Identification and Evaluation of Weak Community Structures in Networks

Jianhua Ruan and Weixiong Zhang
Department of Computer Science and Engineering
Washington University
St. Louis, MO 63130
Email: {jruan, zhang} @cse.wustl.edu

Abstract

Identifying intrinsic structures in large networks is a
fundamental problem in many fields, such as engineer-
ing, social science and biology. In this paper, we are
concerned with communities, which are densely con-
nected sub-graphs in a network, and address two criti-
cal issues for finding community structures from large
experimental data. First, most existing network cluster-
ing methods assume sparse networks and networks with
strong community structures. In contrast, we consider
sparse and dense networks with weak community struc-
tures. We introduce a set of simple operations that cap-
ture local neighborhood information of a node to iden-
tify weak communities. Second, we consider the issue
of automatically determining the most appropriate num-
ber of communities, a crucial problem for all clustering
methods. This requires to properly evaluate the qual-
ity of community structures. Built atop a function for
network cluster evaluation by Newman and Girvan, we
extend their work to weighted graphs. We have eval-
uated our methods on many networks of known struc-
tures, and applied them to analyze a collaboration net-
work and a genetic network. The results showed that
our methods can find superb community structures and
correct numbers of communities. Comparing to the ex-
isting approaches, our methods performed significantly
better on networks with weak community structures and
equally well on networks with strong community struc-
tures.

Introduction and Overview

Complex networks have drawn much interest lately in many
different domains, ranging from engineering, social science
to biological studies (Newman 2003). In a framework of
network analysis, a system is modeled as a graph, in which
the nodes are the elements of the system (e.g. the individ-
uals in a society), and the edges represent the interactions,
links, or similarities between pairs of elements. One of the
key problems that attracted a great deal of interest recently is
the identification of the so-called community structure, a rel-
atively densely connected sub-graph. Identification of such
structures is fundamentally important for understanding the
dynamics and design principles of complex systems.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

470

Identifying community structures in a network amounts
to clustering nodes into groups. Clustering algorithms have
been proposed in diverse areas, including data mining, VLSI
design, social networks, and bioinformatics, as surveyed
in (Jain, Murty, & Flynn 1999). Many of these algorithms
are not designed specifically for clustering networks, and
make strong assumptions of the statistical or topological
properties of the clusters (e.g., Gaussian distribution and
spherical shapes). When experimental data do not agree
well with these assumptions, these methods often fail. In
addition, determining the right number of clusters is diffi-
cult in general and requires deep insight to the network of
interest. A few ideas have been proposed for this problem
with limited success (Chan, Schlag, & Zien 1993).

Recently, Newman & Girvan (2004) proposed a network
clustering algorithm that considers network topologies ex-
plicitly. Their method is based on the concept of edge be-
tweenness centrality, which measures how likely that an
edge connects two nodes in two communities rather than
within the same community. The algorithm is a divisive hi-
erarchy clustering, which iteratively removes the edge with
the highest betweenness and then adjusts the betweenness
scores of the remaining edges. Furthermore, they proposed
a modularity function, @, to quantify the strength of commu-
nity structures (Newman & Girvan 2004). They empirically
showed that high) values are often correlated with high-
quality clusters for both computer-generated and real-world
networks. Therefore, their method can potentially be used
to automatically determine the number of clusters.

Even though the Newman & Girvan method has been suc-
cessful on a variety of networks, it requires a substantial
amount of computation, due to the recalculation of between-
ness scores after each edge removal. The algorithm runs
in O(m?2n) time on arbitrary networks and O(n?) time on
sparse networks with m edges and n nodes. Newman (2004)
proposed a faster algorithm based on a greedy optimization
of the modularity function @ that runs in O((m + n)n) time
for arbitrary networks and O(n?) time on sparse graphs.
White & Smyth (2005) related a relaxed optimization of Q)
function with spectral clustering, and proposed an algorithm
that works almost as well as the Newman & Girvan method
but with a smaller running time of O(hn) for sparse graphs,
with h being the number of iterations.

