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Abstract

This paper develops new algorithms for coalition formation
within multi-sensor networks tasked with performing wide-
area surveillance. Specifically, we cast this application as
an instance of coalition formation, with overlapping coali-
tions. We show that within this application area sub-additive
coalition valuations are typical, and we thus use this struc-
tural property of the problem to derive two novel algorithms
(an approximate greedy one that operates in polynomial time
and has a calculated bound to the optimum, and an optimal
branch-and-bound one) to find the optimal coalition structure
in this instance. We empirically evaluate the performance of
these algorithms within a generic model of a multi-sensor net-
work performing wide area surveillance. These results show
that the polynomial algorithm typically generated solutions
much closer to the optimal than the theoretical bound, and
prove the effectiveness of our pruning procedure.

Introduction
Coalition formation (CF) is the coming together of a num-
ber of distinct, autonomous agents in order to increase their
individual gains by collaborating. This is an important form
of interaction in multi-agent systems because many appli-
cations require independent agents to come together for a
short while to solve a specific task and disband once it is
complete. As such, it has recently been advocated for task
allocation scenarios where groups of agents derive a certain
value (and/or cost) from tasks being performed in the coali-
tion (Shehory & Kraus 1998). Building on this, in this pa-
per, we apply CF to one such scenario, namely wide-area
surveillance by autonomous sensor networks (e.g. perform-
ing monitoring and intruder detection in areas of high se-
curity). This is an important application that has received
renewed interest in recent years, and a key question within
this field, is how to coordinate multiple sensors in order to
focus their attention onto areas of interest, whilst balancing
the need for both coverage and precision. Thus the problem
can naturally be modelled as one of CF since a number of
groups of sensors need to be formed to focus on particular
targets of interest, these groupings combine their resources
for the group’s benefit and then they disband when the target
is no longer present or a more important one appears.
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However in order to apply CF within this domain, we
need to extend the current state of the art. Specifically, to
date, much of the research within this area has assumed non-
overlapping coalitions in which agents are members of at
most one coalition (see section Related Work for more de-
tails). Now, in the multi-sensor networks that we consider,
this assumption no longer holds. Since, the sensors can track
multiple targets simultaneously, multiple overlapping coali-
tions can be formed. Thus, against this background, this
paper advances the state of the art in the following ways:

• We cast the problem of sensor coordination for wide-
area surveillance as a coalition formation process, and
show that, in general, this results in a coalition formation
problem in which multiple coalitions may overlap and in
which the coalition’s values are typically sub-additive.

• We develop two novel algorithms to calculate the optimal
coalition structure when faced with overlapping coalitions
and sub-additive coalitional values. The first is a polyno-
mial time approximate algorithm that uses a greedy tech-
nique and has a calculated bound from the optimum (Cor-
men, Leiserson, & Rivest 1990). The second is an op-
timal algorithm based on a branch-and-bound technique
(Land & Doig 1960). We evaluate the performance of
these algorithms in a generic setting, and show that the
typical performance of the polynomial algorithm is typi-
cally much better then the calculated bound. In addition,
we show that the optimal branch-and-bound algorithm is
able to effectively prune the search space.

The rest of the paper is organised as follows. In the next
section we describe the wide-area sensing scenario that mo-
tivates this work. Following this, we present our two al-
gorithms for finding the optimal coalition structure in our
overlapping coalition scenario. We empirically assess the
performance of these algorithms in the following section,
and finally, we conclude and discuss future work.

The Coalition Model
We now present our model of coalitions within a sensor net-
work applied to wide-area surveillance. Thus, our model
consists of a set of n sensors, I = {1, 2, ...n}, and a set of m
targets, T = {t1, t2, ...tm}, within an area environment that
the sensors are tasked with monitoring. Each sensor i has
Ki possible states, and si ∈ {0, . . . , k, . . .Ki − 1} denotes
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Figure 1: An example sensor network in which three sensors
(1,2 and 3) track the position of two targets (t1 and t2) that
pass through their field of view (indicated in bold).

