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Abstract

Recent work on online auctions for digital goods has explored
the role of optimal stopping theory — particularly secretary
problems — in the design of approximately optimal online
mechanisms. This work generally assumes that the size of
the market (number of bidders) is known a priori, but that
the mechanism designer has no knowledge of the distribu-
tion of bid values. However, in many real-world applica-
tions (such as online ticket sales), the opposite is true: the
seller has distributional knowledge of the bid values (e.g.,
via the history of past transactions in the market), but there
is uncertainty about market size. Adopting the perspective
of automated mechanism design, introduced by Conitzer and
Sandholm, we develop algorithms that compute an optimal,
or approximately optimal, online auction mechanism given
access to this distributional knowledge. Our main results are
twofold. First, we show that when the seller does not know
the market size, no constant-approximation to the optimum
efficiency or revenue is achievable in the worst case, even un-
der the very strong assumption that bid values are i.i.d. sam-
ples from a distribution known to the seller. Second, we show
that when the seller has distributional knowledge of the mar-
ket size as well as the bid values, one can do well in sev-
eral senses. Perhaps most interestingly, by combining dy-
namic programming with prophet inequalities (a technique
from optimal stopping theory) we are able to design and an-
alyze online mechanisms which are temporally strategyproof
(even with respect to arrival and departure times) and approx-
imately efficiency(revenue)-maximizing. In exploring the in-
terplay between automated mechanism design and prophet
inequalities, we prove new prophet inequalities motivated by
the auction setting.

Introduction
Mechanism design has traditionally focused on the offline
setting where all agents are present upfront. However, many
electronic commerce applications do not fit that model be-
cause the agents can arrive and depart dynamically. This is
characteristic, for example, of online ticket auctions (e.g., on
Priceline, Expedia, and Travelocity), search keyword auc-
tions (e.g., on Google, Yahoo!, and MSN), eBay-style In-
ternet auctions, pricing access to a WiFi port (e.g., at Star-
bucks) and scheduling computing jobs on a shared server
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(e.g., in MoteLab and PlanetLab). The online aspect is char-
acteristic of some important traditional applications as well,
such as the sale of a house, where the buyers arrive and de-
part dynamically.

The design of online mechanisms has attracted research
interest since 2000 (see, e.g., a survey by Parkes in (Nisan
et al. 2007)). Designing such mechanisms is challeng-
ing because of the combination of mechanism design chal-
lenges (ensuring truthfulness — often not only about val-
uations but also about arrival and departure times) and on-
line algorithm challenges (dealing with uncertainty about fu-
ture inputs). For example, the most canonical technique for
designing truthful offline mechanisms, the Vickrey-Clarke-
Groves (VCG) scheme, is inapplicable in most online prob-
lems because it requires determination of an optimal alloca-
tion, which is generally impossible in the online setting.

Most prior work on designing online mechanisms has
adopted a worst-case adversary model, as is common in the
design of online algorithms. As a result, the guarantees
that have been proven have usually been relatively weak.
In most real applications, there is significant probabilistic
information available about the future, and it seems coun-
terproductive to ignore it. For example due to the history
of past transactions in the market, in most real-world appli-
cations the auctioneer has distributional information about
the valuations, and sometimes even the number, of bidders.
Using such probabilistic information is crucial in practice,
especially when we want to maximize revenue: for exam-
ple, being within a factor 1.1 versus 2 is drastically different
though both are constant in a theoretical sense. Our goal
in this paper is to exploit the distributional information in
online mechanism design.

Automated mechanism design, first introduced
in (Conitzer & Sandholm 2002), plays a key role in
this. In that approach, the mechanism is created auto-
matically — using some optimization algorithm — for
the specific problem instance (including the distributional
information) and objective at hand. See, e.g., a survey
in (Sandholm 2003). This has important advantages:

• It can be used in settings beyond the classes of prob-
lems that have been successfully studied in (manual)
mechanism design to date. For example, it has been
used to generate revenue-maximizing combinatorial auc-
tions (Likhodedov & Sandholm 2005), a problem that
eludes analytical characterization even in the 2-item case.

• It can circumvent the impossibility results: when the
mechanism is designed for the setting (instance) at hand,
it does not matter that it would not work on preferences
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beyond those in that setting (e.g., for a class of settings).
Even when the automatically-created optimal mechanism
does not circumvent the impossibility, it always mini-
mizes the pain entailed by impossibility.

• It can yield better mechanisms (in terms of better out-
comes and/or stronger nonmanipulability guarantees1)
than the canonical mechanisms because the mechanism
capitalizes on the particulars of the setting, i.e. the prob-
abilistic (or other) information that the mechanism de-
signer has about the agents’ preferences.

