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Abstract

Markov decision processes (MDPs) with discrete and contin-
uous state and action components can be solved efficiently by
hybrid approximate linear programming (HALP). The main
idea of the approach is to approximate the optimal value func-
tion by a set of basis functions and optimize their weights by
linear programming. The quality of this approximation natu-
rally depends on its basis functions. However, basis functions
leading to good approximations are rarely known in advance.
In this paper, we propose a new approach that discovers these
functions automatically. The method relies on a class of para-
metric basis function models, which are optimized using the
dual formulation of a relaxed HALP. We demonstrate the per-
formance of our method on two hybrid optimization problems
and compare it to manually selected basis functions.

Introduction

Markov decision processes (MDPs) (Bellman 1957; Puter-
man 1994) provide an elegant mathematical framework for
solving sequential decision problems in the presence of un-
certainty. However, traditional techniques for solving R

are computationally infeasible in real-world domains, ethi
are factored and represented by both discrete and consnuou
state and action variables. Approximate linear programgmin
(ALP) (Schweitzer & Seidmann 1985) has recently emerged
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In the context of discrete-state ALP, Patrastal.(2002)
proposed a greedy approach to learning basis functions. Thi
method is based on the dual ALP formulation and its scores.
Although our approach is similar to Patrastal. (2002), it
is also different in two important ways. First, it is computa
tionally infeasible to build the complete HALP formulation
in hybrid domains. Therefore, we rely on its relaxed formu-
lations, which may lead to overfitting of learned approxima-
tions on active constraints. To solve this problem, we i&str
our search to basis functions with a better state-spacea-cove
age. Second, instead of choosing from a finite number of ba-
sis function candidates (Patrasstal. 2002), we optimize a
class of parametric basis function models. These extemsion
are nontrivial and pose a number of challenges.

The paper is structured as follows. First, we review hybrid
factored MDPs and HALP (Guestrin, Hauskrecht, & Kveton
2004), which are our frameworks for modeling and solving
large-scale stochastic decision problems. Second, we show
how to improve the quality of relaxed approximations based
on their dual formulations. Finally, we demonstrate leagni
of basis functions on two hybrid MDP problems.

Hybrid factored MDPs

Discrete-state factored MDPs (Boutilier, Dearden, & Gold-
szmidt 1995) permit a compact representation of stochastic

as a promising approach to address these challenges (Kvetondecision problems by exploiting their structure. In thigkyo

& Hauskrecht 2006).

Our paper centers around hybrid ALP (HALP) (Guestrin,
Hauskrecht, & Kveton 2004), which is an established frame-
work for solving large factored MDPs with discrete and con-
tinuous state and action variables. The main idea of the ap-
proach is to approximate the optimal value function by a lin-
ear combination of basis functions and optimize it by linear
programming (LP). The combination of factored reward and
transition models with the linear value function approxima
tion permits the scalability of the approach.

The quality of HALP solutions inherently depends on the
choice of basis functions. Therefore, it is often assumat th
these are provided as a part of the problem definition, which
is unrealistic. The main goal of this paper is to alleviais th
assumption and learn basis functions automatically.

Copyright © 2006, American Association for Artificial Intelli-
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we consider hybrid factored MDPs with exponential-family
transition models (Kveton & Hauskrecht 2006). This model
extends discrete-state factored MDPs to the domains of dis-
crete and continuous state and action variables.

A hybrid factored MDP with an exponential-family tran-
sition model (HMDP)Kveton & Hauskrecht 2006) is given
by a 4-tupleM = (X, A, P, R), whereX = {X3,..., X}
is a state space characterized by a set of discrete and-contin
uous variablesA = {4,,..., A,,} isan action space repre-
sented by action variable®,(X’ | X, A) is an exponential-
family transition model of state dynamics conditioned o th
preceding state and action choice, dhds a reward model
assigning immediate payoffs to state-action configuration
In the remainder of the paper, we assume that the quality of a