‘We make two contributions in this paper. First, most exist-

ing network clustering methods assume sparse networks and
networks with strong community structures, i.e., there are
more intra-community edges than inter-community edges.
In contrast, we consider both sparse and dense networks
that have weak community structures, which are often re-
sulted from noise and errors in experiments (e.g. in genetic
interaction network). We introduce a set of simple opera-
tions to capture local neighborhood information of a node.
Combined with spectral clustering, our method can identify
weak community structures with significantly improved ac-
curacies. Furthermore, our method is very efficient, having
the same running time as the White & Smyth method.

Second, we address the issue of automatically deter-
mining the most appropriate number of communities in
weighted dense graphs. Under a good community structure
in weighted networks, intra-community edges tend to have
higher weights (or shorter distances) than inter-community
ones. Applying the modularity function @) to such commu-
nity structures, however, often results in very low @ values.
Although it is still possible to select the number of clusters
using the () measure, it does not shed light on the quality
of community structures. We propose a simple extension
to estimate the () function on weighted graphs by a rank-
based transformation of edge weights that can produce much
meaningful results.

The paper is organized as follows. We first investigate
local neighborhoods in real-world networks and propose
two local operations, and discuss a modularity function for
choosing the number of clusters. We then present the over-
all algorithm and extensively evaluate our methods on vari-
ous networks of known structures, and apply them to a real-
world collaboration network and a genetic network. We con-
clude with some final remarks.

Local Structures

Real-world networks often possess intrinsic properties that
are lacked in random graphs, such as power-law distri-
butions of node degrees (Newman 2003). In particu-
lar, real-world networks often have surprisingly higher
clustering coefficients than random graphs (Newman
2003). The clustering coefficient ¢ is defined as ¢
3x(number of triangles in the graph)
(number of connected triples)
triple” means a path of three nodes. This coefficient is re-
lated to node transitivity, i.e., two nodes connecting to a third
node are likely to be directly connected. In terms of social
networks, this means that a friend of your friend is likely
to be your friend as well. In fact, c is the probability that
your friend’s friend is also your friend. For most real-world
networks, 0.1 < ¢ < 0.5, while for random networks of n
nodes, lim,, . ¢ = 0 (Newman 2003).

Let G = (V, E) be a network or graph , where V is the
set of n nodes and E the set of m edges. Let A = (4;;) be
the adjacency matrix of G, i.e., A;; = 1if (v;,v;) € E,0r0
otherwise. Let D be the diagonal degree matrix of A, where
Dy =32, Aij. We then define a matrix B = Ax A-(1—1),

and C = A x A- A, where I is an identity matrix, “Xx” rep-
resents ordinary matrix multiplication and “-” means entry-

, where a “connected

471

wise multiplication. It is evident that Bij = > . AinA;j
if ¢ # j, or O otherwise, and C;; = A;;B;;. Therefore,

B;; is the number of common neighbors shared by nodes

v; and v;, which is also the number of paths of length two
between them. So the sum of all entries in B, ||B|| =
2 X (number of connected triplets). Similarly, C’ij is the
number of common neighbors of nodes v; and v; if they are

directly connected, and O otherwise. In other words, C’ij is
the number of triangles that contain edge (v;, v;). Therefore,

I|C|| = 6 x (number of triangles in the network), and the

clustering coefficient can be calculated as ¢ = ||C|| /|| B]].

The above transitivity property indicates that two nodes
with many common neighbors tend to be in the same com-
munity. Therefore, the number of triangles passing along an
edge, normalized by the probability that this may happen by
chance, can be used to weight the edge. On the other hand, if
two nodes are both connected to many common neighbors,
regardless whether there is a direct edge between them, they
have a higher chance to be in the same community than ran-
dom. Therefore, we define two normalized matrices:

B
C

X B X D_%/Sb;
x C x D73 /8.,

D-
D-

(D
2

where S, and S, are scaling factors such that the values in B
and C are within [0, 1]. Note that B;; = Bij/Sb\ /D;iDj;
and Cj; = C’ij /Scr/DiiDj;. The square root in the de-
nominators gives relatively higher weights to node pairs that
share more common neighbors.

