space.
Consequently, these algorithms often have difficulty scal-
ing up to larger problem sizes. We should point out that
problems with a higher solution count are not necessarily
harder to determine the model count of. In fact, Relsat can
compute the exact model count of highly under-constrained
problems with many “don’t care” variables and a lot of
models by exploiting big clusters in the solution space.
The model counting problem is instead much harder for
more intricate combinatorial problems where the solutions
are spread much more finely throughout the combinatorial
space. We consider examples of such problems in our ex-
periments.

A relatively new approach introduced by Wei & Selman
(2005) is to use Markov Chain Monte Carlo sampling to
compute an approximation of the exact model count. Their
tool, ApproxCount, is able to solve several instances quite
accurately, while scaling much better than both Relsat
and Cachet as problem size increases. The drawback of
ApproxCount is that one is not able to provide any hard
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guarantees on the model count it computes. To output a
number close to the exact count, the counting strategy of
Wei & Selman requires uniform sampling from the set of
solutions, which is generally very difficult to achieve. Uni-
form sampling from the solution space is much harder than
just generating a single solution. MCMC methods can pro-
vide theoretical convergence guarantees but only in the limit,
generally after an exponential number of steps.

Interestingly, the inherent strength of most state-of-the-art
SAT solvers comes actually from the ability to quickly nar-
row down to a certain portion of the search space the solver
is designed to handle best. Such solvers therefore sample so-
lutions in a highly non-uniform manner, making them seem-
ingly ill-suited for model counting, unless one forces the
solver to explore the full combinatorial space. An interesting
question is whether there is a way around this apparent lim-
itation of the use of state-of-the-art SAT solvers for model
counting. Our key contribution is a new method for model
counting, which uses a state-of-the-art SAT solver “as is”.
It follows immediately that the more efficient the SAT solver
used, the more powerful our counting strategy becomes.

Our approach is inspired by recent work on so-called
“streamlining constraints” (Gomes & Sellmann 2004), in
which additional, non-redundant constraints are added to the
original problem to increase constraint propagation and to
focus the search on a small part of the subspace, (hope-
fully) still containing solutions. This strategy was shown
to be successful in solving very hard combinatorial design
problems, with carefully created, domain-specific stream-
lining constraints. In contrast, in this work, we introduce
a domain-independent streamlining technique.

Streamlining could potentially also be used to obtain an
accurate estimate of the total solution count, if the solu-
tion density in the remaining (streamlined) search space was
similar to that of the overall solution density. In that case,
one could count the solutions remaining in the subspace and
multiply this by the relative size of the subspace to the over-
all search space. Interestingly, there exist generic constraints
that can be used to probabilistically streamline the search
space sufficiently uniformly. These are so-called parity or
XOR constraints, represented by logical XOR formulas.

The central idea of our approach is to repeatedly add ran-
domly chosen XOR or parity constraints on the problem vari-
ables to the input formula and feed the result to a state-of-
the-art SAT solver. We will discuss the technical details be-
low, but at a very high level, our approach works as fol-
lows. Each random XOR constraint will cut the search space
approximately in half. So, intuitively, if after the addition
of s XOR’s the formula is still satisfiable, the original for-
mula must have at least on the order of 2s models. More
rigorously, we will show that if we perform t experiments
of adding s random XOR constraints and our formula re-
mains satisfiable in each case, then with probability at least
1−2−αt , our original formula will have at least 2s−α satisfy-
ing assignments for any α ≥ 1. So, by repeated experiments
or by weakening the claimed bound, one can arbitrarily
boost the confidence in the lower bound count. We also give
results for the upper bound, and formalize two variants of
this approach as algorithms MBound and Hybrid-MBound.

Of course, the above argument might raise suspicion, be-
cause it does not depend at all on the how the solutions are
distributed throughout the search space. This however is the
surprising feature of the approach. We rely on the very spe-
cial properties of random parity constraints, which in effect
provide a good hash function, randomly dividing the solu-
tions into two near-equal sets. Such constraints were first
used by Valiant & Vazirani (1986) in a randomized reduc-
tion from SAT to so-called unique SAT. They provided evi-
dence that unique SAT problems (formulas with at most one
satisfying assignment) are essentially as hard as general SAT
problems. In this work, we show a different, more positive,
use of XOR constraints, allowing us to count assignments of
hard combinatorial problems.

In the theoretical section of the paper, we give much
more specific details on the bounds obtained from XOR-
streamlining. To demonstrate that this strategy is not just
of theoretical interest, we also provide experimental results.
Specifically, we applied our technique to three hard combi-
natorial problems, the Ramsey problem, the Schur problem,
and the clique coloring problem. Our technique provides the
first good lower bounds on solution counts for these prob-
lems. For both problems, we compute lower bounds with
99% confidence. For the Ramsey problems, we obtained
a lower bound of 264 ≈ 1.8× 1019 solutions, in under two
hours of computation. By comparison, Relsat found only
194,127 models in over 12 hours (Cachet does not provide
partial counts and timed out, and ApproxCount does not
converge to a solution). For the Schur problem, we obtained
a lower bound of 226 ≈ 6.7×107 solutions, in under 5 hours
of computation. Relsat, Cachet, and ApproxCount could
not find any solutions in over 12 hours. For the clique col-
oring problem, we found over 1040 solutions in only a few
minutes while other methods didn’t finish in 12 hours.