• It shifts the burden of mechanism design from humans to
a machine. That is why one can afford to do the design
anew for every instance.

Put together, automated mechanism design can exploit the
specific model of the problem and the distributional knowl-
edge about bidders’ private information such as valua-
tions. Work has been done both on general-purpose tech-
niques for automated mechanism design as well as on au-
tomated mechanism design approaches for specific appli-
cations. While a bit of that research has studied multi-
stage mechanisms (Sandholm & Gilpin 2006; Sandholm,
Conitzer, & Boutilier 2007) (in order to reduce the agents’
preference determination effort, communication costs, and
privacy loss), all of the prior work on automated mechanism
design has focused on offline settings where all the agents
are present upfront. In this paper we present the first work
on automated mechanism design for an online problem.

Setting
In our setting there are k identical indivisible goods (a.k.a.
units) for sale, and there are n agents (a.k.a. bidders),
each of whom wants to purchase one unit. The type of
an agent i, 1 � i � n, is defined by an ordered triple
(ai, di, vi), whose three components are called arrival time,
departure time, and value, respectively. We assume quasi-
linear utilities throughout this paper, so if an agent receives
one or more units during the time interval [ai, di] with a
payment pi, her utility for this allocation is vi − pi; for
all other allocations her utility is 0. As is common in on-
line auction design (Hajiaghayi, Kleinberg, & Parkes 2004;
Hajiaghayi et al. 2005), we adopt a restricted misreporting
model. Throughout this paper, unless stated otherwise, we
assume no early arrivals but unrestricted departures, i.e.,
an agent of type (ai, di, vi) may report any triple (âi, d̂i, v̂i)
satisfying âi ≥ ai. The no early arrival assumption is mo-
tivated by the view that in practice an agent would not par-
ticipate in an auction before she knows that she desires a
unit, and we can view the time ai as the time when her de-
sire arises. When we assume ai = di, we call the agents
instantaneous; otherwise we call them patient.

An online direct revelation mechanism consists of an al-
location rule qi(t, �θ) (where t denotes the time and �θ de-
notes the vector of reported types) along with a payment rule
pi(�θ) such that qi(t, �θ) is a monotonically non-decreasing
{0, 1}-valued function of t,

∑n
i=1 qi(t, �θ) ≤ k for all t, �θ,

1E.g., satisfaction of ex post incentive compatibility and/or in-
dividual rationality constraints rather than their ex interim variants.

and qi(t, �θ) depends only on the types reported by agents
who report an arrival time âj which is less than or equal to
t. We seek a direct-revelation mechanism which is truthful
(a.k.a. strategyproof) in dominant strategies (i.e., the utility
of agent i is maximized if she bids truthfully, regardless of
what other agents report). When it is a dominant strategy
for agents to truthfully report not only their value, but also
their arrival and departure time, we say that the mechanism
is temporally strategyproof. To evaluate the performance of
an online mechanism, we will use two measures of solution
quality: efficiency and revenue. The efficiency of an out-
come is the combined welfare of all agents, i.e.

∑
i qivi. The

revenue of an outcome is the sum of the payments made by
the agents, i.e.

∑
i pi. We say a mechanism is ρ-competitive

with respect to efficiency (resp. revenue) if the expected ef-
ficiency (resp. revenue) of the outcome computed by the
mechanism is at least 1/ρ times the expectation of the maxi-
mum efficiency over all outcomes (resp., the maximum rev-
enue that can be obtained by setting a single fixed price p
and selling to all agents whose value is at least p).

We will assume throughout that the seller has some
distributional information about the sequence of bids to
be received. More precisely, let σ be a permutation of
{1, 2, . . . , n} such that aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(n) and let
x be the infinite sequence (vσ(1), vσ(2), . . . , vσ(n), 0, 0, . . .).
(In a truthful direct revelation mechanism, the first n entries
of the sequence x represent the bid values in the order they
are received in dominant strategy equilibrium.) A probabil-
ity distribution on agent populations (i.e., finite sets of or-
dered triples (ai, di, vi)) induces a probability distribution
on bid sequences x. We will assume that there is an infinite
sequence y = (y1, y2, . . .), whose distribution is known to
the seller, such that xi = yizi, where zi = 1 if 1 ≤ i ≤ n,
0 otherwise. (One may think of y as the sequence of bids
which would be received if the agent population were in-
exhaustible.) We make two different types of assumptions
about the seller’s distributional information:

• Full information: The seller knows the distribution of
x. That is, the seller has distributional information about
valuations and market size.

• Unknown n: The seller knows the distribution of y but
not x. That is, the seller has distributional information
about valuations but not the market size.

The following special cases will be of interest:

• Independent bids: The random variables yi (1 ≤ i <
∞) are independent.