Both B and C can be considered as adjacency matrices of
some weighted graphs transformed from the original graph
A. C is a weighted subgraph of A, where the edges be-
longing to more triangles gain higher weights. Thus, com-
paring to A, intra-community edges in C' have increased
weights while inter-community edges have reduced weights.
The edges not in any triangle are simply removed. This
may cause some problem if the intra-community edges are
sparse, since in this case a community may be broken into
several disconnected components. As a remedy we can com-
bine A and C, which brings the edges in A back to the graph.
The relationship between A and B is more complex, in that
B contains all the edges in C, as well as some additional
edges that may or may not be in A. In general, B is much
denser than A or C'. If the original graph is sparse, the added
edges due to similar local neighborhood structures may pro-
vide additional information of communities. Therefore, we
consider a combination of the three:

H=(axA)+(BxB)+C,

D= Nl

3

where « and [are scalars. Ideally, small o and [are pre-
ferred for dense graphs or graphs with high clustering coef-
ficients, and large « and 3 should be used for sparse graphs.
As to be seen in the experiment section, we find that sim-
ply taking « = 3 = 1 is sufficient for most cases that we
studied.

Although the above discussion is for unweighted net-
works, Equations (1) - (3) can be directly applied to

weighted graphs, where A;; is a positive weight for an edge
between nodes v; and v;. In the special case where a net-
work is a weighted complete graph, we choose o = 3 = 0
since C' would not remove any edge from A, and empiri-
cally it turns out to be better than any other combination in
our study (see Experimental Results).

Modularity and Number of Clusters

Given a clustering I';, of a graph that partitions its nodes into
k groups, the modularity @ of I'y, is defined as

k
Q(Tx) = (e — af),)
=1

K2

where e;; is the fraction of the edges that fall within clus-
ter 4, and a; the fraction of edges each of which has at least
one end connected to a node in cluster 7 (Newman & Girvan
2004). The @ function is conceptually intuitive: It measures
the edge density within a cluster, subtracted by the density
that one would expect by chance, and sums all such dif-
ferences over all clusters. If a particular partitioning gives
no more intra-community edges than would be expected by
chance, the modularity (9 = 0. For a trivial clustering with
a single community, () is always equal to zero.

A nice feature of modularity () is that it provides a global
quality measurement of community structures for a net-
work. It has been found that most real-world networks have
@ > 0.3, which was suggested as a threshold for good com-
munity structures (Newman & Girvan 2004). We have also
found that networks with () > 0.3 are relatively easy to clus-
ter in that most existing algorithms will return good cluster-
ing results; while the clustering quality of most clustering
algorithms decreases dramatically when the () value is be-
low 0.3 (see Experimental Results).

The definition of () can be generalized to weighted net-
works by extending e;; and a; to corresponding fractions of
edge weights. However, the generalization is only mean-
ingful for sparse networks, while weighted networks in real
applications are often dense or even complete graphs. A
weighted network is usually derived from similarity scores
between pairs of nodes, which can be computed for any pair
of nodes, resulting in a dense or complete graph. On such
networks, the () function often fails to produce meaningful
results as we will see in Experimental Results.

A simple way to fix this problem is to use a weight thresh-
old to remove some edges. However, without knowing the
community structure of a network, it is difficult to choose
the right threshold. Furthermore, it is always possible to use
a high threshold to break a network into small disconnected
components, so as to obtain a high @ value, whereas the
resulting clustering may not be meaningful for the original
network. Therefore, maximizing () is not a good criterion.

Here we propose a method to determine a weight thresh-
old for edge removal so that meaningful community struc-
tures can be revealed, and the corresponding) value can
be used to unbiasedly compare different clustering results.
The intuition of our method is as following. Since a com-
munity is a set of nodes that are highly connected among
themselves but only loosely to the rest of the network, we

472

can choose a threshold to remove low-weight edges so that,
in the ideal case, the number of remaining ones would be just
enough to form completely connected communities with no
inter-community connections. Therefore, for a perfect clus-
tering, the weights of the intra-community edges should be
all higher than that of inter-community edges.

