
Reconciling Situation Calculus and Fluent Calculus

Stephan Schiffel and Michael Thielscher
Department of Computer Science
Dresden University of Technology

{stephan.schiffel,mit}@inf.tu-dresden.de

Abstract

The Situation Calculus and the Fluent Calculus are successful
action formalisms that share many concepts. But until now
there is no formal relation between the two calculi that would
allow to formally analyze the relationship between the two
approaches as well as between the programming languages
based on them, Golog and FLUX. Furthermore, such a formal
relation would allow to combine Golog and FLUX and to ana-
lyze which of the underlying computation principles is better
suited for different classes of programs. We develop a for-
mal translation between domain axiomatizations of the Situ-
ation Calculus and the Fluent Calculus and present a Fluent
Calculus semantics for Golog programs. For domains with
deterministic actions our approach allows an automatic trans-
lation of Golog domain descriptions and execution of Golog
programs with FLUX.

Introduction
The Situation Calculus(SC) (McCarthy 1963; Reiter 2001b)
and the Fluent Calculus(FC) (Thielscher 2005b) are action
formalisms. These formalisms provide theories for intelli-
gent systems to reason about actions and how they change
the state of the world. Both calculi provide a different solu-
tion to the well known frame problem (McCarthy & Hayes
1969).

In the SC effects of actions are defined by successor state
axioms (Reiter 1991), each one describing the value of an
individual fluent (an atomic property of the world) after exe-
cuting an action in terms of what holds in the situation before
the action. The FC extends the SC by the concept of a state
and in which the effects of actions are specified by action-
based state update axioms (Thielscher 1999). Those ax-
ioms update an explicit description of the state of the world
upon execution of an action. Because of these different ap-
proaches both calculi have different properties. Therefore
one might be suited better than the other to solve certain
classes of problems (Thielscher 2005a).

However there exists no proper analysis about that issue
until now. For comparing the different properties of the SC
and the FC a formal relation between the two calculi is nec-
essary. We develop such a relation in terms of a translation

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

between domain descriptions in both calculi. Another ben-
efit of a formal relation between the SC and the FC is the
possibility to compare extensions made separately for the
two calculi, such as concurrency. Furthermore it might even
allow to translate current or future extensions made only for
one of the calculi to the other.

Golog is a programming language for intelligent agents
that combines elements from classical programming (condi-
tionals, loops, etc.) with reasoning about actions. Primitive
statements in Golog programs are actions to be performed
by the agent. Conditional statements in Golog are composed
of fluents. The execution of a Golog program requires to
reason about the effects of the actions the agent performs,
in order to determine the values of fluents when evaluating
conditional statements in the program.

Existing semantics for Golog are based on the SC, and
existing implementations (Levesque et al. 1997; Giacomo,
Lespérance, & Levesque 2000) use successor state axioms
when evaluating conditional statements in a Golog program.
Accordingly, the implementations use pure regression to
evaluate a fluent condition, which means that a given se-
quence of actions is rolled back through the successor state
axioms. A consequence is that the evaluation of a condi-
tion in a Golog program in general depends on the length
of the history and the number of fluents whose (past) val-
ues have an influence on the conditional statement. Alter-
natively, progression (Lin & Reiter 1997) can be used in
combination with successor state axioms, which means to
employ regression to infer the values of all fluents after an
action, and then to store these values for future evaluation.
This avoids to store an ever increasing history, but the com-
putational effort of a single progression step depends on the
overall number of fluents of a domain.

In this paper, we present an alternative semantics for
Golog based on the FC, to overcome this disadvantage. Our
new semantics lays the foundation for an implementation
of Golog in FLUX (Thielscher 2005a), a programming lan-
guage based on the the FC. In FLUX the inference principle
of progression is employed to update a state specification
upon the performance of an action. The advantage over re-
gression is that fluent conditions can be evaluated directly
against the updated world model. Moreover, progression via
state update axioms requires to consider the affected fluents
only.