!General state and action space M¥an alternative name for
a hybrid MDP. The ternhybrid does not refer to the dynamics of
the model, which is discrete-time.



policy is measured by thefinite horizon discounted reward
E[>" 2 7', wherey € [0,1) is adiscount factorandr;

is the reward obtained at the time stef@heoptimal policy
m* can be defined greedily with respect to timal value
functionV*, which is a fixed point of the Bellman equation
(Bellman 1957):

Vv (X) = Sl;p [R(X7 a) + ,YEP(X’\x,a) [V* (X/)H . (l)

Accordingly, thehybrid Bellman operato * is given by:
T*V(x) = sup [R(x,a) + VEpxa) V()] . (2)

In the remainder of the paper, we denote expectation terms
over discrete and continuous variables in a unified form:

Epalfx)] =3 / Pf)dxe. )

Hybrid ALP

Since a factored representation of an MDP may not guaran-
tee a structure in the optimal value function or policy (ioll

& Parr 1999), we resort thinear value function approxima-
tion (Bellman, Kalaba, & Kotkin 1963; Van Roy 1998):

V¥(x) = Z w; fi(x). (4)

This approximation restricts the form of the value function
V% to the linear combination dfw| basis functionsf;(x),
wherew is a vector of tunable weights. Every basis function
can be defined over the complete state spgacbut often is
restricted to a subset of state variali}es(Bellman, Kalaba,

& Kotkin 1963; Koller & Parr 1999). Refer to Hauskrecht
and Kveton (2004) for an overview of alternative methods to
solving hybrid factored MDPs.

HALP formulation

Similarly to the discrete-state ALP (Schweitzer & Seidmann
1985),hybrid ALP (HALP)(Guestrin, Hauskrecht, & Kve-
ton 2004) optimizes the linear value function approxinratio
(Equation 4). Therefore, it transforms an initially intraicle
problem of estimatind’* in the hybrid state spacX into a
lower dimensional spaoe. The HALP formulation is given
by a linear program
minimize, » wja; (5)

?

subject to:ZwiF,;(x, a) — R(x,a) >0 Vx,a;

wherew represents the variables in the kR ,denotedasis
function relevance weight

i = By lfi(x)]
=Y [ ¢ fi(x)dxe,

(6)

2In particular, the HALP formulation (5) islmear semi-infinite
optimizationproblem with infinitely many constraints. The number
of basis functions is finite. For brevity, we refer to this optimization
problem as linear programming.
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1(x) is astate relevance density functiereighting the ap-
proximation, andF;(x,a) = f;(x) — vg:(x,a) is the dif-
ference between the basis functifix) and its discounted
backprojection

)

gi(X,a) EP(x’|x,a) [fz(xl)}

Z//P(x' | x,a)fi(x") dxg.

Vectorsxp (x,) andxc (x;;) are the discrete and continu-
ous components of value assignments’) to all state vari-
ablesX (X’). The HALP formulation is feasible if the set of
basis functions contains a constant functjigfix) = 1. We
assume that such a basis function is always present.

The quality of the approximation was studied by Guestrin
et al. (2004) and Kveton and Hauskrecht (2006). These re-
sults give a justification for minimizing our objective func
tion E,;[V%] instead of the max-norm errdf/”* — V|| __.
Expectation terms in the objective function (Equation &) an
constraints (Equation 7) are efficiently computable if the b
sis functions areonjugateto the transition model and state
relevance density functions (Guestrin, Hauskrecht, & Kve-
ton 2004; Kveton & Hauskrecht 2006). For instance, normal
and beta transition models are complemented by normal and
beta basis functions. To permit the conjugate choices when
the transition models are mixed, we assume that every basis
function f;(x) decouples as a product:

fixi) =TI fis=y)

XjEXi,

)

of univariate basis function factoyfs;(z;). This seemingly
strong assumption can be partially relaxed by considering a
linear combination of basis functions.