Based on this insight, the edge-weight threshold can
be uniquely determined as follows. Suppose a clustering
method returns a partition I'y = {Py,Pa,---, P} on a
weighted graph. The number of edges needed to com-
pletely connect the intra-cluster node pairsis s =) (| P;| x
(|P;| — 1)/2). We sort all the edges in the network in a non-
increasing order of their weights. We then set the weights of
the first s edges to 1, and discard the other edges. In case
that the s-th edge is tied with other edges on weights, we
remove all or none of them to keep the number of remaining
edges as close to s as possible. The) value of the resulting
graph can then be computed according to Equation (4).

It is evident that the above method also works for sparse
and unweighted graphs. We call a) value computed as
above the thresholded Q) value, or Q' in short. Note that
certain variants of our method are also possible. For ex-
ample, we could use a threshold to determine which edges
should be removed, without changing the weights of the re-
maining edges. The other variant is that, instead of keeping
the top s edges, we may keep only a fraction p of s, where
0 < p < 1, if we require the communities to be sparse. From
our experience, however, we have found that the results of
these variants are very similar, given that p is not too small.

The Algorithm

Based on our method for constructing a new graph from
a network and the method for measuring modularity, our
overall algorithm is generic in that it can be combined with
any clustering algorithm. In our study, we consider spec-
tral clustering, since it has been extensively studied for
graph partitioning problems (Chan, Schlag, & Zien 1993;
Ng, Jordan, & Weiss 2001; White & Smyth 2005). In gen-
eral, a spectral clustering algorithm uses eigenvectors of a
matrix to map the original data to vectors in the spectral
space, which are then clustered by standard algorithms such
as k-means. In this research, we adopt the widely used spec-
tral clustering algorithm in (Ng, Jordan, & Weiss 2001). It
has been shown that this algorithm is equivalent to optimiz-
ing @ in a relaxed sense that ignores the discreteness con-
straints (White & Smyth 2005).

Given a graph G = (V, F) and its adjacency matrix A =
(A;;), our algorithm executes the following steps:

1. Compute matrices B and C' by Equations (1) and (2).
2. Compute H = oA + B + C. Default values of o and 3

are 1 for sparse graphs and O for dense graphs.

3. Let D be a diagonal matrix with D;; = Zj H;; and con-

struct a matrix L = D~Y/2HD~1/2,

4. Find the K largest eigenvectors of L, x1,x2,---,Zk, and

form matrix U = [x1, 22, -+, 7x] in R"*X, where K
is an upper bound of the number of clusters.

5. For each integer k, 2 < k < K:

(a) Form matrix Uy, using the first & columns of U . Scale
each row vector of Uy, to have unit length.

(b) Cluster the row vectors of Uy, using k-means clustering,
and calculate the Q? value for the result.

6. Select a k that gives a clustering with the highest Q*.

Experimental Results
Computer-generated Networks

We first tested our methods on networks with known com-
munity structures embedded to evaluate their performance.
We generated a large number of unweighted networks of
100 nodes, divided into four communities of 25 nodes
each. Edges were randomly placed with probability p;,
for nodes within the same community and with probabil-
ity pout for nodes across communities. We varied p;,, from
0.8 to 0.2, representing networks with highly connected to
loosely connected communities. For each p;,, we varied
Pout from 0 to p;,/2 with an interval of p;,/6. With the
trivial case of p;, = 0, there is no inter-community edges.
When p,u: = Pin/3, the total numbers of inter- and intra-
community edges are roughly equal. When poy: > pin/3,
each node has more inter- than intra-community edges on
average, although edge densities within communities are
still higher than other regions of the network. For each net-
work GG and its adjacency matrix A, we computed matrices
B and C with Equations (1) and (2), and different combina-
tions of them. We clustered them given the correct number
of clusters. To measure clustering accuracy, we computed
the minimal Wallace Index (Wallace 1983) between the true
clustering I" and the predicted clustering I/, which is defined
as following:

W (T, T’) = min (N11/S(T), N1 /S(I")),)

where N7, is the number of node pairs in the same cluster in
both I" and I, and S(I") is the number of intra-cluster node
pairsin I'.