287

The implementation of a Golog interpreter in FLUX adds
an implementation independent programming language to
the FLUX system, a feature that FLUX was lacking so far.
This allows to conduct systematic experiments and to an-
alyze which underlying computation principle, progression
or regression, is better suited for different classes of Golog
programs.

The remainder of the paper is organized as follows. First
we repeat the basic definitions of the Situation Calculus and
Golog. We use a variant of Golog that extends the origi-
nal version by a search operator, which allows to interleave
planning and execution (Giacomo, Lespérance, & Levesque
2000). We also briefly recapitulate the Fluent Calculus.
Next we present the formal translation of a SC domain de-
scription to an equivalent one in the Fluent Calculus. After
this, we present our Fluent Calculus semantics for Golog
programs. A brief discussion of the results and possible fu-
ture work concludes the paper.

Background
Situation Calculus
The SC as described in (Reiter 2001b) is a sorted logical lan-
guage designed for axiomatizing dynamic domains. There
are predefined sorts for fluents, actions and situations. All
changes to the environment are caused by actions. A se-
quence of actions is called a situation. Situations are built
using the situation constant S0 and the function Do(a, s),
where a is an action term and s is a situation.

Non-static properties of the world are described by flu-
ents, i.e. predicates or functions with a situation term as last
argument. Properties of a situation s are described by so
called uniform formula in s. A formula is uniform in a sit-
uation s if it does not mention any other situation besides
s, that means it can be evaluated with regard to situation s
only. The values of the fluents in the initial situation are de-
scribed by the initial database, a set of formulas uniform in
S0. In situation Do(a, s) the values of fluents are defined in
terms of the values of fluents in the previous situation s and
the action a that was executed by so called successor state
axioms (Reiter 1991). A successor state axiom for a fluent
predicate F (~x, s) looks like this:

F (~x, Do(a, s)) ≡ γ+
F (~x, a, s) ∨ (F (~x, s) ∧ ¬γ−

F (~x, a, s))
(1)

Here γ+
F (~x, a, s) and γ−

F (~x, a, s) are formulas uniform in s

with free variables among ~x, a. If γ+
F (~x, a, s) holds then the

fluent F (~x) is called a positive effect of action a in situa-
tion s. Consequently, the fluent is a negative effect of a,
if γ−

F (~x, a, s) holds. Thus, successor state axioms describe
the effects of actions. An example is the following succes-
sor state axiom for a fluent called Closed(s), indicating the
status of a door:

Closed(Do(a, s)) ≡ (2)
a = Close ∨ (Closed(s) ∧ ¬a = Open)

The execution of an action a in situation s is only pos-
sible if its preconditions are fulfilled in s. The precondi-
tions are defined by a set of precondition axioms of the form

Poss(A(~x), s) ≡ ΠA(~x, s), where ΠA is a formula uniform
in s.

Possibility of actions leads to the definition of an ex-
ecutable situation (Reiter 2001b, 4.2.4) executable(s),
which intuitively means a situation s is executable if each
action in the history of s was possible in the respective situ-
ation.

Golog
We consider the original Golog defined in (Levesque et al.
1997) augmented by the search operator introduced in (Gia-
como & Levesque 1999).

Being a high-level language for agent control, Golog uses
actions (of the agent) as primitive statements and fluents for
tests, i.e., conditional statements. These basic ingredients
are embedded in a language that has standard elements of
imperative programming. Specifically, a Golog program can
be composed of these constructs:1

nil empty program
a action
φ? test
δ1; δ2 sequence
δ1 | δ2 nondeterministic choice (of programs)
πv. δ nondeterministic choice (of parameters)
δ∗ nondeterministic iteration
Σδ search

In addition, the following macros are used:

if φ then δ1 else δ2
def= (φ? ; δ1) | (¬φ? ; δ2)

while φ do δ
def= (φ? ; δ)∗ ; ¬φ?