In summary, we provide a new approach to model count-
ing. Our method is unique in that it can use any state-
of-the-art SAT solver without any modifications. Our ap-
proach uses randomized streamlining XOR constraints and
gives concrete bounds with high probability (desired confi-
dence level is under control of the user). Our experiments
provide the first non-trivial lower bounds on solution counts
for three highly combinatorial problems. In each case these
bounds dramatically improve upon existing methods.

Preliminaries
For the rest of this paper, fix the set of propositional vari-
ables in all formulas to be V , |V |= n. A variable assignment
σ : V → {0,1} is a function that assigns a value in {0,1} to
each variable in V . We may think of the value 0 as FALSE
and the value 1 as TRUE. We will often abuse notation and
write σ(i) for valuations of entities i 6∈V when the intended
meaning is either already defined or is clear from the con-
text. In particular, σ(1) = 1 and σ(0) = 0. When σ(i) = 1,
we say that σ satisfies i. For x ∈ V , ¬x denotes the corre-
sponding negated variable; σ(¬x) = 1−σ(x).

Let F be a formula over the set V of variables and let
σ be a variable assignment. σ(F) denotes the valuation of
F under σ . If σ satisfies F , i.e., σ(F) = 1, then σ is a
model, solution, or satisfying assignment for F . The model
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count of F , denoted MC(F), is the number of models of F .
The (propositional) model counting problem is to compute
MC(F) given a (propositional) formula F .

Although our theoretical results hold for propositional
formulas in general, we present our work in the context of
formulas in the standard conjunctive normal form or CNF, on
which our experimental results rely. A clause (also called a
CNF constraint) C is a logical disjunction of a set of possi-
bly negated variables; σ satisfies C if it satisfies at least one
signed variable of C. A formula F is in the CNF form if it
is a logical conjunction of a set of clauses; σ satisfies F if it
satisfies all clauses of F .

An XOR constraint D over variables V is the logical “xor”
or parity of a subset of V ∪{1}; σ satisfies D if it satisfies
an odd number of elements in D. The value 1 allows us to
express even parity. For instance, D = {a,b,c,1} represents
the xor constraint a⊕b⊕c⊕1, which is TRUE when an even
number of a,b,c are TRUE. Note that it suffices to use only
positive variables. E.g., ¬a⊕b⊕¬c and ¬a⊕b are equiva-
lent to D = {a,b,c} and D = {a,b,1}, respectively.

Our focus will be on formulas in the CNFXOR form, i.e.,
a logical conjunction of clauses and XOR constraints. Note
that for every two complementary XOR constraints involving
the same subset of V (e.g., c⊕d and c⊕d⊕1), any assign-
ment σ satisfies exactly one of them. This simple property
will be crucial for our analysis.

Let X denote the set of all XOR constraints over V . For
1 ≤ k ≤ n = |V |, let Xk denote the subset of X contain-
ing only those constraints that involve exactly k variables
(and possibly the element 1). For simplicity, we will as-
sume in the rest of the paper that n is even, and will be inter-
ested only in 1≤ k ≤ n/2. This assumption can be avoided,
for instance, by adding a dummy variable with a fixed
TRUE/FALSE value or by defining Xn/2 = Xbn/2c ∪Xdn/2e

when n is odd.

A Simple Model Counting Algorithm
Our main algorithm is MBound, described below as Algo-
rithm 1. It provides bounds on the model count of an input
formula F by adding s random XOR constraints to F , solving
the resulting CNFXOR formula using an arbitrary SAT solver
as a subroutine, repeating this process t times, and looking
at the observed satisfiable vs. unsatisfiable (sat-unsat) distri-
bution of the t CNFXOR formulas. If this observed distribu-
tion is biased away from half-and-half, a bound on MC(F)
is reported. Specifically, for a slack factor α , if most in-
stances are satisfiable, 2s−α is reported as a lower bound,
and if most instances are unsatisfiable, 2s+α is reported as
an upper bound. The correctness of these bounds depends
on various factors and is quantified in the next section.

Parameters: MBound has five parameters: (1) the size k of
the XORs used, (2) the number s of the XORs used, (3) the
number t of repetitions or trials, (4) the deviation δ ∈ (0, 1/2 ]
from the 50-50 sat-unsat ratio, and (5) the precision slack
α ≥ 1. s and t will be the most crucial parameters, and we
will often use k� n/2 for our experiments.

Output: MBound has three modes of termination: (1) re-
turn a lower bound on MC(F), (2) return an upper bound on

Algorithm 1: MBound
Params: k,s,t,δ ,α : k,s,t positive integers,

k ≤ n/2, 0 < δ ≤ 1/2 , α ≥ 1
Input : A CNF formula F
Output : A lower or upper bound on MC(F), or Failure
begin

numSat ← 0
for i← 1 to t do

Qs←
{

s random constraints from Xk
}

Fk
s ← F ∪Qs

result← SATSolve(Fk
s )

if result = TRUE then numSat← numSat +1
if numSat ≥ t · (1/2 +δ ) then

return Lower bound: MC(F) > 2s−α

else if numSat ≤ t · (1/2 −δ ) then
return Upper bound: MC(F) < 2s+α

else return Failure
end

MC(F), or (3) return “Failure” without reporting any bound
whatsoever. A Failure happens when the observed sat-unsat
ratio is less than δ away from 50-50.