Fig. 1 shows W as a function of p,,:, for p;, equals to
0.6 and 0.3, representing dense and sparse community struc-
tures, respectively. For both cases, C' alone results in signif-
icantly better clustering than A for p,u: > pin/3, Where
the @) value drops to below 0.3 (Fig. 1(b) and (d)), indi-
cating weak community structures. This suggests that C' is
indeed able to remove many of the inter-community edges
that are unlikely to be in any triangles. On the other hand,
for sparse communities, C'is in fact worse than A when p,,;
is small (Fig. 1(c)), since a significant portion of the intra-
community edges may be removed in this case. The cluster-
ing accuracy of A 4+ C' is always better than that of A and
only slightly worse than that of C' for dense communities.
On the other hand, B alone is not better than A in general,
and in some cases may be worse. However, if B is combined
with A, or A + C, it always produces good results.

Next, we generated a set of weighted complete graphs of
100 nodes with four equal-sized communities. The intra-
and inter-community edges have weights randomly drawn
from the positive half of normal distributions N (u1,07)
and N (u2,09), respectively. We fixed po at 0 and o7 =
oo = 1, while varied @1 from 0.3 to 1. We used these

473

(b)
—v— A (White-Smyth)
B

—a-
- C
—— A+B
-x- A+C
-o- A+B+C
—— true

o
©
&

S
o o
& ©

°
®

S
S
a

Wallace Index

o
3

—%— A (White-Smyth)
-a- B

- C

—— A+B

06| -*- A+C

-o- A+B+C

0 Pin/6

Pin/2 0 Pin/6 Pin/3 Pin/2

out PDu(
(c) (d)
—— A (White-Smyth)
-a- B

°
3

Wallace Index
s
Q

o
@

—%— A (White—-Smyth) N
A B N\ 02
- C =
—— A+B
“x- A+C ~ 0
-o- A+B+C

0% Pin/6 Pin/3 Pin/2 01

o
=

°
@

Pin/6. Pin/2

out out

Figure 1: Clustering results on unweighted networks.
(a),(c): Wallace Indices between true and predicted clusters.
(b),(d): @ values of the true and predicted clusters. Each
data point is an average of 100 runs.

graphs to demonstrate that the C' matrix can be general-
ized to weighted networks, and our method for estimating
the thresholded () values on weighted graphs can be used to
identify the correct number of clusters.

As shown in Fig. 2(a), given £, the correct number of clus-
ters, C' often results in higher W values than A. Further-
more, the combination of A + B + C works no better than
C alone, although still better than A. When £ is not given,
both Q¢ and @ can often give good estimations of k, with Q*
being slightly better for smaller p; (Fig. 2(c)). In contrast,
the scaled cost function (Chan, Schlag, & Zien 1993) is not
able to recover k even in the simplest cases where Q and Q°
make no mistakes. An advantage of Q! over Q is that Q? is
more meaningful than @ in quantifying cluster qualities. As
shown in Fig. 2(b), the Q° values for these networks range
from 0.4 to 0.1, representing networks with strong to weak
communities. Indeed, for the networks with @Q* > 0.3, our
method makes very few mistakes in recovering the original
structures, a phenomenon similar to unweighted graphs. In
contrast, the () values tend to be much smaller and do not
quantify cluster strengths very well.

Real-world Networks with Known Structures

We also evaluated our methods on two real-world networks
with known community structures. The first example is
from one of the classical social network studies. In this
study, Zachary observed over two years the social interac-
tions among 34 members of a karate club. In this period,
the club was split into two smaller ones, due to a dispute
between the club’s instructor and administrator. Fig. 3(a)
shows the network and the actual split of the club. Ap-
plying our method to the network, the best result was ob-
tained with matrix A + B + C and A + B, where we per-

— A (White-Smyth)
-b- B

°
©

°
©

°
2

o
>

Wallace Index
°
&

— A (White-Smyth)

2
i
o

°
b
v
>
¥
o

°
o
©
o
®
°
g

= o

S
°
@
o
=
°
@

- Q
1 —~ Q'