the state it is in. When si = 0, the sensor i is the ‘sleep’ state
(i.e. a state in which it is not sensing). The remaining Ki−1
states are sensing states that indicate the directional capabil-
ity of the sensor (i.e. an individual sensor can orientate its
focus of attention into a number of distinct regions). Thus,
depending on the sensing state that each sensor adopts, the
sensor network as a whole may focus the attention of differ-
ent combinations of sensors on to different targets. Figure 1
shows a simple instantiation of such a sensor network. Here
there are three sensors, I = {1, 2, 3} that are tracking two
targets, T = {t1, t2}, within their field of view. The sensors
can either sleep or orientate their sensing in one of four di-
rections. Since they have a fixed range, they can thus focus
their attention within one of four sectors centered on the sen-
sor itself (the active sector is shown in bold in the diagram).

Now, a coalition in this scenario, is a group of sen-
sors tracking a particular target (e.g. sensors 1 and 2
tracking target t1 in the example shown in figure 1). Let
visibility(i, si, tj) be a binary logical variable such that it
is true if target tj can be observed by sensor i when in state
si, and false otherwise. Then we can define a coalition as:

Definition 1 Coalition. A coalition is a tuple (C, tj)
whereby C ⊆ I is a group of sensors such that ∀i ∈ C,
sensor i is in state si such that visibility(i, si, tj) = true.

Note that from the above definition, when an agent chooses
to be in a particular state, it becomes a member of those
coalitions that are responsible for tracking all the targets that
are visible in that state, and thus, the sensor may be a mem-
ber of several overlapping coalitions (this would occur in
our example if another target fell within the active sensing
sectors of both sensor 1 and 2).

Definition 2 Overlapping Coalitions. Two coalitions
(C, tj) and (D, tl) are overlapping if C ∩ D 6= ∅

Now, each coalition (C, tj) has a value v(C, tj) that rep-
resents the value of having a number of sensors tracking a
target (we discuss in the next section how this value is cal-
culated). In addition, each sensor incurs costs depending
on the sensing state that it has adopted. For example, the
cost maybe zero when the sensor is turned on and non-zero
otherwise. Moreover, in this paper, we are interested in the
system welfare as it is an effective indication of the system’s

performance, especially in cooperative environments. Thus,
the optimal coalition structure generation problem is to find
a set of coalitions CS∗ = {(C1, t1), . . . , (Cm, tm)} such
that the system welfare is maximised:

CS∗ = arg max
CS∈Γ(I,T )




∑

tj∈T

v(Cj , tj) −
∑

i∈I

ci



 (1)

where Γ(I, T ) is the set of all possible coalition structures
given the targets and the agents. Note that unlike the stan-
dard coalition model, in our formalism we can not simply in-
corporate the costs into the coalition values. Doing so would
incur multiple counting of the costs, since whilst there may
be m coalitions representing each target, there are n sensors
(and these sensors incur costs depending on their sensing
state rather than the number of coalitions of which they are
members).

Coalition Values
Now, since wide-area sensing is concerned with informa-
tion gathering, it is natural to consider a coalition valua-
tion function based on the information content of observa-
tions. In this case, the goal of the sensor network when co-
ordinating the focus of individual sensors, is to obtain the
maximum information from the environment. A common
way to measure information in target tracking scenarios is
to use Fisher information; a measure of the uncertainty of
the estimated position of each target (Dash, Rogers, Reece,
Roberts and Jennings 2005). Such a measure is attractive
because when a number of sensors observe the same tar-
get and then fuse their individual estimates, the information
content of the fused estimate is simply given by the sum
of the information content of the individual un-fused esti-
mates. Thus, when the coalition value is represented as the
information content of position estimates, the coalition val-
ues are additive. For example, in figure 1 where both sensors
1 and 2 observe and fuse information about target 1, then
v({1, 2}, t1) = v({1}, t1) + v({2}, t1).