We say that MBound makes an error if it reports an incor-
rect lower or upper bound on MC(F), and that it fails if it
reports Failure. We expect the probability of MBound mak-
ing an error to go down as k,t,δ , and α increase.
MBound is based on the following central idea. As ob-

served by Valiant & Vazirani (1986), the effect of adding a
random XOR from X to F is to cut down the number of mod-
els by approximately a half. The same holds also when us-
ing Xn/2 instead of X. Somewhat surprisingly, this works no
matter how solutions are structured in the space of all vari-
able assignments. This is because constraints in X and Xn/2

act as pairwise-independent uniform hash functions — uni-
formity allowing them to accept each model with probabil-
ity exactly a half, and pairwise-independence making them
oblivious to their acceptance or rejection of another model.

As the solution space is being iteratively cut down into
halves, the number of XOR constraints one expects to add to
F to bring it to the boundary of being unsatisfiable is roughly
s∗ = log2 MC(F). This is the key property MBound uses to
approximate MC(F). Of course, this is only the expected
behavior. To make the algorithm robust, we give a detailed
probabilistic analysis to show that MBound is unlikely to de-
viate significantly from its expected behavior. This analysis
forms the core of the technical contribution of this paper on
the theoretical side and extends to provable guarantees for
our second algorithm, Hybrid-MBound, as well.

In practice, adding XOR constraints from Xn/2 (i.e., large
XORs) can make the underlying SAT solver quite inefficient,
and one is forced to consider the spaces Xk,k � n/2, of
small XORs. Such small XORs, however, do not necessar-
ily act pairwise-independently on the solution space, result-
ing in an algorithm of not as high a quality as with large
XORs. Interestingly, small XORs turn out to be sufficient to
obtain guaranteed lower bounds. Moreover, as k increases,
one provably approaches the truly pairwise-independent ran-
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dom behavior of large XORs. In fact, in several domains,
fairly small XORs work quite well in practice. Further, our
preliminary results suggest that this fact can be used to our
advantage in order to provide key insights into the clustering
structure of the solution space. This, however, is beyond the
scope of this paper.

Analysis of Algorithm MBound
For 1≤ k≤ n/2, let Qk

s denote a set of s XOR constraints cho-
sen independently and uniformly at random from Xk, and let
Fk

s denote the random CNFXOR formula obtained by adding
the constraints Qk

s to F . In our analysis, the probability will
be over the random choice of Qk

s .
Our technical arguments have the following flavor. We

show that when one adds too many XORs, even small ones,
the resulting CNFXOR formula is quite unlikely to remain
satisfiable. Further, if one conducts a meta-experiment by
repeating this experiment with a fixed number of (too many)
XORs several times, one is extremely unlikely to see many
satisfiable formulas. By focusing on a meta-experiment that
produces enough satisfiable formulas, one is thus able to
probabilistically conclude that the number of XORs added
was indeed not too many, providing a lower bound on the
model count. A similar reasoning with too few XORs pro-
vides an upper bound, though with some complications aris-
ing from the lack of pairwise-independence of small XORs.

We will use standard bounds on the concentration of mo-
ments of a probability distribution, namely, Markov’s in-
equality, Chebyshev’s inequality, and the Chernoff bound
(cf. Motwani & Raghavan 1994).

The Lower Bound
We begin by arguing using Markov’s inequality that as more
and more XOR constraints are added at random from Xk for
any k to a formula F , its model count, MC(F) = 2s∗ , is quite
likely to go down at least nearly as fast as expected. Later, in
the upper bound section, we will argue that MC(F) is likely
to go down at most nearly as fast as expected when k = n/2.
The precision slack α captures the notion of “nearly” as fast.

Lemma 1. For 1 ≤ k ≤ n/2 and α ≥ 1, Pr[MC(F k
s ) ≥

MC(F)/2s−α ]≤ 2−α .

Proof. Let S be the set of satisfying assignments for F; |S|=
MC(F). For each σ ∈ S, let Yσ = σ(Fk

s ) be a 0-1 random
variable. The expected value of Yσ is the probability that
σ satisfies all of the s XOR constraints in Qk

s . Recall that
σ satisfies exactly half the constraints in Xk. Since the s
constraints in Qk

s are chosen uniformly and independently
from Xk, the probability that σ satisfies all of them is 2−s,
implying E[Yσ ] = 2−s.

Let Y = ∑σ Yσ . The random variable Y equals MC(Fk
s ),

and we have E[Y ] = E[∑σ Yσ ] = ∑σ E[Yσ ] = ∑σ 2−s =
MC(F)/2s. It follows that Pr[MC(Fk

s ) ≥ MC(F)/2s−α ] =
Pr[Y ≥ 2αE[Y ]]≤ 2−α by Markov’s inequality.

Corollary 1. For 1 ≤ k ≤ n/2,α ≥ 1, and s ≥ s∗ + α ,
Pr[Fk

s is satisfiable]≤ 2−α .

Proof. Observe that MC(F)/2s−α = 2s∗−(s−α) ≤ 1. There-
fore, Pr[Fk

s is satisfiable] = Pr[MC(F k
s )≥ 1]≤ Pr[MC(Fk

s )≥
MC(F)/2s−α ]≤ 2−α .