• Independent bids, fixed n: The random variables
xi (1 ≤ i < ∞) are independent. Equivalently, the ran-
dom variables yi are independent and the value of n is
fixed.

• I.i.d. bids: The random variables yi (1 ≤ i < ∞) are
independent and identically distributed.

Our contributions
This paper makes three main contributions to the theory of
online mechanism design. First, we raise the issue of de-
signing online mechanisms when the number of bidders is
not known in advance, and develop the basic possibility and
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impossibility theorems which accompany this notion. Sec-
ond, we present an automated mechanism design algorithm
(and other results) for the setting in which the number of
bidders is known at least probabilistically. Third, we reveal
the power of prophet inequality techniques as a toolkit for
solving problems in automated online mechanism design.
Below, we elaborate on each of these contributions.

Our first set of results concerns the case in which the num-
ber of bidders, n, is specified adversarially but the bid val-
ues are randomly sampled from a known distribution. We
prove that no mechanism can be constant-competitive in this
setting, and we exhibit mechanisms whose competitive ra-
tio is nearly logarithmic in n, or logarithmic in h, the ratio
between the maximum and minimum possible bids. Next
we turn to the case when the value of n is unknown, but
its distribution is known to the mechanism designer. For
settings where an upper bound on n is known, we spec-
ify a dynamic program to compute, in polynomial time, the
best non-decreasing price sequences for revenue and for effi-
ciency. We insist on non-decreasing prices to ensure tempo-
ral strategyproofness. For settings where n is unbounded,
we prove that the revenue-maximizing price sequence is
non-decreasing if and only if the distribution of n has non-
increasing hazard rate. So, under that condition, requiring
temporal strategyproofness does not compromise revenue.

Our next set of results reveals a relationship between
these mechanism design problems and the subject of prophet
inequalities from optimal stopping theory. Specifically,
prophet inequalities (along with the constructive proofs of
these inequalities) allow us to design online mechanisms
with two especially desirable features: the mechanisms are
temporally strategyproof, and they satisfy a provable per-
formance guarantee which relates their efficiency to the op-
timum efficiency in hindsight. These two features, in turn,
constitute an analysis technique which allows us to show that
the mechanism produced by the dynamic program discussed
above achieves a constant-factor approximation to the om-
niscient surplus when n is known.

Prior work on online auctions

While mechanism design has traditionally focused on a
static problem where all the agents are present up front, there
has been significant recent work on designing online mecha-
nisms where the agents arrive and depart over time. The first
paper on online auctions was in 2000 (Lavi & Nisan 2000);
the first on online double auctions (a.k.a. exchanges) was in
2002 (Blum, Sandholm, & Zinkevich 2006).

A recent overview article by Parkes surveys the field of
online mechanisms (Nisan et al. 2007). Much of the work
(e.g. (Blum et al. 2003; Kleinberg & Leighton 2003)) as-
sumes that the agents arrive in a predetermined order which
is not under their control, and that an agent’s only private in-
formation is her value. This makes it much easier to design
truthful mechanisms. Some online mechanisms (e.g. (Awer-
buch, Azar, & Meyerson 2003; Lavi & Nisan 2000)) are
strategyproof against agents misstating their arrival or de-
parture time because they are based on prices which do not
decrease over time.

VCG-based online mechanisms were introduced

in (Friedman & Parkes 2003). Such mechanisms are
(dominant-strategy) truthful in the rare cases where the
underlying allocation problem admits an online algorithm
with competitive ratio 1. (Parkes & Singh 2003) have
studied VCG-based online mechanisms also under a weaker
notion of incentive compatibility, Bayes-Nash equilibrium,
adopting the framework of Markov Decision Processes. The
setting for this work is quite general.

(Hajiaghayi, Kleinberg, & Parkes 2004) present constant-
competitive online mechanisms for auctioning identical
goods when each agent is assumed to arrive and depart dy-
namically. Unlike all previous papers, they assume each
agent has three pieces of private information: her value, her
arrival time and her departure time. However, they assume
that the agents arrive in random order and that the value of
n (the total number of agents) is known to the mechanism
designer in advance. This work has led to several subse-
quent papers (e.g., (Babaioff, Immorlica, & Kleinberg 2007;
Bredin & Parkes 2005; Hajiaghayi et al. 2005; Kleinberg
2005; Lavi & Nisan 2005; Ng et al. 2005)). In the same
setting in which each bidder has three pieces of private in-
formation (not necessarily random order of bidders), (Haji-
aghayi et al. 2005) study the case of re-usable goods such
as processor time in which goods can be allocated to differ-
ent bidders at different time slots. They also present general
characterizations for the class of truthful online allocation
rules, which extend beyond the typical single-parameter set-
tings and formalize the role of restricted misreporting in re-
versing existing price-based characterizations. (Hajiaghayi
et al. 2005) mainly consider truthful online auctions for
unit-length jobs; (Porter 2004) presents a truthful mecha-
nism for the variation with different length jobs in which an
agent derives positive utility if she is granted the resource for
a total duration equal to its job length. (Lavi & Nisan 2005)
also study an online auction setting which is closely related
to that of (Hajiaghayi et al. 2005). Assuming unrestricted
misreports, they prove strong negative results for determinis-
tic truthful auctions (no such mechanism can achieve a com-
petitive ratio better than the number of units) and this leads
them to consider a weaker solution concept (set-Nash equi-
librium) which admits constant-competitive mechanisms.