The intuitive meaning of the operator Σδ is to search for a
terminating run of sub-program δ and then to execute this
run.2

Existing semantics for Golog are based on the SC. In (Gi-
acomo, Lespérance, & Levesque 2000), a transition seman-
tics for Golog is given by an axiomatic definition of two
predicates: Trans(δ, s, δ′, s′), meaning that the execution of
the next action or the next test in program δ leads from situ-
ation s to situation s′ and to the remaining program δ′. The
second predicate, Final(δ, s), means that program δ does not
require to execute any more action or test in situation s. The
core of this semantics are the definitions for executing an
action and for evaluating a test:

Trans(a, s, δ′, s′) ≡ Poss(a, s)∧
δ′ = nil ∧ s′ = Do(a, s)

Trans(φ?, s, δ′, s′) ≡ φ[s]∧
δ′ = nil ∧ s′ = s

(3)

Here, Poss(a, s) denotes that action a is possible in situa-
tion s, and φ[s] means that condition φ holds in situation

1Below, δ, δ1, δ2 are Golog programs, φ is a formula with flu-
ents as atoms, and v is a variable.

2The Golog variant of (Giacomo, Lespérance, & Levesque
2000) contains additional constructs, e.g., for interrupts and pro-
cedures, which we will not deal with in this paper for the sake of
simplicity.

288

s. This requires a background theory which contains action
knowledge of the application domain in form of precondi-
tion and effect axioms. Specifically, effects are described
by successor state axioms (Reiter 1991), which define the
value of a particular fluent after an action (that is, in situa-
tion Do(a, s)), in terms of the values of fluents in situation
s.

Fluent Calculus

The FC extends the SC by a predefined sort for states. The
function State(s) denotes the state in situation s. The world
can be in the same state in different situations, but the state
in every situation is unique. State terms are constructed from
fluents (as singleton states) and the function z1 ◦ z2, where
z1 and z2 are states. The foundational axioms of the FC
stipulate that function “◦” shares essential properties with
the union operation for sets. A fluent f is then defined to
hold in a state z if and only if the former is a sub-state of the
latter:

Holds(f, z) def= (∃z′) z = f ◦ z′

The addition of states to the SC allows to define fluents to
hold in a situation, written Holds(f, s), by referring to the
state in the situation:

Holds(f, s) def= Holds(f, State(s))

Based on the notion of a state, the frame problem (McCarthy
& Hayes 1969) is solved in the FC by state update axioms,
which define the effects of an action a as the difference be-
tween the state prior to the action, State(s), and the succes-
sor State(Do(a, s)). A state update axioms for action A(~x)
looks like this:

Poss(A(~x), s) ⊃
(∃~y1)(∆1(s) ∧ State(Do(A(~x), s)) =

State(s) − ϑ−
1 + ϑ+

1)
∨...∨ (4)

(∃~yn)(∆n(s) ∧ State(Do(A(~x), s)) =

State(s) − ϑ−
n + ϑ+

n)

Where ϑ−
i and ϑ+

i are the negative and positive effects of
the action A(~x) in situation s under the condition that ∆i(s)
holds, and ~yi are free variables of ϑ−

i , ϑ+
i and ∆i(s). ∆i(s)

is a so-called situation formula, that is a formula with free
situation variable s and without any occurrence of states or
situations other than in expressions of the form Holds(f, s)
and without actions.

In contrast to successor state axiom in the SC, state up-
date axioms provide an action-based description of the ef-
fects of actions as opposed to a fluent based description.
That means inference is done by updating the entire state
rather then individual fluents. This leads directly to an ef-
ficient implementation that is based on the principle of pro-
gression (Thielscher 2003). The following state update ax-
ioms describe the effects of the actions Open and Close for
opening and closing a door, whose status is described by the

one fluent Closed:

Poss(Open, s) ⊃
State(Do(Open, s)) = State(s) − Closed (5)

Poss(Close, s) ⊃
State(Do(Close, s)) = State(s) + Closed

FLUX
The FC provides the formal underpinnings of the logic pro-
gramming method FLUX (Thielscher 2005a). FLUX is
based on the encoding of (possibly incomplete) state knowl-
edge with the help of constraints. The effects of actions are
inferred on the basis of state update axioms, which effect an
update of the set of constraints that encode a given state. An
example is the following state update axiom for the action
close of closing the door of an elevator:
state_update(Z1,close,Z2) :-

update(Z1,[closed],[],Z2).

where update(z1, ϑ
+, ϑ−, z2) means that z2 is z1 updated

by, respectively, positive and negative effects ϑ+ and ϑ−.
FLUX is thus amenable to the computation principle of pro-
gression: The current state description is updated upon the
performance of an action, which allows to evaluate con-
ditions on the successor situation directly against the new
state.