We use this result along with the Chernoff bound to show
that after adding s≥ s∗+α XOR constraints from Xk

s several
times, the fraction of instances Fk

s that are satisfiable is un-
likely to be much more than 2−α . Consequently, if one does
see a significantly larger fraction of satisfiable instances than
2−α in this meta-experiment, then s is very likely to be less
than (s∗+ α), providing a high probability lower bound of
(s−α) on s∗. Clearly, a weaker bound with a large α holds
with a higher probability than a stronger one with a small α .

Formally, let Fk,(i)
s ,1 ≤ i ≤ t, denote t random formulas

obtained by independently adding s random XOR constraints
from Xk to F . The probability in what follows is on the
collective choice of these formulas. In particular, whether
Fk,(i)

s is satisfiable or not is a random event of interest.
For convenience, we define the following quantity related

to the Chernoff bound.

Definition 1. For any positive integer t, 0 < δ ≤ 1/2 , and
α ≥ 1, let β = 2α(1/2 + δ )−1 and define

p(t,δ ,α) =





2−αt if δ = 1/2(

eβ

(1+β )1+β

)t/2α

if δ < 1/2 .

When δ < 1/2 , we can simplify the above expression
for α ∈ {1,2} to get p(t,δ ,1) ≤ e−0.77δ 2t and p(t,δ ,2) ≤
e−0.07(1+4δ )2t ≤ e−1.12δ 2t−0.07t . This demonstrates that
p(t,δ ,α) decreases exponentially as δ and t increase, and is
significantly smaller for larger α . This will help in qualita-
tively understanding the correctness guarantees we provide.

Lemma 2. For s ≥ s∗+ α and 0 < δ ≤ 1/2 , the probability

that at least a (1/2 + δ ) fraction of the t formulas Fk,(i)
s ,1≤

i≤ t, is satisfiable is at most p(t,δ ,α).

Proof. Let Zi,1 ≤ i ≤ t, be a random variable whose value
is 1 if Fk,(i)

s is satisfiable and 0 otherwise. Let Z = ∑i Zi
be the random variable that equals the number of satisfiable
formulas Fk,(i)

s ,1 ≤ i ≤ t. Note that Z is the sum of inde-
pendent 0-1 random variables, and, by Chernoff bound, is
highly concentrated around its expected value.

By Corollary 1, Pr[Fk,(i)
s is satisfiable]≤ 2−α . Therefore,

E[Zi] = Pr[Zi = 1] = Pr[Fk,(i)
s is satisfiable] ≤ 2−α so that

E[Z] = ∑i E[Zi]≤ t2−α .
The probability that at least a (1/2 + δ ) fraction of these

t random formulas is satisfiable equals Pr[Z ≥ t · (1/2 + δ )].
For δ = 1/2 , this equals Pr[Z ≥ t] = Pr[Zi = 1 for all i] ≤
2−αt = p(t, 1/2 ,α) because the random variables Zi are in-
dependent. For δ < 1/2 , Pr[Z ≥ t · (1/2 + δ )] ≤ Pr[Z ≥
2α(1/2 + δ )E[Z]]. Using the Chernoff bound, this proba-
bility is bounded above by p(t,δ ,α).

Recall that p(t,δ ,α) is a quantity that decreases exponen-
tially with t and δ .
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Theorem 1 (Main Result). For 1 ≤ k ≤ n/2, the
lower bound of 2s−α reported by MBound with parame-
ters (k,s,t,δ ,α) is correct with probability at least 1−
p(t,δ ,α).

Proof. Suppose MBound with parameters (k,s,t,δ ,α)
makes a lower bound error on input F . Let r denote the final
value of the variable numSat in that run of MBound, i.e., r
is the number of satisfiable formulas amongst the t random
formulas generated by the algorithm.

Since MBound reported a (wrong) lower bound, it must
be that r ≥ t · (1/2 + δ ). Further, since it made an error, it
must be that log2 MC(F)≤ s−α in reality, i.e., s ≥ s∗+ α .
In this case, by Lemma 2, the probability of the algorithm
encountering r ≥ t · (1/2 + δ ) satisfiable formulas amongst
the t random ones is bounded above by p(t,δ ,α).

In particular, when all formulas encountered by MBound
are satisfiable, we have a simpler correctness guarantee.

Corollary 2 (Simplified Result). When MBound finds all t
CNFXOR formulas to be satisfiable, the lower bound 2s−α it
reports is correct with probability at least 1−2−αt.

Example 1. Consider an experiment with t = 20 runs and
δ set to 1/4. Then t · (1/2 + δ ) = 15, p(t,δ ,1) ≤ 0.34, and
p(t,δ ,2) ≤ 0.002. It follows that if we observe at least 15
out of 20 runs to be satisfiable, the lower bound of 2s−1 is
correct with probability at least 0.66, and that of 2s−2 is cor-
rect with probability at least 0.998.

This shows that the probability of MBound making a
lower-bound error indeed goes down exponentially as the
number of trials t increase, making the algorithm quite ro-
bust for providing lower bounds on the model count. Fur-
ther, when the precision slack α is increased from 1 to 2, the
error probability decreases dramatically.

The Upper Bound: Ideal Case, Large XORs
For the upper bound, Markov’s inequality is insufficient. We
instead argue using Chebyshev’s inequality that as more and
more XOR constraints are added at random from Xn/2 to a
formula F , its model count is quite likely to go down at most
nearly as fast as expected. In particular, F is quite unlikely
to become unsatisfiable with too few XORs. Note that this
result as such does not hold when small XORs are used.

