Behaviosites: Manipulation of Multiagent System Behavior
through Parasitic Infection

Amit Shabtay and Zinovi Rabinovich and Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel
ashabtay @ gmail.com, {nomad, jeff} @cs.huji.ac.il

Abstract

In this paper we present the Behaviosite Paradigm, a new ap-
proach to coordination and control of distributed agents in a
multiagent system, inspired by biological parasites with be-
havior manipulation properties. Behaviosites are code mod-
ules that “infect” a system, attaching themselves to agents
and altering the sensory activity and actions of those agents.
These behavioral changes can be used to achieve altered, po-
tentially improved, performance of the overall system; thus,
Behaviosites provide a mechanism for distributed control
over a distributed system. Behaviosites need to be designed
so that they are intimately familiar with the internal workings
of the environment and of the agents operating within it.

To demonstrate our approach, we use behaviosites to control
the behavior of a swarm of simple agents. With a relatively
low infection rate, a few behaviosites can engender desired
behavior over the swarm as a whole: keeping it in one place,
leading it through checkpoints, or moving the swarm from
one stable equilibrium to another. We contrast behaviosites
as a distributed swarm control mechanism with alternatives,
such as the use of group leaders, herders, or social norms.

Introduction

Nature presents us with a wealth of functioning problem so-
Iutions (Vincent & Mann 2002), available for inspiration and
adaptation to technological contexts. The concept of “para-
site”, for example, taken from biological systems, has been
adopted (in multiple ways) by computer science researchers.
The notion of one agent exploiting other agents has been
used in simulations of evolution (Ray 1990), and their dam-
age to the host has been harnessed as a driving force of selec-
tion in genetic algorithms (Hillis 1992). Parasites have also
provided the common name given to computer malware.
However, one of the most fascinating properties of para-
sites in nature has not received attention in the computer sci-
ence community, namely, the ability of these (usually micro-
scopic) entities to control behavioral features of their (usu-
ally macroscopic) hosts. Such is the case, for example, with
rabies, in which parasites cause the infected animal to act
aggressively, aiding their kin transmission to the next host.
In this paper, we describe an approach to enabling one agent

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

709

to modify the behavior of another agent in a multiagent sys-
tem (MAS). We will define the behaviosite concept — par-
asitic agents that facilitate behavioral changes in their hosts,
to achieve a global system effect.

Distributed System Control and Coordination

The challenge of developing sophisticated control and co-
ordination mechanisms for societies of agents, so as to
achieve desired system-wide behavior, is a central theme of
MAS. There are many proposed solutions, including social
norms (Shoham & Tennenholtz 1992), Generalized Partial
Global Planning (Decker & Lesser 1992), hierarchical orga-
nizations, and agent roles/functions.

The Behaviosite Paradigm that we present is another way
of engendering certain kinds of behavior in a multiagent sys-
tem. Each behaviosite manipulates the behavior of its cur-
rent host so that the overall effect of all these behavioral
changes, engendered by all behaviosites, results in certain
system-wide behavior. Behaviosites in this model are not
independent agents, but rather are dependent on their hosts.
Moreover, behaviosites act within the functional limits of
their host and environment, and do not add new sensing or
action abilities to their hosts.

The control ability of behaviosites will be demonstrated
on a swarm of floys (Dolan 2005) — agents, each of which
is governed by rules ensuring that it is not too close to other
agents, nor too far. These rules give rise to behavior similar
to a swarm of flies or a flock of sheep. With simple yet effec-
tive infection and manipulation strategies, and only a small
percentage of floys infected, we show that behaviosites can
make the swarm stay in one place, move along a prede-
fined path, or overcome attractors. Since behaviosites are
endemic in the swarm, and robust to failures of some of the
behaviosites, they have advantages over the use of leaders
or a hierarchal structure. They are also well-suited to com-
puter graphics simulations, since despite their control over
the swarm, the behavior of the swarm remains life-like.