Translation of Domain Specifications
Domain specifications Σ in the Situation Calculus and the
Fluent Calculus consist of:
• Σfd, the foundational axioms of the SC or the FC respec-

tively,

• Σinit, a definition of the initial situation,

• Σap, a set of action precondition axioms,

• Σdc, a set of domain constraints,

• Σeffect, a set of axioms describing the effects of the ac-
tions,

• Σuna, a set of unique names axioms and

• Σaux, a set of auxiliary axioms, i.e. situation independent
axioms.

In the following we will use a superscript of s or f to distin-
guish between elements of the SC and the FC domains with
the same name but different definitions. The functions t and
t′ are used to denote a translation of a SC formula to the FC
and vice versa.

Because of space constraints we will only present the
translations of Σinit and Σeffect in this paper. The trans-
lation of the remaining elements is mostly straightforward.

For the translation we make certain assumptions about the
domain descriptions:
• We will only consider deterministic domains, i.e. there

are no nondeterministic actions.

• The actions must not have infinitely many effects, so
called open effects, because one can’t describe open
effects in a standard state update axiom of the FC
(Thielscher 1999).

289

• The successor state axioms have to be of the form as in
equation 1.3

• For the sake of simplicity we don’t consider domain de-
scriptions with fluent functions in this paper. Fluent func-
tions can be part of a SC domain description, but can only
be indirectly expressed in the FC by fluent relations with
the value of the fluent function as additional argument. A
straightforward translation of a domain description with
fluent functions to one without is possible.

Situation Formulas and Initial Situations

Situation formulas in the Fluent Calculus and so called uni-
form formulas in the Situation Calculus are similar in that
both state facts about exactly one situation. A uniform
formula φ can be translated to a situation formula t(φ)
by replacing each fluent atom P (~x, s) by Holds(P (~x), s)
(Thielscher 1999) and vice versa.

The initial situation in the SC is defined by a set of first
order sentences that are uniform in S0, the so called initial
database. In a FC domain the initial situation is defined by
a situation formula Ψ(S0). W.l.o.g. we can assume that the
initial database consists only of the single uniform formula
Φ(S0). Hence the translation of the initial situation descrip-
tions reduces to the translation of a uniform formula to a
situation formula and vice versa.

Effects of Actions

(Thielscher 1999) gives an in-depth account on how to trans-
late successor state axioms to essentially equivalent state up-
date axioms.

We reverse this method to translate state update axioms to
equivalent successor state axioms. Consider a state update
axiom as in equation 4. From this we can extract positive
and negative effect axioms for action A:

ε+A,Fi
⊃ Fi(~yi, Do(A(~x), s))

ε−A,Fi
⊃ ¬Fi(~yi, Do(A(~x), s))

with

ε+A,Fi

def= ε+A,Fi
(~x, ~yi, s)

def=
∨

j∈I+

[t′(∆j(s))]

ε−A,Fi

def= ε−A,Fi
(~x, ~yi, s)

def=
∨

j∈I−

[t′(∆j(s))]

The sets I+ and I− are the sets of indices of those ϑ+
j and

ϑ−
j , that contain F (~yi). That means ε+A,Fi

is the disjunction
of all those conditions ∆j for which F (~yi) is a positive effect
of the action A, and similarly for ε−A,Fi

. It is easy to see
that if the state update axiom is built from effect axioms as
described in (Thielscher 1999), then the disjunction of ∆j

is equivalent to the original effect axiom. In our example

3This differs from the definition in (Reiter 2001b), which allows
for arbitrary formulas uniform in s on the right hand side of the
axiom.