Solving HALP

An optimal solutionw to the HALP formulation (5) is given
by a finite set ofctive constraintsit a vertex of the feasible
region. However, identification of this active set is a compu
tational problem. In particular, it requires searchingtigh

an exponential number of constraints, if the state andmctio
variables are discrete, and infinitely many constraintsnyf

of the variables are continuous. As a result, it is in general
infeasible to find the optimal solutiow. Therefore, we re-
sort to finite approximations to the constraint space in HALP
whose optimal solutiorwv is close tow. This notion of an
approximation is formalized as follows.

Definition 1 The HALP formulation iselaxed

minimize, »  wja; (9)

subject to:z w;Fi(x,a) — R(x,a) >0 (x,a)€C;

if only a subset of its constraints is satisfied.

The HALP formulation (5) is solved approximately by solv-
ing its relaxed formulations (9). Several methods for build
ing and solving these approximate LPs have been proposed



(Hauskrecht & Kveton 2004; Guestrin, Hauskrecht, & Kve-
ton 2004; Kveton & Hauskrecht 2005). The quality of these
formulations can be measured by thanfeasibility of their
solutionsw. This metric represents the maximum violation
of constraints in the complete HALP.

Definition 2 Letw be a solution to a relaxed HALP formu-
lation (9). The vectotw is ¢-infeasibleif VW —T*VV > —§
for all x € X, whereZ* is the hybrid Bellman operator.

Learning basis functions

The quality of HALP approximations depends on the choice
of basis functions. However, basis functions leading tadgoo
approximations are rarely known a priori. In this sectiom, w

describe a new method that learns these functions automati-

cally. The method starts from an initial set of basis funtio
and adds new functiorgreedilyto improve the current ap-

wheree = (1,0,...,0) is an indicator of the constant basis
function fo(x) = 1. This point satisfies all requirements and
its feasibility can be handily verified by solving:

1-— 1—7
= VV-T V¥ 44
>0,

whereV¥ — T*V% > —§ holds from thes-infeasibility of
w. Sincew is feasible in the complete HALP, we conclude
E, [V¥] < E4[V™¥], which leads to our final resullt

Proposition 2 has an important implication. Optimizatién o
the objective functiork,, [V'¥] is possible by minimizing a
relaxed objectiveE,, [V%].

proximation. Our approach is based on a class of parametric Scoring basis functions

basis function models that are optimized on preselected do-

mains of state variables. These domains represent owiniti

preference between the quality and complexity of solutions
In the rest of this section, we describe in detail how to score
and optimize basis functions in hybrid domains.

Optimization of relaxed HALP

De Farias and Van Roy (2003) analyzed the quality of ALP.
Based on their work, we may conclude that optimization of
the objective functio,,[V™] in HALP is identical to mini-
mizing theL,-norm error||V* — V||, . This equivalence
can be proved from the following proposition.

Proposition 1 Letw be a solution to the HALP formulation
(5). ThenV¥ > V'*,

Proof: The Bellman operatdf * is a contraction mapping.
Based on its monotonicityy > 7*V impliesV > T*V >

.-+ > V* for any value functiori/. Since constraints in the
HALP formulation (5) enforcéd/™ > 7*V¥, we conclude
VW >V*m

Therefore, the objective valug, [V'¥] is a natural measure
for evaluating the impact of added basis functions. Unfortu
nately, the computation df,, [V*] is in general infeasible.
To address this issue, we optimize a surrogate metric, which
is represented by the relaxed HALP objeclﬂq@[vw] . The
next proposition relates the objective values of the cotaple
and relaxed HALP formulations.

Proposition 2 Letw be a solution to the HALP formulation
(5) andw be a solution to its relaxed formulation (9) that is
s-infeasible. Then the objective valilg, [VV] is bounded
as:

E,[Vﬂ < E[Vﬂ .
y < By Tz 5
Proof: The claim is proved in two steps. First, we construct

a pointw in the feasible region of the HALP such tHat"
is within O(¢) distance fromi/%. The pointw is given by:

w
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To minimize the relaxed objectiié, [V'¥], we use the dual
formulation of a relaxed HALP.