Parallel and independent to our work on automated online
mechanism design, (Pai & Vohra 2006) also recently con-
sider dynamic online auctions in the same setting as (Haji-
aghayi, Kleinberg, & Parkes 2004) (but without the random
ordering assumption), for which they derive the revenue
maximizing Bayesian incentive compatible selling mecha-
nism. They observe the failure of the revelation principle
in this setting and together with (Gallien 2006), they extend
Myerson’s truthful optimal auctions (Myerson 1981) to dy-
namic environments. Like our results, they assume distribu-
tional knowledge of the bid valuations, but unlike our results
their algorithm has exponential running time and their focus
is on characterizing dynamic optimal auctions rather than
running time of the algorithm. All of our algorithms in this
paper have polynomial running times, and much of our work
focuses on the case of unknown number of bidders, which is
different from the assumption by Pai and Vohra.

In the online mechanism design setting, to the best of our
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knowledge, the only previous work to incorporate the as-
pect of unknown market size is (Mahdian & Saberi 2006).
Motivated by search keyword auctions on, for example, Ya-
hoo!, Google, and MSN, where the supply (search queries
by users, each of which results in a search results page on
which ads can be displayed) is not known in advance, they
study a multi-unit auction for a perishable item where an
unknown number of units (instead of bidders) arrive on-
line. They design approximately revenue-maximizing auc-
tions using an online algorithm similar to an algorithm used
for the ski-rental problem. However, they do not use any dis-
tributional knowledge of the bid values — which is usually
available via the history of past transactions.

Prior work on prophet inequalities
The full-information case of our online auction problem is
closely related to prophet inequalities, a topic which has
been studied in optimal stopping theory since the 1970’s.
For an instantaneous agent, the mechanism is required to
decide whether or not the agent will receive a unit at the mo-
ment that agent’s bid is revealed, and no later. In this special
case, the problem of designing an allocation rule which max-
imizes (or approximately maximizes) efficiency is equiva-
lent to the following problem: given the distribution of a
sequence of random variables x1, x2, . . . , design a sequence
of k stopping rules2 τ1 < τ2 < . . . < τk to maximize the ex-
pectation of the sum xτ1 + . . . + xτk

. A great deal is known
about the solution of this problem in the case k = 1, and
comparatively little is known for k > 1. The most basic
prophet inequality, discovered by Krengel, Sucheston, and
Garling, concerns the case in which k = 1 and the ran-
dom variables x1, x2, . . . are independent (but not necessar-
ily identically distributed). If V denotes the supremum of
E(xτ ) over all stopping rules τ , and M = E(supn xn), then
assuming M < ∞ we have M ≤ 2V, and the constant 2 is
the best possible in that setting (Krengel & Sucheston 1977;
1978). The inequality has been interpreted as meaning that
a prophet who can see the future has only a bounded advan-
tage over a gambler who observes the random variables one
by one, and this explains the name “prophet inequality”.

When the gambler has multiple choices (i.e., k > 1),
then much less is known about prophet inequalities. (As-
saf & Samuel-Cahn 2000) studied the problem of designing
k stopping rules τ1 ≤ . . . ≤ τk to optimize the quantity
E (maxi{xτi

}) . They proved that there exists a sequence of
k stopping rules such that the expected maximum of the k
choices is within a factor (k + 1)/k of the prophet’s payoff.
However, in the auction setting, the natural objective is to
maximize the expected sum of the k choices rather than their
expected maximum. Surprisingly, only one prior paper con-
siders this objective (Kennedy 1987). It compares the sum of

2We define a stopping rule for a sequence x1, x2, . . . to be a
random variable τ taking values in N ∪ {∞}, such that for all i,
the event τ = i depends only on the values of x1, . . . , xi. Our
convention differs from the convention adopted by most authors,
in that we allow the value τ = ∞. In auction applications, this
corresponds to allowing units to be unsold at the end of the auction.
We also adopt the conventions that xτ = 0 when τ = ∞, and that
the inequality τj < τj+1 is valid when τj = τj+1 = ∞.