of the door we obtain the following effect axioms from the
state update axiom (5):

> ⊃ ¬Closed(Do(Open, s))
> ⊃ Closed(Do(Close, s))

Now we have positive and negative effect axioms for each
pair of action Aj and fluent Fi. Those can be combined to
general effect axioms for each fluent:

ε+Fi
⊃ Fi(~xi, Do(a, s))

ε−Fi
⊃ ¬Fi(~xi, Do(a, s))

where ε+Fi
and ε−Fi

are defined as follows:

ε+Fi

def= ε+Fi
(~xi, a, s) def=

∨

j

[ε+Aj,Fi
∧ a = Aj(~x)]

ε−Fi

def= ε−Fi
(~xi, a, s) def=

∨

j

[ε−Aj,Fi
∧ a = Aj(~x)]

For our example the general effect axioms are:

a = Open ⊃ ¬Closed(Do(a, s))
a = Close ⊃ Closed(Do(a, s))

The general effect axioms for each fluent Fi can be com-
bined to successor state axioms:

Fi(~xi, Do(a, s)) ≡ ε+Fi
∨ (Fi(~xi, s) ∧ ¬ε−Fi

)

The successor state axiom for our example is exactly the one
of equation (2).

Equivalence of Domain Specifications
The domain specifications obtained by the translation de-
scribed above are equivalent, in the sense that each formula
about a situation s holds under a domain specification ex-
actly if the translated formula holds under the translated do-
main specification, as long as the situation is executable, i.e.
the actions leading to the situation were possible.

Theorem 1.

Σs |= φ(s) iff t(Σs) |= t(φ(s))
and (6)

Σf |= ψ(s) iff t′(Σf) |= t′(ψ(s))

for each uniform formula φ(s), each situation formula ψ(s)
and each executable situation s.

The restriction to executable situations is necessary, be-
cause in the FC the successor state is undefined if an action
is not possible, i.e. State(s) is undefined if s is not exe-
cutable.

Proof (Sketch). For s = S0 (6) follows by induction over all
formulas uniform in s or situation formulas in s respectively.
As the translation of state update axioms to successor state
axioms is the reversal of the method from (Thielscher 1999),
for s = Do(a, s′) (6) follows from (Thielscher 1999), pro-
vided s′ is an executable situation, a is possible in s′ and (6)
holds for s′.

290

Fluent Calculus Semantics for Golog
Programs

Our starting point for defining our new semantics is the tran-
sition semantics for Golog given in (Giacomo, Lespérance,
& Levesque 2000) with the exception of the axioms for con-
currency. With the help of the predicates Trans and Final the
semantics of a Golog program can be defined as:

Do(δ, s, s′) def=
(∃δ′)Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

where Trans∗ stands for the reflexive and transitive closure
of Trans. The predicate Do(δ, s, s′) means that the execu-
tion of a Golog program δ in situation s leads to a final situ-
ation s′ with a finite number of transitions.

In the FC it is now possible to replace the situation s of
a configuration by its associated state State(s) and thus de-
note transitions by Trans(δ, z, δ, z′) and final configurations
by Final(δ, z) where z = State(s) and z′ = State(s′). By
doing this we do no longer have to calculate values of fluents
by regression over the situation as in the Situation Calculus.
Instead we progress the state on every execution of an ac-
tion. Then a simple lookup in the FC state is sufficient to
acquire a fluents value, as, by the Completeness Assump-
tion, all fluents that hold in a situation are part of the as-
sociated state. By replacing situations by states, however,
we lose the information about the performed actions. This
information is necessary in order to be able to actually exe-
cute the actions in the physical environment after reasoning
about their outcomes. Thus we introduce a list of actions not
executed so far as additional result of a transition and will
therefore denote a transition between two configurations by
Trans(δ, z, δ′, z′, h′) where h′ is the history of the actions to
be executed in z in order to reach z′.