In the next section we present a description of the Be-
haviosite Paradigm. We then discuss some swarm control
mechanisms, and show how behaviosites manipulate the
swarm to achieve several tasks. In the section on related
work, we briefly overview the concepts of motion planning,
adjustable autonomy, and mechanism design. We conclude
with a discussion of our approach and of future work.

The Behaviosite Paradigm

Behaviosites are a special kind of agent that achieves a
global effect on the behavior of the system through local
effects on the behavior of individual agents. A behaviosite
uses system specific information in affecting the behavior of
an agent, so that the overall system dynamics will change to
some other stable system dynamics.

The basic system is composed of agents and an environ-
ment. Behaviosites, by definition, parasitize an entire func-
tional system, and are a property of neither the environment
nor of agents. Their individual performance is not what mat-
ters, but rather their effect on the system as a whole.

System Requirements

For the Behaviosite Paradigm to be viable and successful,
some system requirements must be met.

Multiple agents: By definition, a behaviosite manipu-
lates the behavior of one agent; if there is only one agent in
the system, one could simply create a new behavior module
for the desired effect. In a society of agents, behaviosites’
mobility has advantages over the insertion of behavioral
modules into all the agents. For example, a behaviosite’s
infection strategy can be designed to infect the most suit-
able agents in the society — perhaps the weakest, or the
strongest, links. As agent roles may change over time, be-
haviosites can dynamically choose better agents to infect.

It should also be noted that a multiagent system usually
has changeable system dynamics — an implicit requirement
for this paradigm.

Susceptible agents: Behaviosites alter the parasitized
host behavior, by taking away some of its autonomy; the be-
haviosite must have some method of affecting agent behav-
ior. It may either be through the use of an existing “hook” in
the agents, that allows access to the latter’s internal mecha-
nisms, or it may be via some external environmental effect.
For example, a robot moving forward might deviate from its
course either via an internal behaviosite (that changes its in-
ternal logic), or via an external behaviosite manipulating the
robot sensors’ input, so that the robot senses a false obstacle.
We discuss this “internal/external” distinction in more detail
below.

Transfer Medium: Behaviosites can infect different
hosts over time, and must thus have some “transfer medium”
between hosts. The medium can be built into agent-to-agent
interactions, allowing (for example) behaviosites to travel
via inter-agent communication. The medium can also be
implicit, such as an environment that actively creates be-
haviosites ex-nihilo — the behaviosites are “spawned” by
an environmental mechanism, and infect agents directly via
the environment (different agents, over time).

Behaviosite Requirements

Benefiting the system: Behaviosites are not required for
normal system performance, but should be designed to be
beneficial to the system in some respect. Benefit to the
system may be increased social utility, or altered perfor-
mance (even causing the system to exhibit new capabilities,

710

as shown in our parasitized floys example below). A be-
haviosite need not be beneficial to a host agent — it may
even harm the host. Moreover, a behaviosite need not be
beneficial to itself (which differs from parasites in nature).

Deep system knowledge: For the behaviosite to success-
fully affect the agent and, through that action, the entire
system, the behaviosite designer must employ deep system
knowledge. He must find ways to overcome possible resis-
tance or over-sensitivity to system change, so that the effect
on infected agents will spread throughout the system, and
not be suppressed by, say, learning agents.

Use existing capabilities: Behaviosites only augment ex-
isting capabilities of the infected agents. They can add
new system capabilities, by using existing agent ones. The
behaviosite simply uses the agent’s architecture to achieve
global system change.

Small numbers: Since behaviosites come with costs (de-
sign time, run-time, building costs) we would like to have
the minimal number of behaviosites that can achieve a de-
sired goal. Deep system knowledge has a significant effect
on the number of behaviosites needed.

Mobility between hosts: Moving from host to host en-
ables the behaviosite to position itself in the most effective
place at a given time. The infection strategy by which be-
haviosites mobilize themselves is of no less importance than
the manipulation strategy, since not being at the right place
at the right time can render behaviosites ineffective.