Definition 3 Let every variable in the relaxed HALP formu-
lation (9) be subject to the constraint > 0. Then thedual
relaxed HALPis given by a linear program:

maximize, Z wy.aR(x,a) (10)
(x,a)eC
subject to: Z wyaFy(x,8) —; <0 Vi
(x,a)eC
Wx,a = 0;

wherewy 5 represents the variables in the LP, one for each
constraint in the primal relaxed HALP, and the scope of the
index: are all basis functiong; (x).

Based on the duality theory, we know that the primal (9) and
dual (10) formulations have the same objective values. ;Thus
minimizing the objective of the dual minimizes the objeetiv
of the primal. Since the dual formulation is a maximization
problem, its objective value can be lowered by adding a new
constraint, which corresponds to a basis funciigr) in the
primal. Unfortunately, to evaluate the true impact of addin
f(x) on decreasing,, [V¥], we need to resolve the primal
with the added basis function. This step is computationally
expensive and would significantly slow down any procedure
that searches in the space of basis functions.

Similarly to Patrascet al.(2002), we consider a different
scoring metric. We defindual violation magnitude® (f):

To(f) Z Wx,alf(x) —v97(x,a)] — ay,

(x,a)eC

11)

which measures the amount by which the optimal solution
to a dual relaxed HALP violates the constraint correspond-
ing to the basis functiorf(x). This score can be interpreted
as evaluating the quality of cutting planes in the dual. €her
fore, if 7( f) is nonnegative, a higher value of (f) is of-

ten correlated with a large decrease in the obje(Ei,y@VW]
when the basis functiofi(x) is added to the primal. Based



on the empirical evidence (Patraseual. 2002), this crite-
rion prefers meaningful basis functions and it is signiftban
cheaper than resolving the primal.

Dual violation magnitude“ (f) can be evaluated very ef-
ficiently. Scoring of a basis functiofix) requires computa-
tion of g¢(x, a) and f(x) in all state-action pairéx, a) € C.
The number of computed terms can be significantly reduced
since the only nonzero scaladg , in Equation 11 are those
that correspond to active constraints in the primal. Based o
the duality theory, we conclude that the dual solutiboan
be expressed in terms of the primal soluti®n As a result,
we do not even need to formulate the dual to obiain

Optimization of basis functions

Dual violation magnitude® ( f) scores basis functiongx)
and our goal is to find one with a high score. To allow for a

has a closed-form solution, wherg;, denotes thé-th ele-
ment of the vecton;.

Proof: Based on Kveton and Hauskrecht (2006), we know:
Z(np +ny)

Z(np)Z(ny)

The rest follows from basic differentiation lavss.

Ep)lf(2)] =

Overfitting on active constraints

Optimization of the violation magnitude® ( f) easilyover-
fitson active constraints in the primal relaxed HALP. To de-
scribe the phenomenon, let us assume that the basis function
f(x) is of unit magnitude, unimodal, and centered at an ac-
tive constrain{x’, a’). If f(x”) = 0 at the remaining active
constraintgx”,a”), Wy o f(x') is the only positive term in

systematic search among all basis functions, we assume thatEquation 11. Therefore, maximizationof (f) can be per-

they factor along the state variab®s(Equation 8). More-
over, their univariate factorg; (x;) are from the exponential
family of distributions:

fi(zy) = hj(z;) explng ti(x;)l/Zi(ng,),  (12)
wheren;, denotes their natural parametergr;) is a vector

of sufficient statistics, and; (ny, ) is a normalizing function
independent oX ;.