Lemma 3. For α ≥ 1 and s ≤ s∗, (A) Pr[MC(Fn/2
s ) ≤

MC(F)/2s+α ] ≤ 1/((1 − 2−α)22s∗−s) and (B)

Pr[Fn/2
s is unsatisfiable]≤ 1/2s∗−s.

Proof Sketch. (See Appendix for details.) As in the proof of
Lemma 1, let S be the set of satisfying assignments for F .
For each σ ∈ S, let Yσ = σ(Fn/2

s ) be a 0-1 random variable.
The expected value of Yσ is, as before, given by E[Yσ ] = 2−s.
Further, its variance is Var[Yσ ] = E[Y 2

σ ]−E[Yσ ]2. Ignoring
the negative term and using the fact that Yσ is a 0-1 variable,
Var[Yσ ]≤ E[Yσ ].

A key thing to observe here is that the random variables
Yσ for various σ are pairwise-independent because of an ar-
gument that relies on both the fact that we are dealing with

XOR constraints (as opposed to, say, CNF constraints) and
that they are chosen uniformly from Xn/2 rather than from
Xk for k < n. The result then follows from a variance com-
putation and an application of Chebyshev’s inequality.

Corollary 3. For α ≥ 1 and s ≤ s∗ − α ,
Pr[Fn/2

s is unsatisfiable]≤ 2−α .

The meta-experiment providing an upper bound on s∗

works essentially the same as Lemma 2 (see Appendix).

Lemma 4. For s ≤ s∗−α and 0 < δ ≤ 1/2 , the probability

that at least a (1/2 +δ ) fraction of the t formulas Fn/2,(i)
s ,1≤

i≤ t, is unsatisfiable is at most p(t,δ ,α).
From this follows our main upper bound result for large

XORs, in a fashion very similar to the proof of Theorem 1.

Theorem 2. An upper bound of 2s+α reported by MBound
with parameters (n/2,s,t,δ ,α) is correct with probability
at least 1− p(t,δ ,α).

The Upper Bound: Practical Case, Small XORs
As mentioned earlier, computation with large XORs is quite
expensive in practice. While the correctness of the lower
bound reported by MBound does not depend on the length of
the XORs, that of the upper bound does. When the solution
space is highly structured, small XORs do not act pairwise-
independently on various variable assignments.

After adding s ≤ s∗− 2 small random XORs to F , while
one still expects 2s∗−s solutions of F to survive on average,
the variance in this number could be quite high. In the worst
case, one could have a tiny number of resulting formulas
Fk,(i)

s be satisfiable with an enormous number of solutions,
and a huge number of such formulas be unsatisfiable. This
would still maintain the expected number of surviving so-
lutions, but would make the sat-unsat distribution of Fk,(i)

s
highly skewed towards unsat even with too few XORs.

On the positive side, as k increases and approaches n/2,
one expects random XORs from Xk to act on different vari-
able assignments in a more and more pairwise independent
manner. This can be proved formally using a straightforward
variance calculation. We omit the proof for lack of space.

Proposition 1. As the length k of XORs increases, the vari-
ance in the number of satisfiable CNFXOR formulas ob-
served by MBound decreases.

A Hybrid Model Counting Algorithm
By using a good SAT solver as a subroutine, MBound is al-
ready able to provide high quality lower bounds in practice.
Its performance can be boosted even further by combining
it with an exact model counting algorithm. Algorithm 2,
Hybrid-MBound, that we present in this section does pre-
cisely this. The idea is to add randomly chosen XORs as
before, but solve the resulting formula using an exact model
counting algorithm as a subroutine instead of a SAT solver.

Two key factors make the hybrid approach work well
in practice. First, by streamlining hard-to-count formulas
with random XORs, we bring them within the reach of ex-
act counting methods while maintaining the accuracy of the
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Algorithm 2: Hybrid-MBound
Params: k,s,t,α : k,s,t positive integers, k ≤ n/2, α ≥ 1
Mode : Conservative, Moderate, or Aggressive
Input : A CNF formula F
Output : A lower and an upper bound on MC(F)
begin

numSeq← empty
for i← 1 to t do

Qs←
{

s random constraints from Xk
}

Fk,(i)
s ← F ∪Qs

numModels← ExactModelCount(Fk,(i)
s )

numSeq.PushBack(numModels)
minModels← Min(numSeq)
maxModels← Max(numSeq)
avgModels← Average(numSeq)
if mode = Conservative then

return Lower bound: MC(F) > 2s−α ·minModels,
Upper bound: MC(F) < 2s+α ·maxModels

else if mode = Moderate then
return Lower bound: MC(F) > 2s−α ·avgModels,

Upper bound: MC(F) < 2s+α ·avgModels

else /* mode = Aggressive */
return Lower bound: MC(F) > 2s−α ·maxModels,

Upper bound: MC(F) < 2s+α ·minModels

end

overall bound. Second, by throwing in relatively fewer XORs
and relying on an exact counting method for the residual for-
mula, the quality of the obtained bound is improved.
Hybrid-MBound has a subset of the parameters of

MBound and has only a single mode of termination: return
both a lower and an upper bound on MC(F), within a factor
of 22α+1 of each other. Once Hybrid-MBound generates
exact counts for t streamlined formulas, the overall bound it
reports can naturally be based on the minimum, average, or
maximum of the t residual counts. We call this the mode of
operation. The correctness of Hybrid-MBound is captured
by the following results (see Appendix for proofs).
Theorem 3 (Main Hybrid Result). For 1≤ k≤ n/2, when
Hybrid-MBound is run with parameters (k,s,t,α), then

Pr[Conservative lower bound is correct]≥ 1−2−αt,
Pr[Moderate lower bound is correct]≥ 1−2−α , and
Pr[Aggressive lower bound is correct]≥ (1−2−α)t .