Behaviosite Location in the System Flow

The behavior of an agent can be manipulated using a variety
of techniques, falling into two main categories — external
and internal behaviosites. External behaviosites can affect
the input or output of the parasitized agent (Figure 1a). Input
can be manipulated by blocking some of the host’s sensors,
or providing false sensory input. They can affect an agent’s
output behavior by altering actions, e.g., by distorting com-
munication between the agent and other agents.

! Agent
! »|| see |
Environment | Behavio
(act
I | 7
| 7
a b

Figure 1: (a) marks where an external behaviosite can alter
the host’s behavior, by altering its input/output. (b) marks
where an internal behaviosite can alter the host’s behavior,
by altering internal data or by partial or full replacement of
behavior modules.

Internal behaviosites (Figure 1b) are more versatile in
their methods of manipulation. They can manipulate inter-
nal data — changing the beliefs, desires, or intentions of the

agent, so the agent will come to decisions based on manip-
ulated data. Another method of manipulation is distorting
or changing the translation of the input from the sensors to
beliefs, or altering the decision reached by the logic mod-
ule, thus resulting in a different output action than the logic
module intended. The most extreme manipulation of an in-
ternal behaviosite is modifying, or completely replacing, its
host’s logic module. However, since the behaviosite’s influ-
ence is temporary, the agent will regain autonomy as soon
as the behaviosite leaves.

External behaviosite manipulation does not require any
access to the internal workings of the agent, and as such, can
be employed in an already built and functioning system. On
the other hand, internal behaviosites require that host agents
have hooks that will allow for sensitive internal manipu-
lation. The incentive for agent designers to prepare these
hooks does exist, especially in a cooperative society where
behaviosites may facilitate better cooperation. Such incen-
tives can even exist in a society composed of self-interested
agents, as shown in (Shabtay, Rabinovich, & Rosenschein
2006). If the system requires the existence of these hooks
in participating agents, or if it can be guaranteed that every
individual agent will benefit from the behaviosite, there is
motivation to include these (sufficiently protected) hooks.

Optional Behaviosite Features

Apparent vs. hidden infection: Behaviosites may “tag” an
agent by infecting it, and this tag will facilitate behavioral
changes in the surroundings of the agent (such as making
other agents avoid contact with this agent). However, hidden
infection has its own merits, e.g., preventing other agents
from exploiting the fact that a fellow agent is infected.
Inter-behaviosite communication: Behaviosites can
form a network within a single agent and achieve better
results by augmenting one another, or by having several
complementary effects. Another use of communication is
the creation of a society of behaviosites within a society of
agents, for better coordination within the agent society.

Controlling Swarm Motion with Behaviosites

To demonstrate the concept of behaviosites, we applied them
to the domain of swarm motion. Controlling a swarm of
robots (known as large group motion planning) has received
a great deal of attention, since there are many applications
for these techniques (including, but not limited to, military
settings). Imagine that we want to move a swarm from one
coordinate to another, possibly going through several check-
points along the way. Controlling such a mass of robots re-
quires sophisticated solutions, since it is not feasible for a
single agent to guide each robot separately towards the goal
coordinate, without losing robots along the way, or losing
the compactness of the group.

Reynolds (Reynolds 1987) showed that it is possible to
generate realistic bird flocking motion as an emergent be-
havior when each agent, called a boid, obeys three very sim-
ple rules: 1. Separation: steer to avoid crowding local flock
mates; 2. Cohesion: steer to move toward the average posi-
tion of local flock mates; 3. Alignment: steer toward the av-
erage heading of local flock mates. Each boid has a limited

711

field of view, so it cannot know the position or alignment of
all group members.

The first two rules are essential for flocking behavior.
However, when the third rule is removed, the emergent mass
behavior is like a swarm of flies (or sheep, depending on
agent speed); thus, an agent with only the first two rules is
termed a floy. An individual floy’s motion appears to be “in-
dependent” (looping, zig-zagging like a fly), but the swarm’s
cohesion is maintained.

General Swarm-Behaviosite Description

Without any rule specifying direction, floy swarms tend to
move in a moderately coherent form erratically in space,
without any directionality. This serves as a convenient sub-
strate for controlling the motion of the swarm towards de-
sired routes, by exploiting the second rule of floys.