However, this additivity only applies when the individual
estimates are independent. A more likely scenario within
sensor networks is that these individual estimates are cor-
related to some degree. This will typically occur either
through the exchange and fusion of earlier position esti-
mates, or alternatively, by sensors using shared assumptions
(such as a common model of the target’s motion). Now,
when these estimates are correlated, the coalition values be-
come sub-additive (Reece and Roberts 2005). That is, due
to the correlation, the fused estimate contains less informa-
tion than the sum of the individual estimates, and thus, in
our example, v({1, 2}, t1) < v({1}, t1) + v({2}, t1).

The same sub-additive valuation also occurs in other more
general models of sensor networks. For example, in (Lesser,
Ortiz & Tambe 2003), the authors explicitly impose such
sub-additivity when the number of sensors observing a sin-
gle target increases. Indeed, within our overlapping coali-
tion setting, such sub-additive coalition values are very com-
mon, and occur whenever there are diminishing returns as
more resources are applied to a task.
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Thus, in this paper, we focus on coalition values that obey
the following two conditions:

• Monotonicity: v(C, tj) ≤ v(D, tj) if C ⊆ D
This ensures that adding new members to a coalition can
never reduce its value. In our case, this implies that ob-
taining observations from more sensors about a target can-
not decrease the coalition value.

• Sub-additivity: v(C ∪ D, tj) ≤ v(C, tj) + v(D, tj)
This implies that if two different groups of sensors track
a certain target tj , then the sum of the value each derives
is never less than if the union of the two groups perform
it. In our scenario, suppose a group of sensors C tracks a
target tj . Now suppose another group of sensors D track
the same target. Then the sum of the value of these two
exclusive events cannot be less than if all the members of
C and D joined to track the same target. Sub-additivity
intuitively occurs when C ∩ D 6= ∅ or due to the dimin-
ishing returns each new member brings to a coalition.

Sensor Costs
As described above, the costs of the sensors are calculated
separately from the coalition value. In the case of simple
sensors that incur a fixed cost dependent on their state si,
we can model the cost as:

ci =
{

0 if si = 0
costi otherwise

In more complex settings, the sensor cost may also reflect
the additional costs incurred when changing from one sens-
ing state to another (e.g. the cost of changing its orienta-
tion to track another set of targets), or reflect the fact that
in battery power devices the cost of sensing may depend on
the state of charge of the battery. However, in this paper,
we consider the simple cost structure since this issue has no
impact on the performance of our coalition formation algo-
rithms, which we now describe.

Coalition Formation Algorithms
In this section, we present our two coalition formation al-
gorithms. Specifically, we describe a fast polynomial, ap-
proximate algorithm (that can produce a solution within a
finite bound of the optimal), and then an optimal branch-
and-bound algorithm.

The Polynomial Algorithm
Algorithm 1 is a polynomial time algorithm that produces an
approximation of the optimal solution (see figure 2). Basi-
cally, it operates in a greedy manner. It first chooses the best
action by a sensor (e.g. the action that brings the biggest
value) (see step 1). In the second step, it chooses the best
action of another sensor taking the first sensor into consid-
eration. Then, in the third step, it chooses the best action
of another sensor taking the first two sensors into consider-
ation. The process then repeats until there is no sensor left.
We can now analyse the algorithm to assess its properties.

Theorem 1.1 The complexity of algorithm 1 is O(n2m).

Algorithm 1

1. Each agent chooses its best state taking only itself into
consideration and calculates this best outcome. That is,
each agent i chooses its state si such that:

m∑

j=1
visibility(i,si ,tj)=true

v({i}, tj) − ci is maximised

and calculates this best personal outcome (denoted pi).
The agents then choose agent i1 with the best outcome:

pi1 = max
i∈I

pi

Agent i1 switches to its best state if not in that state yet.
2. Each agent, except i1, chooses its best state taking only

itself and i1 into consideration and calculates this best
outcome. That is, each agent i chooses its best state si

such that:
m∑

j=1
Cj⊆{i1,i}

v(Cj , tj) − ci1 − ci is maximised

and calculate its best outcome p′i. The agents then
choose agent i2 with the best outcome:

p′i2 = max
i∈I,i6=i1

p′i

Agent i2 switches to its best state if not in that state yet.
3. Repeat the above step until we reach the last agent.