Theorem 4. The lower and upper bounds reported by
Hybrid-MBound with parameters (n/2,s,t,α) are correct
with probability at least 1−1/2s∗−s−2 independent of t,α .

Experimental Results
To demonstrate the practical relevance of our approach, we
considered the model counting problem for three hard com-
binatorial domains: the Ramsey problem, the Schur prob-
lem, and the clique coloring problem. All three problems
deal with the question of the existence of certain intricate
combinatorial objects.

In the Ramsey domain, one considers all possible two-
colorings (red and blue) of the edges of the complete graph

on n nodes. Ramsey showed that when n gets sufficiently
large, certain structures of red or blue edges will be found in
every coloring. In particular, R(k, l) denotes the minimum
value of n such that every coloring has at least one red clique
of k vertices or one blue clique of l vertices. It is known
that R(4,5) = 25. So, if we consider a complete graph of
23 vertices, we are guaranteed to have solutions that neither
contain a red clique of size 4 nor a blue clique of size 5.
However, this is a highly non-trivial coloring problem. We
can translate this problem into a SAT formula with 253 vari-
ables and 42,504 clauses. Finding a single solution using
the fastest available SAT solver for this problem (MiniSAT)
takes approximately 30 seconds on a 1 GHz machine. Our
challenge is to find an interesting lower bound on the num-
ber of solutions.

We used MBound with small XOR constraints and
MiniSAT as the subsolver. The parameters were chosen so
as to make the streamlined formula easy for MiniSAT. In
particular, when the XORs are too large, they do not provide
enough constraint propagation for MiniSAT. (Note that the
XORs are converted into CNF using auxiliary variables and
clauses.) We found that we could streamline with 65 random
XOR constraints with 4 to 5 variables in each constraint.

In the Schur problem, we are given the set of integers
{1,2, . . . ,n}. The question is whether this set can be divided
into k sum-free subsets. A set S is sum-free if the sum of any
pair of numbers in S is not in S. For each value of k, there
is a certain value of n such that no partition into k sum-free
subsets exists. For given values of n and k, we can again con-
struct a SAT problem representing the formula. It is known
that for k = 5 and n = 140, sum-free partitions still exist. The
corresponding SAT problem has 700 variables and 51,600
clauses. This formula is already beyond the reach of current
state-of-the-art SAT solvers (i.e., we could not find a single
model in approximately 12 hours of CPU time). With ran-
dom XOR streamlining with good parameters, we were able
to solve the instance using MiniSAT by adding 27 XOR con-
straints containing an average of 9 variables.

In the clique coloring problem with parameters n, m, and
k, the task is to construct a graph on n nodes such that it
can be colored with m colors and also contains a clique of
size k. This problem has interesting properties that make
it very useful in proof complexity research on exponential
lower bounds for powerful proof systems (Pudlák 1997). We
experimented with instances that had 600-750 variables and
20,000-35,000 clauses. When satisfiable, finding a single
solution to these is quite easy. However, counting all solu-
tions turns out to be extremely challenging even for approx-
imate methods. By streamlining with XORs of size 6-8, we
obtained lower bounds of 1040 and higher within minutes.

Table 1 summarizes the results obtained1 on a 550 MHz 8
processor Intel Pentium III machine with 4 GB shared mem-
ory. All reported lower bounds are based on t = 7 and α = 1
so that Corollary 2 guarantees a 1−2−7 ≥ 99% confidence.
The confidence level can, of course, be boosted by simply
doing more XOR streamlined runs with MiniSAT (higher t)
or reducing the reported bound by a factor of 2 (higher α).

1The code and complete data are available from the authors.
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Table 1: MBound on problems beyond the reach of exact counting methods (99% confidence). Note that ApproxCount does
not provide any guarantee on correctness or accuracy.

Instance MBound Relsat Cachet ApproxCount
Models Time Models Time Models Time Models Time

Ramsey-20-4-5 ≥ 1.2×1030 < 2 hrs ≥ 7.1×108 12 hrs — 12 hrs ≈ 1.8×1019 4 hrs

Ramsey-23-4-5 ≥ 1.8×1019 < 2 hrs ≥ 1.9×105 12 hrs — 12 hrs ≈ 7.7×1012 5 hrs

Schur-5-100 ≥ 2.8×1014 < 2 hrs — 12 hrs — 12 hrs ≈ 2.3×1011 7 hrs

Schur-5-140 ≥ 6.7×107 < 5 hrs — 12 hrs — 12 hrs — 12 hrs

fclqcolor-18-14-11 ≥ 2.1×1040 3 mins ≥ 2.8×1026 12 hrs — 12 hrs — 12 hrs

fclqcolor-20-15-12 ≥ 2.2×1046 9 mins ≥ 2.3×1020 12 hrs — 12 hrs — 12 hrs

We see that we obtain non-trivial lower bounds on the
model counts. We also see that these counting problems
are effectively beyond the reach of other state-of-the-art
model counting approaches. Both Relsat and Cachet
do not finish in 12 hours. Relsat gives very low par-
tial counts while Cachet is not designed to report partial
counts. ApproxCount computes a medium quality approx-
imate count without any guarantees. These results show
that counting using randomized XOR streamlining provides
a powerful new approach for obtaining lower bounds on
model counts of hard combinatorial problems.