Behaviosites serve as a distributed control mechanism
to move the swarm from one checkpoint to another, using
several non-communicating behaviosites and only sensing
the local environment (for simplicity, behaviosites have the
same sphere of sensing as the floy). Behaviosites are not a
special type of floy, and floys do not sense them. They act as
a “swarm within the swarm” — infecting swarm members
by jumping from one floy to another and making them steer
toward the current coordinate that the behaviosites desire.

These behaviosites embody our general requirements.
Behaviosites facilitate the creation of new capabilities of
the swarm (the swarm’s ability to move in a certain path),
and thus benefit the system. To do so, they use deep system
knowledge: exploiting the floy design rules and sensors, and
using existing floy capabilities to achieve the desired mo-
tion. As we shall see, we will require only a relatively small
number of behaviosites to achieve the effect, by having be-
haviosites move themselves to the floy that currently has the
strongest effect over the swarm.

Creating a movement of the swarm in a desired path might
seem easy at first — just steer some of the floys in the de-
sired direction, and the whole swarm will follow. However,
there are several issues that require attention. We want to:
1) move the swarm without breaking it into subgroups, hav-
ing no knowledge of the location of all members; 2) use as
few behaviosites as possible; and 3) know when the swarm
has reached a checkpoint so that the behaviosites can guide
it toward the next checkpoint, without any communication
among them.

Three main high-level design questions must be an-
swered: 1) external vs. internal behaviosites (and hence do
they affect input, output, logic, perception of environment,
decided action); 2) possible modes of transmission; 3) pos-
sible effects on infected floys (manipulation). In our swarm
model there were several possibilities for infection and ma-
nipulation. We used external behaviosites that traveled by
jumping from floy to floy. Movements of floys are done in
“turn units”; each time step, a floy can turn one turn unit.
In our simulation, the behaviosites’ effect is only in manip-
ulating the turns of the floys, by applying force that causes
(two, if not specified otherwise) turn units toward the desired
checkpoint, in addition to the one decided by the floy.

Behaviosites’ Internal Logic

After deciding on the high level design questions, and hav-
ing only limited information regarding the environment, one
must decide on the internal logic of the behaviosite (its
specific infection and manipulation strategies), as well as
problem-specific questions (such as how to decide that the
swarm has reached a certain checkpoint, and steer it to the
next one).

Infection Strategy As mentioned above, in order to use as
few behaviosites as possible we would like behaviosites to
infect the most influential floy at a given time step. Since
floys move toward the sensed center of mass, the floy with
the most neighbors is the most effective. However, be-
haviosites do not have that kind of information. They only
know what their host floy may know — the position of close
floys and their orientation. One of the infection strategies
that proved to be a failure in our experiments was the strat-
egy of infect forward — infecting the floys closest to the
next checkpoint. It caused the separation of the swarm into
subgroups, and the separation of the behaviosites from the
center of mass of the swarm.

A strategy of infect backward (infecting the floys furthest
from the checkpoint) proved to be better. Infect backward
had both the property of pushing the entire flock towards the
checkpoint, and also picking up stray floys that separated
from the main swarm mass, since they were usually the fur-
thest from the checkpoint. However, the infect backward
strategy did not have the desired property of infecting the
floy with the most neighbors (the most influential floy). A
combination of infect backward 80% of the time, and in-
fect forward 20% of the time proved to be the most effective
(using randomized “coin flips”). This strategy helped the
behaviosite spend some of the time in the center of mass of
the entire swarm without real knowledge of its whereabouts.
They also stayed long enough on the outskirts of the swarm,
preventing floys from separating from the swarm, and not
too long in the front, which might have resulted in possible
separation from the swarm. For simplicity, a floy could only
be infected by one behaviosite at a time.