the k values chosen by the gambler with a single value cho-
sen by the prophet. Letting M = E(maxn xn) as before,
and letting Vk denote the supremum of E(xτ1 + . . . + xτk

)
over all sequences of stopping rules τ1, . . . , τk, Kennedy
seeks inequalities of the form M ≤ αkVk which are valid
for all sequences of independent non-negative random vari-
ables x1, x2, . . .. He gives a recursive formula for the best
possible constant αk in such an inequality. This type of “ap-
ples to oranges” comparison (one choice for the prophet, k
choices for the gambler) is much less natural than a com-
parison between a prophet with k choices and a gambler
with the same number of choices. In other words, letting
Mk denote the expectation of the sum of the k largest sam-
ples in the sequence x1, x2, . . ., we desire inequalities of the
form Mk ≤ βkVk, valid for all sequences of independent
non-negative random variables x1, x2, . . .. Kennedy notes
that this objective seems much more difficult than determin-
ing the best possible constants αk, because the recursions
involved are much harder to manipulate. In this paper we
make progress on this problem by proving that

1 +

√
1

512k
≤ βk ≤ 1 +

√
8 ln(k)

k
.

We also supply nearly tight bounds for a similar question
concerning the additive difference between Vk and Mk when
x1, x2, . . . are uniformly bounded but not necessarily inde-
pendent.

Unknown n: lower and upper bounds
In this section, we consider online auctions in which all bid-
ders’ valuations are drawn i.i.d. from a demand distribution
which is known by the algorithm designer. As argued above,
assuming advance knowledge of such valuation distributions
is well-motivated by several real-world applications such as
online ticket sales, search keyword auctions, eBay-style auc-
tions, pricing access to a WiFi port, scheduling computer
jobs on a shared server, and house sales. The main focus of
this section is the case in which n, the number of bidders, is
unknown due to the online nature of the problem.

We first show that in the case of one unit to sell and instan-
taneous agents — and even with a highly concentrated (aka.
light-tailed) demand distribution — we cannot be constant-
competitive for efficiency or revenue. Next, we show that
we can obtain logarithmic competitive ratios even in a much
more general setting with arrivals and departures.

Theorem 1. Suppose we have only one unit to sell (k =
1), all bidders are instantaneous, and their valuations are
drawn i.i.d. from a demand distribution which is given to
the algorithm in advance. Without knowledge of n (the num-
ber of bidders), it is impossible for a mechanism to achieve
a constant competitive ratio with respect to revenue or effi-
ciency.

Theorem 2. There are truthful mechanisms which are
min{O(log h), O(log n(log log n)2)} competitive (with re-
spect to both efficiency and revenue) for online auctions of
k units with bidders of arbitrary arrival-departure intervals
even when n is unknown to the auctioneer in advance. Here
h is the ratio of the maximum bid to the minimum bid.
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For space reasons, we present only a sketch of the proofs
of Theorems 1 and 2. To prove Theorem 1, for any con-
stant C > 1 one proves the non-existence of C-competitive
mechanisms by constructing a distribution of bids which is
supported on the set {0, 1, C, C2, C3, . . .}, and a sequence
of numbers t1, t2, . . . , such that the maximum of tr indepen-
dent samples from the given distribution is with high proba-
bility equal to Cr. One then finds a value of r such that the
mechanism has probability less than 1/C of stopping and
selling the item at a time t between tr−1 and tr, and one sets
n = tr. This ensures that, with high probability, the opti-
mum efficiency and revenue are equal to Cr. By construc-
tion, with high probability the mechanism either doesn’t sell
the item at all, or it sells the item at a time earlier than tr−1;
in the latter case, the price can not be greater than the maxi-
mum of the first tr−1 bids, which by construction is at most
Cr−1 with high probability. To prove Theorem 2, one con-
siders a mechanism which guesses the value of n, either by
choosing a uniformly random power of 2 between 1 and h
or else by choosing a random power of 2 from the distribu-
tion which assigns probability proportional to k log2(k) to
the number 2k. Having guessed the value of n, it then uses
the mechanism from Section 6, Corollary 23 of (Hajiaghayi,
Kleinberg, & Parkes 2004), which is constant-competitive
for efficiency and revenue provided that the guessed value
of n is within a constant factor of the true value of n.

Known distribution over n
Until now, we have assumed that the number of bidders, n,
was unknown to the designer, and we have adopted worst-
case competitive analysis with respect to the choice of n. If
instead the distribution of n is known, then we can make sev-
eral observations about the design of mechanisms to maxi-
mize expected revenue or efficiency. We split the discussion
into two subsections based on whether or not the distribution
over n has bounded support, i.e., whether or not there exists
a finite maximum number of bidders that may arrive.

Bounded number of buyers
For the setting where the distribution of n has bounded sup-
port, a mechanism (sequence of prices) can be designed au-
tomatically.