Often lower bounds obtained from MBound can be made
stronger with Hybrid-MBound. With Cachet as a sub-
solver and 30 XORs, we could boost the lower bound model
count for Schur-5-140 to 1.8× 1012. Similarly, the lower
bound for fclqcolor-18-14-11 was improved to 4.1× 1045.
Note that the ability of Hybrid-MBound to boost MBound
relies partly on exact model counting technology. The lat-
ter generally lags quite a bit behind SAT solvers, which are
sufficient for MBound.

Finally, the results summarized in Table 2 confirm
that, in practice, lower bounds reported by MBound and
Hybrid-MBound can come quite close to exact counts even
with very small XORs. The instance bitmax is a circuit syn-
thesis problem and log a is a logistics planning problem.
The exact counts for these are obtained using Relsat. The
last two instances are pigeonhole-type problems, with n pi-
geons and k holes, n ≤ k. Relsat timed out on these in-
stances after 12 hours. However, the exact count can be an-
alytically computed to be k!/(k−n)!.

Table 2: Comparison of lower bounds with exact counts. The XOR
size column reports the average.

num exact XOR Hybrid-
prob. vars count size MBound MBound

bitmax 252 21×1028 9 ≥ 1.9×1028 ≥ 9.2×1028

log a 1719 26×1015 36 ≥ 1.1×1015 ≥ 11×1015

php.10.20 200 6.7×1011 17 ≥ 1.3×1011 ≥ 2.9×1011

php.15.20 300 20×1015 20 ≥ 1.1×1015 —

In all four cases, the average length of XORs used
was less than 5% of the number of problem variables.
Nevertheless, MBound came within a factor of 20 of the
exact counts, which exceed 1011 and sometimes even

1028. Hybrid-MBound typically requires shorter XORs than
MBound in order to make the streamlined formula solvable
using an exact counting method. Despite this, it further
boosted the results to within a factor of 2 of the exact counts
in three cases; in the fourth, even the streamlined problem
remained hard for Relsat. Of course, one could yet fur-
ther improve these bounds using somewhat larger XORs and
additional computational resources.

Conclusion

Current techniques for model counting are based on either
an exact counting paradigm or an approximate counting ap-
proach (e.g., MCMC methods), both of which have their
limitations. We propose a third alternative based on ran-
domized streamlining using XOR constraints. Our approach
has two key strengths: it can generate model counts us-
ing any state-of-the-art SAT solver off-the-shelf, and it pro-
vides concrete bounds along with a high probability cor-
rectness guarantee that can be easily boosted by repetition.
The model count lower bounds obtained using our algorithm
MBound dramatically improve upon the results of existing
techniques on three very difficult combinatorial problems.
Our algorithm Hybrid-MBound combines the strength of
existing exact counting methods with our XOR streamlining
approach, boosting the results even further.
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Appendix: Proofs
Proof of Lemma 3. As in the proof of Lemma 1, let S be
the set of satisfying assignments for F ; |S| = MC(F). For
each σ ∈ S, let Yσ be the 0-1 random variable whose value
is σ(Fn/2

s ). The expected value of Yσ is, as before, given
by E[Yσ ] = 1/2s. Further, its variance is Var[Yσ ] = E[Y 2

σ ]−
E[Yσ ]2. Ignoring the negative term and using the fact that Yσ

is a 0-1 variable, Var[Yσ ]≤ E[Yσ ].
A key point to observe here is that the random variables

Yσ for various σ are pairwise-independent because of the
following argument which relies on both the fact that we are
dealing with XOR constraints (as opposed to, say, CNF con-
straints) and that they are chosen uniformly from Xn/2 rather
than from Xk for k < n. Consider two random variables, Yσ1
and Yσ2 . The question we need to answer is: what can we say
about the value of Yσ2 when we know the value of Yσ1? The
answer is determined by the behavior of σ1 and σ2 on any
single XOR constraint D. We will show that for D chosen
uniformly from Xn/2, σ1(D) differs from σ2(D) with proba-
bility exactly a 1/2. This will imply that knowing the value
of Yσ1 does not tell us anything about the value of Yσ2 .

To this end, let V ′ ⊆ V be the non-empty set of variables
on which σ1 and σ2 differ, and D be an random XOR con-
straint from Xn/2. Since D is an XOR constraint, the prob-
ability that σ1(D) differs from σ2(D) equals the probability
that D involves an odd number of variables in V ′. Since D is
chosen at random from Xn/2 and exactly half the constraints
in Xn/2 involve an odd number of variables in any subset
of V , this probability is exactly 1/2. As argued above, this
implies that Yσ1 and Yσ2 are pairwise-independent.