Moving between checkpoints After discovering (through
analysis, and empirically) a good infection strategy, and fix-
ing the manipulation strategy (two turn units toward the
checkpoint), we wanted behaviosites to move the swarm
from one checkpoint to another. For that, all behaviosites
need to decide as simultaneously as possible if the whole
swarm has reached a checkpoint, and that it is time to steer
it to the next checkpoint. As behaviosites travel “on board”
floys, and not by themselves, they were not required to pin-
point a coordinate, but rather a small circular area around the
checkpoint coordinate. Because they travel back and forth in
the swarm, when the swarm is approximately in the right po-
sition, it takes a relatively short time for all behaviosites to
discover that they are at the checkpoint.

However, if the swarm travels fast (depending on the
distance between checkpoints, and the percentage of be-
haviosites), there are times when not all behaviosites update
themselves; they do not realize that the swarm has reached

712

the checkpoint and that they need to steer it to the next
one. This may cause the swarm to split or become inde-
cisive, since behaviosites pull toward different directions.
Because of that, another heuristic was introduced. When a
behaviosite discovered it was at a checkpoint, regardless of
the checkpoint it was aiming at, it updated its beliefs accord-
ingly and started steering the swarm toward the checkpoint
following the one it was at (checkpoints had an order rela-
tion). So, without communication, and relying on the nat-
ural traits of the floy to stick with the swarm, behaviosites
can correct their errors by themselves, leaving the system
relatively robust to such problems.

Parasitized Swarm Simulation

To test the effect of behaviosites over the swarm, we tested
several tasks using varying sizes of swarms and percent-
age of behaviosites. Uninfected floys were colored black,
while infected ones were colored pink. The world was
two-dimensional (700x600 pixels, width and height respec-
tively), and behaviosites consider themselves at a checkpoint
if they are at a distance of 20 pixels from it.

Three main tasks were explored — staying in one place,
moving between checkpoints with varying curvature, and
moving from one stable state of the swarm to another. Sizes
of swarms were 5, 50, and 100, and the numbers of be-
haviosites were 1-10, and then in jumps of 10 — stopping
at the maximal number of behaviosites, which is the number
of floys for each swarm size. All tasks had a maximal com-
pletion time of 10,000 time steps. Each trial (n floys and m
behaviosites) was repeated 20 times.

Staying in one place This task was meant to test the
simplest behavior that behaviosites can add to the swarm,
since no special coordination among behaviosites is needed.
Since non-parasitized swarms move erratically in space, be-
haviosites must actively employ regulatory force to fix the
swarm to one location.

From Figure 2a we see that the distance between the
swarm center of mass and the single checkpoint drops expo-
nentially as the percentage of behaviosites increases. We can
conclude that for an infection rate (percentage of infected
floys) of about 5%, the distance from the checkpoint can be
considered sufficiently low. A swarm of 5 floys is not sen-
sitive to such a percentage, but swarms of 50 and 100 floys
exhibit almost identical behavior. In Figure 2b we see that
the cohesion of the swarm also increases (the standard devi-
ation (SD) of the swarm drops), but in a moderate manner.
Pink floys are less affected by the first rule of being repelled
by other floys, increasing cohesion. However, as long as
not all are infected, there are some floys obeying this rule
and being repelled from the swarm mass. This explains the
moderate increase in cohesion.

Coping with Several Checkpoints After establishing the
fact that a handful of pink floys can indeed affect the global
behavior of the swarm, we tested if they could also make it
follow, as fast as possible, a desired path marked by check-
points, with as few behaviosites as possible and without
breaking the swarm.

Mean distance from center
T T

Normalized Mean distance (0-100)

5 60 70 80 920
% of behaviosites

40

Mean SD of swarm from center
T T T

100

9 \

80| \
70+ \
60|

N
50 N

Normalized SD (0-100)

30 =~

20+ =~

10 20 30 40 60 70 80 920

% of beﬁgvios\tes 1
Figure 2: Behavior of the swarm in a mission to stay at one
checkpoint, as a function of percentage of infected floys. (a)
Normalized mean distance of swarm center of mass from
single checkpoint. (b) Mean SD of the swarm mass — co-
hesion. Legend: ...: 5 floys, - -:50 floys, —:100 floys

Behaviosites were given several consecutive checkpoints
to follow, pulling the swarm along, without communication
among themselves. They were to follow, repetitively, the
path marked by checkpoints, and after 10000 time steps, the
number of repetitions and distance from the desired path
were checked. Figure 3 describes a mission of following
four checkpoints forming a rectangle. The performance in-
crease is also exponential in the percentage of behaviosites
and we reach maximum performance for an infection rate of
10%. Again, an infection rate of about 5% is sufficient to
create a reasonable movement along the desired path.