Theorem 3. Assume a bounded-support distribution N over
n and bounded-support distributions of bidders’ valuations.
If we insist (e.g., in order to achieve strategyproofness of
reporting arrival times3) that the price sequence be non-
decreasing (i.e., that the price never drops as a new agent
enters the system), then a mechanism that maximizes ex-
pected efficiency and revenue (among all mechanisms with
non-decreasing prices) can be automatically constructed.

Proof. The algorithm is based on a dynamic program that
uses backward induction on time, starting from the arrival

3In order to achieve strategyproofness of reporting arrival times,
it is not quite necessary for the posted prices to be increasing. One
could post prices that sometimes decrease, as long as rebates (or
additional charges) are made afterwards so that the prices are effec-
tively non-decreasing. See, e.g., (Hajiaghayi et al. 2005).

time of the last bidder. The array that we fill has three di-
mensions: n′ is the number of bidders seen so far, k′ is the
number of remaining units to sell, and q′ is the last (i.e.,
greatest) price at which we sold a unit so far. D[n′, k′, q′]
stores the best expected revenue (efficiency) that we can ob-
tain at this stage. The pseudo-code is given below.

Algorithm OPTMech
Input: distribution N and an upper bound N on n,

distributions Qi, 1 � i � n,
an upper bound Q on bidders’ valuations, and
k, the number of units to sell

Output: Table D and a corresponding table R of reserve prices
1 initialize table D by 0 when n′ = N + 1, k′ = 0, or q′ = Q + 1
2 for n′ = N down to 0
3 for k′ = 1 to k
4 for q′ = Q down to 0
5 let p>n′ be the probability (from distribution N )

of having more than n′ bidders, conditional on
having seen n′ of them so far

6 let p�q′′ be the probability (from distribution Qn′ )
that the n′th bidder has valuation q′′ or higher

7 set reserve price R[n′, k′, q′] = q′′

where q′′, q′ � q′′ � Q maximizes
(1 − p>n′)p�q′′Bq′′ + p>n′((1 − p�q′′)
D[n + 1, k, q′′] + p�q′′(Bq′′ + D[n′ + 1, k − 1, q′′])).
Here, Bq′′ = q′′ if we want to maximize revenue and
Bq′′ =

∑Q
x=q′′ pxx if we want to maximize efficiency

(px is the probability that the n′th bidder has
valuation x).

The generated mechanism starts with n′ = 0, k′ = k, and
q′ = 0.

The proof of correctness of the dynamic program can be
easily seen from the pseudo-code above. The proof of strat-
egyproofness of the resulting mechanism mainly follows
from (Hajiaghayi, Kleinberg, & Parkes 2004; Hajiaghayi et
al. 2005). Essentially since the prices never decrease, there
is no incentive for bidders to arrive late in the system. Since
the prices are independent of bidders’ announced valuations,
the mechanism is also strategyproof with respect to report-
ing valuations.

In OPTMech, different bidders can have different demand
distributions, though in the simplest case they are all i.i.d.
from the same distribution Q. We will discuss the case of
different demand distributions further when we discuss al-
gorithms that use prophet inequalities.

Unbounded number of buyers
We now shift attention to the setting where n has unbounded
support, i.e., the number of agents may end up being ar-
bitrarily large. We start by showing that in a 1-unit auc-
tion, if n is drawn from a distribution with non-increasing
hazard rate, then the optimal price sequence is inherently
non-decreasing. (Intuitively, if the option of continuing to
take future bids increases in value over time, then it is best
to increase the prices over time as well.) This means that
first-best revenue is achievable even while requiring tempo-
ral strategyproofness (non-decreasing prices). On the other
hand, with increasing hazard rate, first-best revenue may not
be achievable under temporal strategyproofness.
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Theorem 4. Let there be one unit to sell, and let f be
the distribution from which each bidder’s valuation is in-
dependently drawn. Assume that f is bounded and that
the support of f is bounded from above. Now, if the num-
ber of buyers, n, is drawn from a distribution with non-
increasing hazard rate (i.e., a distribution such that the func-
tion φ(t) = Pr(n = t | n ≥ t) is a non-increasing function
of t), then the prices in the optimal price sequence do not
decrease over time. (Analogously, if φ(t) is increasing, the
prices in the revenue-maximizing price sequence decrease
over time.)

In the special case where n is drawn from a geometric dis-
tribution, the hazard rate, φ(t), is constant. Using the tech-
nique of the proof of Theorem 4 (omitted for space), it fol-
lows that it is optimal to keep posting the same price across
time. That optimal price can be found via binary search.

Theorem 4 can also be applied to any tail of a distribution
(i.e., all arrivals after some given number of arrivals), if the
tail satisfies non-increasing (increasing) hazard rate, even if
the entire distribution does not satisfy that condition.