Now we define the semantics of a Golog program in the
FC by:

Do(δ, z, z′, h′) def= (∃δ′)Trans∗(δ, z, δ′, z′, h′) ∧ Final(δ′, z′)

where Trans∗ stands for the reflexive and transitive closure
of Trans and h′ is the concatenation of the action histories of
the individual transitions. Similar to the original semantics,
the predicate Do(δ, z, z′, h′) means that the execution of a
Golog program δ in state z results in state z′ and h′ contains
the actions executed in between.

Now we can define the relations Trans and Final induc-
tively for all Golog programs. Most definitions are essen-
tially just syntactical transformations of the original ones
from (Giacomo, Lespérance, & Levesque 2000): Situations
are replaced by states, and the action history h′ is added to
the Trans predicate. E.g. the definition of Trans and Final
for nondeterministic branches are those:

Trans(δ1|δ2, z, δ′, z′, h′) ≡
Trans(δ1, z, δ′, z′, h′) ∨ Trans(δ2, z, δ′, z′, h′)

Final(δ1|δ2, z) ≡ Final(δ1, z) ∨ Final(δ2, z)

The major differences arise in the definitions for primitive
actions and test actions. These Trans predicates in the FC

are:

Trans(a, z, δ′, z′, h′) ≡
Poss(a, z) ∧ δ′ = nil ∧ (∃s)State(s) = z ∧
z′ = State(Do(a, s)) ∧ h′ = a

Trans(φ?, z, δ′, z′, h′) ≡
φ[z] ∧ δ′ = nil ∧ z′ = z ∧ h′ = []

Here φ[z] is an abbreviation for a predicate
HoldsCond(φ, z) which maps Golog condition expres-
sions to FC state formulas, by replacing each Fluent f in
φ with Holds(f, z). HoldsCond(φ, z) is similar to Holds
from (Giacomo, Lespérance, & Levesque 2000), it is only
renamed to avoid confusion with Holds of the FC.

The major difference compared to equation 3 is that in the
SC s′ = Do(a, s) is just a variable assignment but in the FC

(∃s)State(s) = z ∧ z′ = State(Do(a, s))

results in a state update which calculates the new state z′

from z and the effects of executing the action a in z.
This first of all means that computing a transition for a

primitive action with our semantics is more expensive in
terms of calculation time than with the original semantics.
The reward for this is that the evaluation of φ[s] in the SC
means to do a regression over the situation for each fluent f
in φ and for each fluent on which the value of f depends. In
contrast, in the FC φ[z] can be evaluated by looking up the
values of the fluents in the state z that was computed by the
last transition.

Thus calculating a transition for test actions in the FC
does not depend on the length of the action history and is
therefore less expensive in cases with situations of a certain
length.

The new semantics is equivalent to the original one in the
following sense:
Theorem 2. For all Golog programs δ and ground situation
terms s and s′

Σs ∪ Cs |=Do(δ, s, s′)
iff

Σf ∪ Cf |=Do(δ, State(s), State(s′), history(s, s′))

Where history(s, s′) denotes the list of actions executed be-
tween s and s′ and C stands for the set of axioms for Trans
and Final plus those axioms needed for encoding Golog
programs as terms in first-order logic.

Proof (Sketch). For each Golog program δ it can be shown
that

Σs ∪ Cs |= Trans(δ, s, δ′, s′)
iff (7)

Σf ∪ Cf |=
Trans(δ, State(s), δ′, State(s′), history(s, s′))

and similarly for Final(δ, s). For test actions, i.e. δ = φ?,
(7) follows from the definitions of HoldsCond(φ, z) and
Theorem 1. For primitive actions, i.e. δ = a, (7) follows
from Theorem 1. For complex actions (e.g. δ1; δ2) the prop-
erty is proved by induction.

291

Conclusion
We have presented a formal translation between domain ax-
iomatizations in the Situation Calculus and the Fluent Calcu-
lus. This formal relation between the two action formalisms
provides the necessary foundations for a proper analysis of
the differences of both calculi and the agent programming
systems based on them. It is also the basis for comparing
extensions made separately for both calculi, such as concur-
rency, and it might even allow to translate current or future
extensions made only for one of the calculi to the other.