The normalized mean distance from the rectangular path
(Figure 3b) behaves similarly to that of one checkpoint, with
one major exception. For a very high infection rate (about
90%), the pink floy swarm members not only do not properly
obey the first rule of repulsion from one another, but also do
not obey the second rule of cohesion. Every pink floy to
himself — they break apart from the swarm.

Testing the same experiment for a circular shape (8 ver-
tices along a circle) gave similar results.

713

Number of drawn rects
20 T T T

num of drawn rects

-5 L L L L L L L L L
0 10 20 30 40 70 80 90

50
% of behaviosites

Mean distance from rect
T T T

Normalized Mean distance (0-100)
@
3
T

L
0 10 20 30 40 50 60 70 80 90
% of behaviosites

Figure 3: Behavior of the swarm in a mission to follow four
consecutive checkpoints forming a rectangle in a circular
manner, as a function of percentage of infected floys. (a)
Mean number of drawn rectangles during 10000 time steps.
(b) Normalized mean distance of swarm mass center from
the path of the rectangle. Legend: ...: 5 floys, - -:50 floys,
—:100 floys

Moving from One Equilibrium Point to Another Some-
times the task of the behaviosites is to shift the society’s
equilibrium from one point to another. To test that with the
swarm model, we considered the following problem. On
each side of the world there is an attractor for the floys —
one at the middle top and one at the middle bottom. In ad-
dition to the turn unit that a floy decides upon, the attractor
causes the floy to exert one more turn unit in the direction of
the relevant attractor. If positioned in the upper (lower) half
of the world, the floy is attracted to the upper (lower) attrac-
tor. The two attractors present two equilibrium points in the
world — each in itself is stable, but moving from one to an-
other is a hard task. The task of the behaviosites is to pull the
entire swarm from the upper attractor to the lower one. The
main problem for the behaviosites is to overcome the enor-
mous force that pulls the floys to the attractor — both the
attractor and the cohesion force. For that, each behaviosite
uses five turn units toward the lower attractor.

In Figure 4a we can see that moving from one attractor

to another is almost a step function. Behaviosites either
succeeded or failed, and if successful, it did not take long
to bring the swarm to the second attractor. We also note
that it took a relatively high infection rate of about 20% to
achieve the goal of moving the swarm. However, this infec-
tion rate almost matches the forces applied on floys. Since
20% of pink floys pulling toward the second attractor use the
same force as 100% of floys pulling toward the first attrac-
tor, the swarm was supposed to stay at the first attractor, but
the movement dynamics created by the behaviosites were
probably sufficient to succeed in the mission of pulling the
swarm away.

Now, even though behaviosites can apply enough force to
move the swarm, we faced another problem — not leaving
floys behind in the process, and not splitting the swarm in
the middle point between the two attractors. For that, the
infection strategy of infect backward combined with infect
forward proved to be most successful. Floys left behind
were usually immediately infected and pulled back toward
the center of the swarm, since they were the furthest from the
second attractor. This is especially true when crossing the
middle point between the attractors. However, there were
cases in which some floys were left behind, without any be-
haviosite to pull them, as can be seen in Figure 4b (the com-
pleteness problem) — but usually behaviosites succeeded in
bringing all swarm members to the second attractor.