_o— scaled cost
0.8

Error rate
o o
5 o

o
N

0

82 08 04 05 06 o7 08 09 1
p|

Figure 2: Clustering results on weighted networks. (a) Wal-
lace Indices between true and predicted clusters. (b) () and
Q@ values of the true and predicted clusters. (c) The per-
centage of incorrect predictions to the number of clusters.

fectly predicted the division of the members, with a () value
0.372. In comparison, the White & Smyth method disagreed
with the actual division on node 3, and had slightly lower @
value (0.36). Interestingly, with our method, the maximal
@ value (0.42) occurred when the network was split into
four clusters, as indicated by the four different node types
in Fig. 3(a). These splits seem to be reasonable: the five
hexagonal nodes form a connected sub-community that has
no paths to the community led by the instructor (node 33),
other than through the administrator (node 1); the 10 cir-
cular nodes on the upper left are more tightly connected to
nodes 33 and 34 than the 6 nodes on the bottom left. In con-
trast, the () values are much smaller for the White & Smyth
method to split the network into & > 2 clusters.

The second real-world example we examined is a net-
work of 115 NCAA Division I-A American college foot-
ball teams, where a node is a team and an edge represents a
game played by two teams in year 2000. The teams were of-
ficially organized into 11 conferences, and each team played
more intra- than inter-conference games. Therefore, the con-
ference structure represents the communities that we would
like to identify (network not shown due to space limit). In-
deed, as shown in Fig. 3(c), the maximal) value for our
method corresponds to 11 clusters, which is exactly the
number of conferences. Furthermore, with these clusters,
each team was correctly assigned to its own conference, ex-
cept for eight teams that do not belong to any of the confer-
ences. The clustering by the White & Smyth method with
11 clusters is the same as ours. On the other hand, with other
numbers of clusters, our method often identified better com-
munity structures than theirs. Since the clustering coefficient
is relatively high for this network (0.412), the combination
of A+ B + C performs slightly worse than other combina-

474

—— A (White—Smyth)
—— B
-a- C
—— A+B
-x- A+C
-o- A+B+C

2 3 4 5 6 7
Number of clusters

(d)

—>— A (White-Smyth)
- B

-+ C

-4- A+B

—— A+C

—— A+B+C

03% 5 7 B 9 10 11 12 13 14 15 16 17 18 19 20 045 10 15 20 25 30 35

Number of clusters Number of clusters

Figure 3: (a) The karate club network. Light and dark nodes
represent the actual division of the club. Shapes correspond
to the division predicted by our algorithm. (b)) values from
clustering the karate club network. (c) @) values from clus-
tering the NCAA football teams. (d) @) values from cluster-
ing the CiteSeer collaboration network.

tions or C' alone. In comparison, the clustering coefficient
for the karate club network is 0.298, and as a result the com-
bination of A + B + C is better than C alone.

Real Applications

Finally, we applied our method to two networks for which
the true community structures were not well understood.
The first application was to cluster a network of collabora-
tions among computer scientists embedded in the CiteSeer
co-authorship database. In order to focus on community
structures, we selected authors (nodes) who have at least
15 collaborators. The largest connected component in this
network contains 275 nodes and 417 edges. We run our al-
gorithm with k from 5 to 31; the @ values of the results are
shown in Fig. 3(d). The network has very strong community
structures, in that the best) value, 0.89, was achieved by
A+ B+ Cand A+ B at k = 21. On the other hand, the
best () value obtained by A is only 0.82, indicating that our
new method is also effective on this application. Note that
matrix C' alone produced very poor results, as shown by the
low @ values for all k. This is because the collaboration net-
work is very sparse and has a low clustering coefficient of
0.29. Fig. 4 shows the network structure and the best clus-
tering given by A + B + C'. It is evident that many edges in
the network are not in any triangles, which explains why C'
did not work well on this application.

The clustering clearly reflects various sub-communities
among computer scientists, such as machine learning, multi-
agent, software engineering, compiler, and cryptography.
Some clusters are specific and contain a few nodes, such as
the researchers working on PVM or the CiteSeer search en-
gine. These communities tend to be near the perimeter of the

Distributed systems

Cryptography ® p
]

Software engmeering
|

CiteSeer

Real-time systems @ i

database o

Network

[] A n ¥

A g Distributed Systems

& Ivfulti-agent

Figure 4: Clustering CiteSeer collaboration network, k =
21. Best viewed in color.

network and have very few inter-community edges. On the
other hand, some groups are not well-defined and connect to
many other communities; examples include networks, dis-
tributed systems, and real-time systems communities.