We have also presented a new semantics for Golog based
on the Fluent Calculus, by which the standard model for
Golog is enriched with the notion of a state. The essen-
tial difference to previous semantics is that states, and not
situations (i.e. histories of actions) are propagated when de-
scribing the execution of a Golog program. We have given
a Fluent Calculus interpretation for all language elements of
the original Golog (as defined by (Levesque et al. 1997))
augmented by the search operator introduced in (Giacomo,
Lespérance, & Levesque 2000). All further constructs from
the latter, extended dialect, e.g. those for interrupts and pro-
cedures, can be interpreted in our semantics in a straight-
forward way. The new semantics is proved to be equivalent
with the original Situation Calculus semantics.

Our new semantics lays the foundation for interpreting
Golog programs in FLUX. This allows to employ states and
the inference principle of progression for state update. The
motivation for the alternative semantics and implementation
is that

• progression of states allows to evaluate conditions in
Golog programs directly against the updated state;

• progression via state update axioms only requires to con-
sider those fluents that are affected by an action;

• Golog provides an attractive, implementation independent
programming language for agent systems, a feature that
FLUX was lacking so far.

Based on the formal translation and the semantics de-
fined in the previous sections we have developed a Prolog
implementation of Golog interpreter in Flux4 based on the
LeGolog interpreter5 as well as an implementation of the
translation of a LeGolog domain description to Flux and
vice versa. In an extended version of a standard scenario
for Golog (Levesque et al. 1997), our new implementation
proved to be a more efficient interpreter for Golog compared
to the original LeGolog implementation. The results will be
published on our webpage.

For future work, we intend to conduct systematic exper-
iments and to analyze which computation principle is bet-
ter suited for different classes of Golog programs. We are
currently extending the translation of domain axiomatiza-
tions and our interpreter to knowledge-based Golog pro-
grams (Reiter 2001a), thereby using the full expressiveness
of the Fluent Calculus and FLUX for incomplete states. This
will allow us to use the existing contraint solving mechanism

4see http://www.fluxagent.org/
5http://www.cs.toronto.edu/cogrobo/Legolog/

for incomplete states in FLUX, which seems to be very ef-
ficient in comparism to other approaches (Sardina & Vassos
2005), to reason about knowledge in Golog programs.

References
Giacomo, G. D., and Levesque, H. 1999. An incremen-
tal interpreter for high-level programs with sensing. In
Levesque, H., and Pirri, F., eds., Logical Foundations for
Cognitive Agents. Springer. 86–102.
Giacomo, G. D.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1–3):59–83.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92:131–167.
McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intelligence 4:463–502.
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford University, CA: Stanford Artificial Intelli-
gence Project, Memo 2.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001a. On knowledge-based programming with
sensing in the situation calculus. ACM Transactions on
Computational Logic 2(4):433–457.
Reiter, R. 2001b. Knowledge in Action. MIT Press.
Sardina, S., and Vassos, S. 2005. The Wumpus World
in INDIGOLOG: A Preliminary Report. The Sixth Work-
shop on Nonmonotonic Reasoning, Action, and Change at
IJCAI.
Thielscher, M. 1999. From situation calculus to fluent cal-
culus: State update axioms as a solution to the inferential
frame problem. Artificial Intelligence 111(1–2):277–299.
Thielscher, M. 2003. Controlling semi-automatic systems
with FLUX. (Extended abstract). In Palamidessi, C., ed.,
Proceedings of the International Conference on Logic Pro-
gramming (ICLP), volume 2916 of LNCS, 515–516. Mum-
bay, India: Springer.
Thielscher, M. 2005a. FLUX: A logic programming
method for reasoning agents. Theory and Practice of Logic
Programming 5(4–5):533–565.
Thielscher, M. 2005b. Reasoning Robots: The Art and
Science of Programming Robotic Agents, volume 33 of Ap-
plied Logic Series. Kluwer.

292