Figure 2: The polynomial coalition formation algorithm.

PROOF. At each step, it requires to get through O(n) sensors
to find the best action of a sensor. For each sensor, we have
to calculate the outcome for each state by summing O(m)
coalition values together. As there are n steps, the complex-
ity is O(n2m). �

Theorem 1.2 The solution of algorithm 1 is within a bound
n of the optimal. That is, given that V1 is the system welfare
of the solution of algorithm 1 and V ∗ the optimal solution:

V ∗

V1
≤ n

PROOF. Let 〈s∗i 〉ni=1 be the optimal state vector (that is, the
vector contains the states of all sensor agents). For 1 ≤
j ≤ m, let C∗

j be the coalition of sensors that track target tj
associated with the optimal solution. The optimal solution’s
system welfare V ∗ then is:

V ∗ =
m∑

j=1

v(C∗
j , tj) −

n∑

i=1

ci

≤
m∑

j=1

∑

i∈C∗
j

v({i}, tj) −
n∑

i=1

ci
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⇒ V ∗ ≤
n∑

i=1

m∑

j=1

v({i}, tj) −
n∑

i=1

ci

≤
n∑

i=1

(
m∑

j=1

v({i}, tj) − ci)

≤ n ∗ (
m∑

j=1

v({i1}, tj) − ci1)

≤ n ∗ V1

�

The Optimal Algorithm

The optimal algorithm is a branch-and-bound algorithm that
finds the optimal solution. First, however, we define the con-
cept of a weak state as it will be used in the algorithm.

Definition 3 A state si of agent i is called a weak state iff
agent i in state si does not see any target in its range.

Proposition 1 A state vector 〈s1, s2, ..., sn〉 is not optimal
if there exists an i such that si is a weak state.

PROOF. This is trivial due to the fact that V (s1, s2, ..., sn〉 is
always less than V (s1, ..., si−1, 0, si+1, ..., sn〉 (0 means the
sleeping state). �
We present the branch-and-boundalgorithm in figure 4. This
basically searches through the search space in a depth-first
search manner, then uses a branch-and-bound technique to
prune a subtree whenever possible. Specifically, if we reach
a node and the upper bound value of all nodes that branch
under that node is less than or equals the current best so-
lution, we can prune the whole subtree under the node. The
original best solution is the solution of the greedy algorithm,
while the upper bound of the subtree is derived from the
sub-additivity as detailed in figure 4. Also see figure 3 for
an example search tree in case n = 3 and ki = 2, for all
1 ≤ i ≤ n.

Now one of the main issues that affects the performance
of Branch-and-Bound algorithms is choosing the tree struc-
ture. To this end, we present a process for selecting the
tree structure (which in this case is equivalent to an order-
ing of the agents) with which the algorithm will likely prune
the subtrees quickly (see figure 5). Basically, it contains 2
phases. In the first one, all agents with weak states are cho-
sen first and ordered decreasingly according to the number
of their weak states. The idea is to maximise the number
of pruned subtrees early on (due to proposition 1). In the
second phase, the remaining agents are ordered in a simi-
lar way to the greedy algorithm (but in reverse). That is,
it first chooses the worst action by a sensor. In the sec-
ond step, it chooses the worst action of another sensor tak-
ing the first sensor into consideration. Then, in the third
step, it chooses the worst action of another sensor taking the
first two sensors into consideration. The process then re-
peats until there is no sensor left. In this way, the inequation
V (S′) ≥ V (α1, α2, ..., αk) +

∑n
i=k+1 V (si) is more likely

to happen as V (α1, α2, ..., αk) is likely to be small.

Figure 3: An example search tree with n = 3 and ki = 2,
for all 1 ≤ i ≤ n.