The second application was to cluster a genetic network
of 800 yeast cell-cycle genes. Expression profiles of these
genes at 77 time points during cell cycles were obtained
from (Spellman et al. 1998). The network was constructed
as a weighted complete graph, where each node represents
a gene, and the weight of an edge is the Pearson correlation
coefficient between the expression profiles of a pair of genes,
scaled to within [0, 1]. The graph was then transformed by
Equation (3) and fed into the spectral clustering algorithm to
find 2 to 10 clusters. As shown in Fig. 5(a), our method us-
ing C achieved the best result based on the Q' measurement,
while A+ B+ C also gave slightly better results than A. The
maximal Q! value, 0.37, was reached at k = 4 clusters. The
high Q! value indicates strong community structures with
the clustering result. Importantly, it turns out that the clus-
ters obtained correspond very well to the four phases in a
cell cycle (G1, S, G2, and M). As shown in Fig 5(b), the
average expression profile of each cluster shows good peri-
odicities, and the shift from one phase to another is evident.
In comparison, the original) function failed to predict the
number of clusters for this case.

Conclusions and Discussion

We proposed a method for identifying weak community
structures in large networks. We showed how two types of
local structure properties, the number of triangles and the
number of paths of length two, can be exploited to improve
the quality of network clustering. We used these local neigh-
borhood structures to derive two local operations (in matri-
ces B and C' in the paper). We empirically studied, using

475

(White-Smyth)

-~ A
-4 C
-x- A+B+C

2 3 4 6 7 8 9 10

5
Number of clusters

Figure 5: Clustering genetic network (a) Q and Q! values.
(b) Average gene expression profiles of the best 4 clusters.

many known and unknown network structures, the strength
of these operations and their combinations. Among many
other things, the most important conclusion is that the com-
bination of these operations, along with the original graph,
is very effective in revealing weak community structures in
both sparse and dense networks.

We also extended the work by Newman and Girvan
for quantifying the strength of community structures to
weighted complete graphs. We showed that, on both syn-
thetic and real-world networks, the generalization allowed
us to unbiasedly evaluate the clustering quality, and au-
tomatically determine the best number of clusters without
prior knowledge of network structures.

In short, our extensive experiments and applications to
many types of networks showed that our methods are effec-
tive in discovering high-quality weak community structures
in large networks.

Acknowledgments. This research was supported in part by NSF
grants ITR/EIA-0113618 and 1IS-0535257. Thanks to Mark New-
man for the Karate club and NCAA football data, to Marko Ro-
driguez for the Citeseer data, and to the anonymous referees for
comments.

References
Chan, P. K.; Schlag, M. D. F; and Zien, J. Y. 1993. Spectral
k-way ratio-cut partitioning and clustering. In ACM/IEEE Design
Automation Conference, 749-754.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data clustering:
A review. ACM Comput. Surv. 31(3):264-323.
Newman, M., and Girvan, M. 2004. Finding and evaluating com-
munity structure in networks. Phys. Rev. E 69:026113.
Newman, M. 2003. The structure and function of complex net-
works. SIAM Review 45:167-256.
Newman, M. 2004. Fast algorithm for detecting community struc-
ture in networks. Phys. Rev. E 69:066133.
Ng, A. Y,; Jordan, M. I.; and Weiss, Y. 2001. On spectral cluster-
ing: Analysis and an algorithm. In NIPS, 849-856.
Spellman, P., et al. 1998. Comprehensive identification of cell
cycle-regulated genes of the yeast saccharomyces cerevisiae by
microarray hybridization. Mol Biol Cell 9(12):3273-97.
Wallace, D. L. 1983. Comment. Journal of the American Statis-
tical Assocation 78:569-576.
White, S., and Smyth, P. 2005. A spectral clustering approach to
finding communities in graph. In SIAM Data Mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