Any optimization method can be used to maximizé f)
with respect to the natural parametersf¢k). In this work,

formed by keeping'(x’) fixed and minimizing the negative
termsgs(x, a) andas. Since the terms can be bounded from
above as:

IN

(13)
(14)

9r(x,a) < E[f(x)]max P(x' | x,a)

B[ ()] max ()

Equation 11 can be locally maximized by lowering the mass
E[f(x)] corresponding to the functiof{x).
Although a peaked basis function may lower the relaxed

<

af(x,a)

we employ the gradient method. Based on the independenceobjectiveE,, [V‘*’} , itis unlikely that it lowers the objective

assumption in Equation 8, we may conclude that the gradient
V7¥(f) can be expressed by the derivatives of the univariate
terms f;(z;) andE p(y/|x ) [fi(«})]. The derivatives have
analytical forms for conjugate basis function choices.
Proposition 3 Let:

f(z) = h(z) exp[n;t(z)]/Z(ny)
be an exponential-family density ov&r, wheren; denotes
its natural parameterst(x) is a vector of sufficient statis-

tics, andZ(ny) is a normalizing function independent &f
Then:

Of(x) 1 9Z(ny)
O = f(x) |tr(z) + Z017) O
has a closed-form solution, wheng,, andt; (=) denote the
k-th elements of the vectors andt(z).
Proof: Direct application of basic differentiation lavus.
Proposition 4 Let:
P(x) = h(z)explnpt(z)]/Z(np)
f(z) = h(z)expnyt(x)]/Z(ny)
be exponential-family densities ov&rin the same canoni-
cal form, where)p andn; denote their natural parameters,

t(z) is a vector of sufficient statistics, adf{(-) is a normal-
izing function independent &. If h(z) = 1, then:

OEp(q [ f(2)] _ 1 0Z(np +ny)
oy Z(np)Z(ny) oy
Z(np +ny) 0Z(ny)
Z(np)Z(ng)? Ong
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Ey [V¥] in HALP. This observation can be understood from
Proposition 2. Peaked basis functions have a high Lipschitz
constant, which translates into a higfinfeasibility of their
relaxed solutionsv. If § is high, the bound in Proposition 2
becomes loose, and the minimizationiaf [V'*] no longer

guarantees a low objective valig, [V'¥].

To compensate for this behavior, we propose a modifica-
tion to the gradient method. Instead of returning an antyitra
basis function that maximizes’(f), we restrict our atten-
tion to those that adhere to a certain Lipschitz faétorThis
parameter regulates the smoothness of our approximations.

Experiments
Experimental setup

Our approach to learning basis functions is demonstrated on
two hybrid optimization problems: 6-ring irrigation netvo
(Guestrin, Hauskrecht, & Kveton 2004) and a rover planning
problem (Bresinat al. 2002). The irrigation network prob-
lems are challenging for state-of-the-art MDP solvers due t
the factored state and action spaces. The goal of an igigati
network operator is to select discrete water-routing astio

A p to optimize continuous water level< in multiple in-
terconnected irrigation channels. The transition modehis
rameterized by beta distributions and represents wates flow
conditioned on the operation modes of regulation devices.
The reward function is additive and described by a mixture
of two normal distributions for each channel except for the
outflow channel. The 6-ring network involves 10 continuous
state and 10 discrete action variables. On the other haad, th
rover problem is represented by only a single action vagiabl



Objective value Reward Lipschitz constant Time

¥ 100 45 600 600
Z 80 HALP 40 450 450
§ 60 35 300 300f HALP
S 40 30 HALP 150 150
E 20 25 0 0
0 25 50 75 100 0 25 50 75 100 O 25 50 75 100 O 25 50 75 100
100 28 600 400
_ 80 HALP 26 450 300 VI
I 24 N 300 200 | AP
“ 0 22| HALP 150 100
20

20 0 0
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Basis size Basis size Basis size Basis size

Figure 1: Comparison of the greedy (thin black lines) antticsd greedy (thick black lines) methods on the 6-ringgation
network and rover problems. The methods are compared bybjeetive value of a relaxed HALP, the expected reward of a
corresponding policy, upper bound on the Lipschitz cortstéy™, and computation time (in seconds). This upper bound is
computed a3, w; ijexi K;;, whereK;, represents the Lipschitz constant of the univariate basistion factorf;;(z;).

Thick gray lines denote our baselines.

