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Abstract
Human motion is as much characterized by its low frequency
shape as by its high frequency temporal discontinuities – such
as when a joint reaches its physical limit or when a foot
touches the floor. Wavelets are particularly efficient at captur-
ing both high and low frequency information. We introduce
a method of classifying human motion using wavelet coeffi-
cients to build a representation of human motion signals. The
representation is computed by finding the histograms of the
wavelet coefficients previously scaled according to frequency.
We use Support Vector Machines (SVMs) to classify those
histograms and demonstrate the accuracy of the method on
human motion gathered from both a motion capture systems
and accelerometers.

Introduction
Human motion data is becoming increasingly accessible as
motion capture systems become more affordable and other
sensing devices more robust. A challenge is to classify this
large amount of data. We are interested in classifying dif-
ferent styles of human motion data efficiently and automat-
ically. Existing methods mostly consider the spatial con-
figuration of signals, which makes it hard to differentiate
motions which look spatially the same but have different
frequential characteristics – for instance walks of different
speeds.

Our method differentiate signals, not on spatial, but
spatio-temporal differences. It is based on characterizing
signals by computing statistics on their wavelet coefficients
at all frequency bands. We regroup those statistics in one
vector on which a SVM classifier is trained.

Previous approaches classify motions based strictly on
their spatial configuration.(Barbic et al. 2004) uses PCA,
while Support Vector Machines (SVM) are used in(Ra-
manan & Forsyth 2003) on frames of video data and in
(Arikan & Forsyth 2002) on frames of motion capture data.
Ignoring the frequential component of a motion leads to an
undesirable class of systemic error. For example, (Ramanan
& Forsyth 2003) cites misclassifications between walking
and running motions. In response,(Tanawongsuwan & Bo-
bick 2001) have integrated a scale component in the Dy-
namic Time Warping (DTW); however, time is consider

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

aposteriori along a window of motion. Similarly, this occurs
if measuring same-state transitions for HMM. We would like
to avoid such systemic error by using information on space
and frequency simultaneously.

Histograms of wavelet coefficients

Properties of the wavelet transform
We present here some properties of the wavelet transform
which makes it well suited for capturing both low frequency
shapes and high frequency temporal discontinuities of sig-
nals.

The wavelet transform of a signal f at point u in time
and s in frequency is defined by the convolution of f with
the wavelet ψu,s: Wf(u, s) = f ? ψu,s. The wavelet
ψu,s(t) = 1√

s
ψ( t−u

s ) is the translation by u followed by the
dilation by s of an original wavelet ψ. One might see from
computing the Fourier transform of Wf(u, s) than it ana-
lyzes the signal in a “box” (called the Heisenberg box) cen-
tered around u in time and s in frequency. This “box” width
(size along the temporal axis) decreases as the frequency s
increases, whereas its height (size along the frequential axis)
increases (since width × height is constant). A coefficient
corresponding to a higher frequency will consequently be
studied in a shorter period in time, which is more adapted to
its variations. A window Fourier transform has fixed “box”
width and height. Since temporal discontinuities are charac-
terized by many high frequency oscillations, a Fourier trans-
form will need many coefficients to represent a signal with
discontinuities, whereas the wavelet transform will not.

Histogram representation
A wavelet transform provides a set of coefficients at differ-
ent frequency bands. It is hard to align those coefficients
between different signals for classification. We instead in-
corporate all coefficients into a single compact representa-
tion which does not need alignment. This representation can
then be used as input for training a SVM classifier.

Our representation consists of a histogram of coefficients
at all frequency bands. However, in the case of human mo-
tion, low frequency variations have more influence on the
signal than high frequency temporal discontinuities, which



Table 1: Results on 4 data sets

implies that magnitudes of wavelet coefficients are smaller
in high frequency bands than in low frequency bands. It
will be hard for a histogram to capture all that information.
For instance, most of the high frequency coefficients will
be in the zero bin of a histogram adapted to low frequency
band coefficients. To counter that problem we scale down
the coefficients by a constant C as the frequency band de-
creases, so that most of them are contained in the [−1, 1]
range. We found that C = 4 gives satisfying results. Then
the histograms are computed over the scaled coefficients. A
histogram bin centered at x describes the importance of vari-
ations at all frequency bands of a scaled magnitude x. We
show a human tibia joint angle signal, its wavelet decompo-
sition and histogram representation in Figure 1.

Figure 1: Left to right and top to bottom: signal of tibia joint
angle (direction parallel to motion) for a marching motion,
its histogram representation and its wavelet decomposition.
Marching produces symmetric signals, which can be seen on
the histogram, approximately symmetric around x = 0.

Human motions are often described with multiple dimen-
sions. We build a vector by concatenating the histograms
corresponding to the different dimensions of the signals. We

then train a SVM classifier on that vector. One motion is
then characterized by one vector. The size of the vector is
the same for all motions, even if their lengths are different.
We provide results in the next section.

Results and discussion
Our results are presented in Table 1, all using 10-fold cross-
validation. We found out experimentally that a bin size
of 0.15 gives us the best results. We used biorthogonal
wavelets with 6 vanishing points, which give a very sparse
representation and only shows significant variations at the
different frequency bands. Our dyadic wavelet transform is
of level 8 so that no information remains in the continuous
component of the decomposition.

We observe than our classifier efficiently distinguishes
motions with different rhythms, such as quick walks, slow
walks and normal walks.
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