If the seller has multiple units to sell, the state includes
also the number of units that are still unsold, i.e., the MDP
value function is a two-variable function v∗(t, u) instead
of a single-variable function v∗(t). For any fixed u, The-
orem 4 still applies. In other words, if the hazard rate is
non-increasing (increasing), the price is non-decreasing (de-
creasing). Then, any time that a unit is sold, u is decre-
mented by one. With less supply left, the optimal price nat-
urally does not decrease. Therefore, we can say that with
non-increasing hazard rate, price is nondecreasing even in
the multi-unit case; thus first-best revenue is achievable even
under the requirement of temporal strategyproofness.

Prophet inequalities
In this section we will develop online mechanisms based on
a technique from optimal stopping theory called prophet in-
equalities (described in the introduction). Prophet inequal-
ities concern the design of one or more stopping rules for
a sequence of random variables which are often, but not al-
ways, assumed to be independent. In the online auction set-
ting, the random variables correspond to bids, and the stop-
ping rules specify the times when units are sold. Our con-
sideration of these stopping rules yields several benefits:

• We will be able to derive competitive ratios on these
mechanisms, i.e., comparisons between expected effi-
ciency (revenue) of the algorithm’s allocation and the ex-
pected efficiency (revenue) of the optimum allocation that
can be obtained with perfect foresight and without con-
sidering any incentive compatibility (regarding reporting
values and times). The competitive ratios hold under the
assumption that the bid values are independent random
variables and that the value of n is known.

• Each mechanism here uses constant non-discriminatory
prices. Therefore, the same mechanism could have been
generated by the dynamic program of the previous sec-
tion. It follows that the competitive ratios apply to
mechanisms generated by the dynamic program as well,
which implies, a fortiori, that the dynamic program gen-

erates a mechanism which is a constant-factor approxi-
mation to the efficiency (or revenue) of an optimal mech-
anism. This result strengthens Theorem 3, which only
asserts optimality within the class of mechanisms with
non-discriminatory non-decreasing prices. (We reiterate,
however, that the competitive ratios — and the hence the
approximation guarantee — rely on the assumption that
the value of n is known.) To summarize, the prophet in-
equality based mechanisms can serve as an analysis tool
for the mechanisms generated by the dynamic program.

• Unlike the mechanisms generated using the dynamic pro-
gram, each mechanism here uses a constant price. There-
fore, these mechanisms are temporally strategyproof
against arbitrary temporal deviations, including early ar-
rivals.

Example: the case k=1

To illustrate these ideas, consider the problem of stopping a
sequence of independent random variables x1, x2, . . . , xn,
with known (not necessarily identical) distributions sup-
ported on the nonnegative reals, at a stopping time τ , to
maximize the expectation of xτ . This corresponds to the
online automated mechanism design problem with known
n and k = 1, and with the objective of maximizing effi-
ciency. As mentioned in the introduction, Krengel, Suche-
ston, and Garling proved (Krengel & Sucheston 1977;
1978) that there exists a stopping rule τ such that

2E(xτ ) ≥ E( max
1≤i≤n

xi). (1)

In fact, the bound (1) is achieved by at least one of
the following two stopping rules σ, σ′. First, let x∗ =
max1≤i≤n xi. Next let m be median of the distribution of
x∗, i.e., choose m such that Pr(x∗ < m) ≤ 1/2 and
Pr(x∗ > m) ≤ 1/2. Finally, let σ be the minimum value of
i such that xi > m (or τ0 = n if there is no such i) and let
σ′ be the minimum value of i such that xi ≥ m (or τ1 = n
if there is no such i). The following theorem is due to Ester
Samuel-Cahn (Samuel-Cahn 1984).

Theorem 5. At least one of the numbers 2E(xσ), 2E(xσ′)
is greater than or equal to E(x∗).

In fact, there is a simple criterion for determining which
of the stopping rules σ, σ′ approximates the expectation of
E(x∗). Let β =

∑n
i=1 E (max{0, xi − m}) . If m � β then

2E(xσ) � E(x∗). If m � β then 2E(xσ′) � E(x∗). Note
that both m and β can be efficiently computed if the distri-
bution of each random variable xi has finite support and is
given explicitly as part of the input: the value of m can be
found by binary search, and the value of β can be found by
directly evaluating the formula which defines β.