A and three state variablés(exploration stage}’ (remain- programs are solved by the dual simplex method in CPLEX.
ing time to achieve a goal), and (energy level) (Kveton & Our experimental results are reported in Figures 1 and 2.
Hauskrecht 2006). Three branches of the rover exploration

plan yield rewards 10, 55, and 100. The optimization prob- Experimental results

lem is to choose one of these branches given the remaining

time and energy. The state relevance density funatiQu) Figure 1 demonstrates the benefits of automatic basis func-
is uniform in both optimization problems. The discount fac- tion learning. On the 6-ring irrigation network problem, we
tor v is 0.95. learn better policies than the existing baseline in a veoytsh
An optimal solution to both problems is approximated by time (150 seconds). On the rover problem, we learn as good
a relaxed HALP whose constraints are restricted te-grid policies as our baselines and this in comparable computatio

(e = 1/8). We compare two methods for learning new basis time. These results are even more encouraging since we may
functions: greedy which optimizes the dual violation mag-  achieve additional several-fold speedup by caching rellaxe
nituder*( f), andrestricted greedywhere the optimization HALP formulations.

is controlled by the Lipschitz threshold. Both methods are Figure 1 also confirms our hypothesis that the minimiza-
evaluated for up to 100 added basis functions. The threshold tion of the relaxed objectivE,, [VW] without restricting the

K is regulated by an increasing logarithmic schedule from 2 search yields suboptimal policies. As the number of learned

to 8, which corresponds to the resolution of etgrid. ~ basis functions grows, we can observe a correlation between
In the 6-ring irrigation network problem, we optimize uni-  dropping objectives and rewards, and growing upper bound
variate basis functions of the form: on the Lipschitz factor of the approximations.
F(x:) = Pootal@s | @, ). (15) Finally, Figure 2 illustrates value functions learned oa th

6-ring irrigation network problem. We can observe the phe-
Their parameters, «, and3 are initialized randomly. Our  nomenon of overfiting (the second row from the top) or the
baseline is represented by 40 univariate basis functiogs su  gradual improvement of approximations constructed by the
gested by Guestriet al. (2004). In the rover planning prob-  restricted greedy search (the last two rows).

lem, we optimize unimodal basis functions:
f(sit,e) = P(s|61,...,610) (16) Conclusions

Nt s o) N e ] e, e), Learning of basis functions in hybrid spaces is an important

whereP(s | 61,...,010) is @ multinomial distribution over step towards applying MDPs to real-world problems. In this
10 stages of rover exploration. All parameters are in#edi work, we presented a greedy method that achieves this goal.
randomly. Our baselines are given by value iteration, where This method performs very well on two tested hybrid MDP
the continuous variables andT are discretized on thEr x problems and surpasses existing baselines by the quality of
17 grid, and a relaxed-HALP formulation ¢ = 1/16) with policies and computation time. An interesting open redearc
381 basis functions (Kveton & Hauskrecht 2006). guestion is the combination of our greedy search with a state

Experiments are performed on a Dell Precision 380 work- space analysis (Mahadevan 2005; Mahadevan & Maggioni
station with 3.2GHz Pentium 4 CPU and 2GB RAM. Linear 2006).
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V), VY@ VYR VI V)V

Y@l VX VYl VVX)x VY(X)lx

Manual
40 BFs

Greedy
100 BFs

50 BFs

O B N O P N O B NO +~» N

Restricted Restricted

100 BFs

0051005100510051005100510051005100510051

X1 X2 X3 Xa Xs

Figure 2: Univariate projection™ (x)|y,

><6 X7 ><8 XQ XlO

= Zi;xj:xi w; f;(x;) of approximate value functiog™ on the 6-ring irrigation

network problem. From top down, we show value functionsiedifrom 40 manually selected basis functions (BFs) (Gimestr
Hauskrecht, & Kveton 2004), 100 greedily learned BFs, andrii100 BFs learned by the restricted greedy search. Ndte tha
the greedy approximation overfits on thgrid (¢ = 1/8), which is represented by dotted lines.
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