Algorithm 2

1. Search all 〈s1, s2, ..., sn〉 in a depth-first search manner.
2. Suppose the current best system welfare is V 1 (initially

V 1 would be the system welfare generated by the greedy
algorithm). If V 1 ≥ V u, V u is the upper bound of the
value of any solution in the subtree 〈α1, α2, ..., αk〉 (i.e.
〈s1 = α1, s2 = α2, ..., sk = αk〉), prune the whole sub-
tree 〈α1, α2, ..., αk〉. The upper bound is derived from
sub-additivity property of the valuation function as fol-
lows: for every sk+1, sk+2, .., sn:

V (α1, α2, ..., αk, sk+1, sk+2, ..., sn)

≤ V (α1, α2, ..., αk, 0, 0, ..., 0) +
n∑

i=k+1

pi

Thus if we have V 1 ≥ V (α1, α2, ..., αk, 0, 0, ..., 0) +∑n
i=k+1 pi, the whole sub-tree 〈α1, α2, ..., αk〉 can be

pruned safely.
3. If we reach a leaf node in the tree, calculate its valuation

and update the current best solution.

Figure 4: The optimal coalition formation algorithm.

Experimental Results
This section outlines the experimental evaluation of our al-
gorithms to see how they perform in reality. This is neces-
sary because, for our polynomial algorithm, the theoretical
analysis is in terms of worst-case, however, by doing an ex-
perimental analysis we can have a clearer idea of the typi-
cal performance; and for our optimal one, it is difficult to
measure its effectiveness theoretically. Specifically, for the
polynomial algorithm, we want to assess how close a typical
solution is to the optimal compared to the worst-case bound,
and for the optimal algorithm, we want to assess how effec-
tively the search space is pruned. To this end, we next de-
scribe the experimental setup in subsection, and then present
the evaluation results for the polynomial and optimal algo-
rithms separately.

Experimental Setup
In order to generate generic problems on which to compare
the performance of our two algorithms, we model the sensor
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Algorithm 3

1. Choose an agent with the biggest number of weak states.
2. Repeat step 1 until no agent with weak states is left.
3. For the remaining agents, carry out the following steps:
• Each agent chooses its worst state taking only itself into

consideration and calculates this worst outcome. That
is, each agent i chooses its state si such that:

m∑

j=1

v({i}, tj) − ci is minimised

and calculates its worst outcome pi. The agents then
choose agent i1 with the worst outcome:
pi1 = mini∈I pi

• Each agent, except i1, chooses its worst state taking
only itself and i1 into consideration and calculates this
worst outcome. That is, each agent i chooses its worst
state si such that:

m∑

j=1
Cj⊆{i1,i}

v(Cj , tj) − ci1 − ci is minimised

and calculates its worst outcome p′i. The agents then
choose agent i2 with the worst outcome:
p′i2 = mini∈I,i6=i1 p′i

• Repeat the above step until we reach the last agent.

Figure 5: The tree structure selection process for the optimal
coalition formation algorithm.

network described in figure 1. That is, we have n (ranging
from 4 to 20 in the experiment) sensors, each with a fixed
range and four distinct sensing states, randomly distributed
within a unit area. Within this area are m (that has the same
value as n in the experiment) targets, again randomly dis-
tributed. We assign a random sensing cost on the interval
[0, 1) to each sensor, and a random coalition value, again
on the interval [0, 1), to each coalition that contains a sin-
gle sensor. We then use an iterative process to randomly
assign the coalition values of all the larger coalition, whilst
ensuring that these values satisfy our monotonicity and sub-
additivity constraints. In this way, we calculate problem in-
stances that are as general as possible, and thus, do not bias
our results to a specific scenario.

Now, due to the demands of space, here we set n equal
to m. Then for values of 4, 8, 12, 16 and 20 targets and
sensors, we run the algorithms 200 times1 and record the
bound from the optimal (for the polynomial algorithm) and
the percentage of pruned space (for the optimal algorithm).

1An ANOVA test showed that 200 iterations is sufficient for
statistically significant results. For α = 0.05, the p-value for the
null hypothesis is > 0.05 in all the experiments with 5 samples.
This shows that there is not a significant difference between the
mean values and thus validates the null hypothesis.
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Figure 6: Percentage of searches that return the optimal
value in the case of the polynomial algorithm.