Advantages of Using Swarm Behaviosites

We briefly list some of the advantages of using behaviosites
in a swarm of floys without any communication or explicit
coordination: 1. Can create a movement of the swarm along
a path; 2. Is robust to malfunctioning, ill-functioning, or de-
stroyed behaviosites, since they are completely distributed,
and the effect of such loss of behaviosites can be known
in advance (and compensated for); 3. Behaviosites are en-
demic, thus protected by the swarm from external harm;
4. Few can control many; as the most effective “leader”
keeps changing, so does the position of the behaviosites in
the swarm; 5. They can move to the most effective position
at a given time without disturbing the swarm.

Related Work
Multiagent Motion Planning

The classical approaches for multiagent motion plan-
ning are centralized (dimensionality problem for large
groups) vs. decentralized planning (completeness prob-
lem) (Latombe 1991). There is also research that uses ex-
ternal agents to control the steering of the flock. One is
multi-shepherding (Lien et al. 2005) — a distributed control
mechanism to move around a flock of sheep, using several
non-communicating shepherds that use a repelling field. An-
other (Chaimowicz & Kumar 2004) tackles the problem of
controlling a swarm of unmanned ground vehicles (UGVs)
using unmanned aerial vehicles (UAVs). They divide agents
(UGVs) into smaller groups, to reduce the dimensionality
problem by semi-centralized motion planning (using UAVSs).
This hierarchical structure demands handling robustness is-
sues, in the case of local UAV failure.

714

Time to get to second attractor
12000 T T T

10000

8000

6000

time steps

4000

2000

L L ! ! ! ! ! .
0 10 20 30 40 50 60 70 80 90
% of behaviosites

Number of floys left behind
T T T

% of floys
o
g
T

Figure 4: Behavior of the swarm in a mission to move from
one attractor to another, as a function of percentage of in-
fected floys. (a) Time steps to reach second attractor, with
10000 as a limit for failure (started pulling only after 100
time steps). (b) Number of floys left behind, in the first at-
tractor. Legend: ...: 5 floys, - -:50 floys, —:100 floys

Mechanism Design and Adjustable Autonomy

Mechanism design is another alternative when we wish to
bring about certain behavior in a society of agents. It ad-
dresses the problem of designing a distributed protocol that
will implement a particular objective despite the self-interest
of individual agents (Dash, Jennings, & Parkes 2003). In
contrast, behaviosites are not a protocol that agents might
rationally choose to obey, and do not provide an “incentive”
for agents, so that a certain behavior pattern will be pre-
ferred. Instead, behaviosites, like parasites in nature, utilize
agents’ existing tendencies to gain an overall system effect.

There are similarities between the effect of behaviosites
on a host, and the concept of adjustable autonomy
(AA) (Scerri, Pynadath, & Tambe 2002). AA is concerned
with changing the level of autonomy of an agent to im-
prove system performance when such adjustment is war-
ranted (control is ceded to another agent or to a human).
A similar rationale (and analogous mechanism) exists with
Behaviosites. An agent might (unwittingly) cede some of
its autonomy to behaviosites that make local behavioral
changes, usually with only partial information, so that the

entire system’s behavior is changed. The practical manifes-
tation of AA is usually in agent-human synergy, while be-
haviosites live in an a more agent-centric world.

Control of Macro-Spatial Structures

In their work, Mamei, Roli and Zambonelli (Mamei, Roli, &
Zambonelli 2005) presented an idea closely related to that
of the Behaviosite Paradigm, within the context of cellu-
lar automata. They presented a method for controlling the
global behavior of cellular automata using local influences.
In their approach, a subset of the cellular array was selected
on which to introduce a beneficial signal, either compatible
or destructive of some global pattern. This signal was then
diffused within the cellular system due to asynchronous time
lines and globally effective random perturbation. The Be-
haviosite Paradigm can be viewed as having a similar struc-
ture — behaviosites infect an agent (with an infection strat-
egy more sophisticated than just perturbation), and change
its output behavior (the “special” cellular automata). How-
ever, Behaviosites’ effect is local in time and space, in con-
trast to what is discussed in (Mamei, Roli, & Zambonelli
2005). The former also do not rely on an existing diffusion
effect, but rather rely on their mobility and infection strate-
gies to seek key control points.