Getting back to the main argument, let Y = ∑σ Yσ . The
random variable Y equals the number of models of the for-
mula Fn/2

s . The expected value of Y is given by E[Y ] =
E[∑σ Yσ ] = ∑σ E[Yσ ] = ∑σ 1/2s = MC(F)/2s. Further,
since Y is the sum of pairwise-independent random vari-
ables, its variance is given by Var[Y ] = ∑σ Var[Yσ ]. Recall
that Var[Yσ ]≤ E[Yσ ]. Hence, Var[Y ]≤ ∑σ E[Yσ ] = E[Y ].

For part (A), Pr[MC(Fn/2
s ) ≤ MC(F)/2s+α ] = Pr[Y ≤

E[Y ]/2α ] ≤ Pr[|Y − E[Y ]| ≥ (1− 2−α)E[Y ]]. By Cheby-
shev’s inequality, this last expression is at most Var[Y ]/((1−
2−α)2E[Y ]2) ≤ 1/((1 − 2−α)2E[Y ]). For part (B),

Pr[Fn/2
s is unsatisfiable] = Pr[Y = 0] = Pr[|Y − E[Y ]| ≥

E[Y ]]. Again, by Chebyshev’s inequality, this last expres-
sion is at most Var[Y ]/E[Y ]2 ≤ 1/E[Y ]≤ 1/2s∗−s.

Proof of Lemma 4. Let Zi,1 ≤ i ≤ t, be a random variable
whose value is 1 if Fn/2,(i)

s is unsatisfiable and 0 otherwise.

Let Z = ∑i Zi be the random variable that equals the number
of unsatisfiable formulas Fn/2,(i)

s ,1≤ i≤ t. Note that Z is the
sum of independent 0-1 random variables, and, by Chernoff
bound, is highly concentrated around its expected value.

By Corollary 3, Pr[Fn/2,(i)
s is unsatisfiable] ≤ 1/2α .

Therefore, E[Zi] = Pr[Zi = 1] = Pr[Fn/2,(i)
s is unsatisfiable]≤

1/2α so that E[Z] = ∑i E[Zi]≤ t/2α .
The probability that at least a (1/2+δ ) fraction of these t

random formulas is unsatisfiable equals Pr[Z ≥ t ·(1/2+δ )].
For δ = 1/2, this is Pr[Z≥ t] = Pr[Zi = 1 for all i]≤ 1/2αt =
p(t,1/2,α) because the Zi are independent. For δ < 1/2,
Pr[Z ≥ t · (1/2 + δ )]≤ Pr[Z ≥ 2α(1/2 + δ )E[Z]]. Using the
Chernoff bound separately for α = 1,2 as in Lemma 2, this
probability is bounded above by p(t,δ ,α).

Proof of Theorem 3. Suppose HybridMC makes a lower
bound error in Conservative mode, that is, MC(F) ≤ 2s−α ·
minModels. Equivalently, minModels ≥ MC(F)/2s−α so

that all t of the random formulas Fk,(i)
s ,1≤ i≤ t, have model

counts at least MC(F)/2s−α . By Lemma 1, this happens for
a single such formula with probability at most 2−α , and, by
independence, for all of them with probability at most 2−αt .

From the opposite perspective, the lower bound reported
in Aggressive mode is correct iff all t random formulas Fk,(i)

s
correctly have model counts less than MC(F)/2s−α . By
Lemma 1, this happens for a single such formula with proba-
bility at least 1−2−α , and, by independence, for all of them
with probability at least (1−2−α)t .

The result for Moderate mode can be proved using a vari-
ant of Lemma 1. Specifically, for the ith trial, we have a 0-1
random variable Y i

σ instead of Yσ in the proof of Lemma 1,
and now Y = ∑i ∑σ Y i

σ is the total number of solutions of
all t random formulas. E[Y ] = t ·MC(F)/2s and the result
follows from Markov’s inequality as before.

Proof of Theorem 4. We will focus on the hardest case,
namely, t = α = 1. Let Fn/2

s denote the CNFXOR formula
generated by HybridMC on input F , so that minModels =
maxModels = avgModels = MC(Fn/2

s ). Suppose the algo-

rithm makes an error, that is, either MC(F)≤ 2s−1MC(Fn/2
s )

or MC(F)≥ 2s+1MC(Fn/2
s ). We will show that these events

occur with a low probability.
The proof uses a slight generalization of Lemma 3. As-

sume the same setup as in the proof of that lemma, namely,
a random variable Y that equals MC(Fn/2

s ) and whose mean
and variance are E[Y ] = MC(F)/2s and Var[Y ] ≤ E[Y ], re-

spectively. We then have Pr[MC(F) ≥ 2s+1MC(Fn/2
s )] =

Pr[MC(Fn/2
s ) ≤ MC(F)/2s+1] = Pr[Y ≤ E[Y ]/2]. Sim-

ilarly, Pr[MC(F) ≤ 2s−1MC(Fn/2
s )] = Pr[MC(Fn/2

s ) ≥
MC(F)/2s−1] = Pr[Y ≥ 2E[Y ]].

Considering the two error modes of the al-
gorithm, Pr[HybridMC makes an error] = Pr[Y ≤
E[Y ]/2 or Y ≥ 2E[Y ]] ≤ Pr[|Y − E[Y ]| ≥ E[Y ]/2]. By
Chebyshev’s inequality, this probability is at most
Var[Y ]/(E[Y ]/2)2 ≤ 4/E[Y ] = 1/2s∗−s−2.
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