Number of Sensors Mean Bound Std Devand Targets
4 1.0028 0.024
8 1.0062 0.022

12 1.0071 0.023
16 1.0054 0.013
20 1.0078 0.012

Table 1: Polynomial algorithm – bound from the optimal.

The Polynomial Algorithm

The result for the polynomial algorithm is presented in ta-
ble 1 and figure 6. As we can see from the table, all of the
bounds are very close to 1. Specifically, the bound mean is
always less than 1.01 and the standard deviation is always
less than 0.03. This is close to the optimal and significantly
lower than the theoretically proved bound which is n (i.e., 4
to 20 in this experiment). This suggests that in many prac-
tical cases, our algorithm performs significantly better than
the theoretical proved worst-case analysis. Moreover, from
figure 6, we see that when the number of sensors and targets
is small, the greedy algorithm generates the optimal solution
a significant percentage of the time (i.e. greater than 80%
when n = m = 8). However, as the number of sensors and
targets increase, the problem instances become more diffi-
cult to solve, and thus, this percentage decreases.

The Optimal Algorithm

The result for the optimal algorithm is presented in figure 7.
This logarithmic plot shows the degree to which the branch-
and-bound algorithm is able to exploit the known structure
of the problem (i.e. monotonicity and sub-additivity) in or-
der to be able to prune the search space. Note that when
n = m = 20, the algorithm needs to typically only search
10−8 of the entire search space in order to calculate the op-
timal solution. As such, our algorithm hugely outperforms a
naı̈ve brute force approach.
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Figure 7: Comparison of various search spaces in the opti-
mal algorithm.

Related Work
A number of algorithms have been developed for coalition
formation, but in general these have not considered overlap-
ping coalitions (Sandholm et al. 1999; Dang & Jennings
2004). However, the notion of overlapping coalitions was
introduced by Shehory and Kraus in their seminal work on
coalition formation for task allocation (Shehory & Kraus
1998; 1996). Here they developed a greedy algorithm for
finding a solution to the overlapping coalitions problem that
exhibited logarithmic bound. However, in contrast to our
problem, they considered a specific block-world scenario in
which the tasks had a precedence ordering and the agents
had a capability vector (denoting the ability of the agents to
perform tasks). As a result, the algorithm they develop is
dissimilar to our polynomial algorithm. Moreover, they do
not develop an optimal algorithm for the overlapping coali-
tion formation process.

The application of coalition formation techniques to dis-
tributed sensor networks has also been investigated by a
number of researchers. In (Sims, Goldman & Lesser 2003),
a vehicle-tracking sensor network is modelled using disjoint
coalitions formed via a negotiation process that results in a
self-organising system. Similarly, in (Soh, Tsatsoulis & Se-
vay 2003), negotiation techniques are employed in order to
form coalitions that track a target. However, these works fo-
cus on identifying and negotiating with potential coalition
members since they operate in an incomplete information
scenario where they are not aware about the existence and
capabilities of other sensors. Our work on the other hand
focuses on providing algorithms for the coalition formation
process in a complete information environment.

Conclusions and Future Work
In this paper, we considered coalition formation for multi-
sensor networks applied to wide-area surveillance. Specif-
ically, we showed how this application leads to overlap-
ping coalitions which exhibit sub-additivity and monotonic-
ity, and we designed two novel coalition formation algo-
rithms that exploit this particular structure. The first was

an approximate and polynomial algorithm, with complexity
O(n2m), that exhibited a calculated bound from the optimal
of n. The second, which was optimal and based on a branch-
and-bound heuristic, used a novel pruning procedure in or-
der to reduce the number of searches required. We used em-
pirical evaluations on randomly generated data-sets to show
that the polynomial algorithm typically generated solutions
much closer to the optimal than the theoretical bound, and
to prove the effectiveness of our pruning procedure.

Future work will focus on employing these algorithms
within dynamic environments where the values of the coali-
tions change with time, thereby causing the optimal coali-
tion structure to vary. This will occur in our scenario as
targets move in and out of the sensors’ range of observa-
tion. We also plan to test these algorithms on real data from
multi-sensor networks in order to further evaluate their per-
formance in real-life scenarios.
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