Mamei et al. maintain, as do we, that in the near future
there will exist more systems characterized by distribution
and autonomy, operating within highly dynamic environ-
ments. These systems will by their nature require decen-
tralized control mechanisms, such as those presented in this
paper and in theirs.

Discussion and Future Work

The core of the Behaviosite Paradigm is creating distributed
behavioral changes in a small number of agents (by taking
advantage of existing capabilities) using parasites, so that
the sum of the distributed actions of all agents will lead to
different system behavior. These parasites are not part of the
society, and they act as a society within the society.

In this paper, we presented the Behaviosites Paradigm and
a specific application for it — a control mechanism over a
swarm. We specified the characteristics of systems in which
this paradigm can be employed and behaviosites’ required
traits, which are necessary for their system integration and
effectiveness. We also described two types of behaviosites
— internal and external, depending on whether agents were
originally designed to accommodate them or not.

We then described a specific system in which behaviosites
are effective. Controlling a swarm of robots is now of prac-
tical concern (Chaimowicz & Kumar 2004). However, even
in everyday systems (such as massive role playing games
on the web, or simulated creatures in computer graphics),
the behaviosite solution is highly effective. Controlling the
many by the few in a robust manner without losing the basic
characteristics of the swarm is desirable in all of the above
systems.

The potential strength of the Behaviosite Paradigm re-
mains to be explored. In the future we would like to ex-
amine more systems in which the Behaviosite Paradigm is

715

effective. One example is the automatic creation of stories,
an evolving field, which has gained much attention due to
the high potential of its usage in computer games.

Acknowledgment

This work was partially supported by grant #039-7582 from
the Israel Science Foundation.

References

Chaimowicz, L., and Kumar, V. 2004. A framework for the
scalable control of swarms of unmanned ground vehicles
with unmanned aerial vehicles. In Proceedings of the 10th
International Conference on Robotics and Remote Systems
for Hazardous Environments.

Dash, R. K.; Jennings, N. R.; and Parkes, D. C. 2003.
Computational mechanism design: A call to arms. IEEE
Intelligent Systems 18(6):40-47. (Special Issue on Agents
and Markets).

Decker, K. S., and Lesser, V. R. 1992. Generalized partial
global planning. International Journal of Intelligent Coop-
erative Information Systems 1(2):319-346.

Dolan, A. 2005. Floys: Overview.
http://www.aridolan.com/ofiles/Floys2.html.
Hillis, W. D. 1992. Co-evolving parasites improve simu-

lated evolution as an optimization procedure. Artificial Life
1.

Latombe, J. C. 1991. Robot Motion Planning. Kluwer
Academic Publishers.

Lien, J.-M.; Rodriguez, S.; Malric, J.-P.; and Amato, N. M.
2005. Shepherding behaviors with multiple shepherds. In
Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (ICRA).

Mamei, M.; Roli, A.; and Zambonelli, F. 2005. Emer-
gence and control of macro-spatial structures in perturbed
cellular automata, and implications for pervasive comput-
ing systems. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part A: Systems and Humans 35(3):337-348.
Ray, T. 1990. Tierra. http://www.his.atr.jp/~ray/tierra.
Reynolds, C. W. 1987. Flocks, herds, and schools: A dis-
tributed behavioral model. Computer Graphics 21(4):25—
34. (SIGGRAPH ’87 Conference Proceedings).

Scerri, P.; Pynadath, D. V.; and Tambe, M. 2002. Towards
adjustable autonomy for the real world. Journal of Artifi-
cial Intelligence Research 17:171-228.

Shabtay, A.; Rabinovich, Z.; and Rosenschein, J. S. 2006.
Behaviosites: A novel paradigm for affecting distributed
behavior. In The Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems. To appear
(short paper).

Shoham, Y., and Tennenholtz, M. 1992. On the synthe-
sis of useful social laws for artificial agent societies. In
Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92).

Vincent, J. F. V., and Mann, D. L. 2002. Systematic tech-
nology transfer from biology to engineering. Phil. Trans.
R. Soc. Lond. A 360(1791):159-174.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