In the online auction setting, suppose there are n bidders
whose bids are independent random variables with known
distributions. Let x1, x2, . . . , xn be the n bids, in the order
they are received, and let xn+1 = 0. One can define stop-
ping rules σ, σ′, as above, for the sequence x1, . . . , xn+1.
Each of these stopping rules corresponds to an online allo-
cation rule which sells the unit to the bidder who arrives at
stopping time σ (resp. σ′) unless the stopping time is n + 1,
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in which case the unit is unsold. Note that both of these allo-
cation rules can be implemented, in dominant strategy equi-
librium, by a posted price mechanism which sells the unit
to the first bidder whose bid value is strictly greater than m
(in the case of σ) or greater than or equal to m (in the case
of σ′). A posted-price mechanism with a price that does
not vary over time is temporally strategyproof (even against
arbitrary misreporting of arrival and departure times) so al-
though we designed the mechanism by reasoning about the
instantaneous agents setting, we obtained a stronger form
of incentive compatibility “for free” due to the constructive
proof of the prophet inequality. This is a theme which will
be repeated in future sections.

Selling more than one unit

Generalizing the foregoing discussion to the case when k >
1, n is known, and the bids are independent, we arrive at the
following question about prophet inequalities.

Question 6. If x1, x2, . . . , xn is a finite sequence of ran-
dom variables, let OPTk(x1, . . . , xn) denote the random
variable which is the sum of the k largest elements of
the set {x1, . . . , xn}. For a given natural number k,
what is the smallest constant βk such that for every fi-
nite sequence of independent nonnegative random variables
x1, x2, . . . , xn, there exists a sequence of k stopping rules
τ1 < τ2 < . . . < τk satisfying βkE(xτ1 + . . . + xτk

) ≥
E(OPTk(x1, . . . , xn))?

We have seen that β1 = 2. Surprisingly, the problem of
determining, or estimating, the value of βk for k > 1 has
not been explicitly considered in the literature on prophet
inequalities. Here we present upper and lower bounds for
βk and then discuss their implications for automated online
mechanism design.

Theorem 7.

1 +

√
1

512k
≤ βk ≤ 1 +

√
8 ln(k)

k

for all sufficiently large k.

For the applications to online mechanism design, it is
of course necessary to understand the algorithm which
achieves the upper bound in Theorem 7. As in the k = 1
case, the algorithm corresponds to a posted-price mecha-
nism with a fixed posted price which does not vary over
time. The price, which we denote by mk, is the infimum
of the set of numbers a satisfying

∑n
i=1 Pr(xi > mk) ≤

k −√
2k ln(k). As above, it is easy to compute mk in poly-

nomial time using a binary search, provided that the distri-
butions of the variables xi have finite support and are ex-
plicitly specified as part of the input. Large deviation in-
equalities imply that with high probability the number of
bids xi exceeding the threshold value mk will be between
k−√

4k ln(k) and k, and when this happens the revenue and
efficiency will both be within a factor of 1 − O(

√
ln(k)/k)

of optimal. This constitutes a proof sketch of the upper
bound in Theorem 7. The lower bound (whose proof is omit-
ted for space reasons) arises from considering the following

sequence of independent random variables: xi is determin-
istically equal to 1 if 1 � i �

√
k/8, uniformly distributed

in {0, 2} if
√

k/8 < i ≤ 2k +
√

k/8, and deterministically
equal to 0 for all larger values of i.

The fact that the price mk does not vary over time and
does not depend on bids received implies, as before, that
the allocation rule may be implemented by a posted-price
mechanism that satisfies temporal strategyproofness, even
when agents can lie arbitrarily about arrival and departure
times.

Unknown n and dependent bids

We now turn to cases in which the elements of the sequence
x1, x2, . . . are not necessarily independent, but their joint
distribution is known to the mechanism designer. A spe-
cial case of this problem arises in the case of independent
bids but an unknown value of n which is drawn from some
known distribution. For arbitrarily distributed sequences
of non-negative random variables, it is impossible to ob-
tain non-trivial prophet inequalities with a multiplicative
bound such as (1). However, if we assume that the ran-
dom variables x1, x2, . . . , xn are uniformly bounded (tak-
ing values in [0, 1], without loss of generality), then there
are non-trivial additive bounds relating xτ1 + . . . + xτk

to
OPTk(x1, . . . , xn). For example, in the case k = 1 there
always exists a stopping rule τ such that E(xτ ) + 1/e ≥
OPT1(x1, . . . , xn), and the constant 1/e is asymptotically
the best possible as n tends to infinity (Hill & Kertz 1983).
For the case k > 1, we present here a simple additive k/2-
approximation.

Theorem 8. For any sequence of random variables
x1, x2, . . . , xn taking values between 0 and 1, there is a se-
quence of k stopping times τ1 < τ2 < . . . < τk such that

E(xτ1 + . . . + xτk
) + k/2 ≥ E(OPTk(x1, . . . , xn).

In fact τi+1 may be taken to be the smallest j > τi satisfying
xj ≥ 1/2, or τi+1 = ∞ if no such j exists.

As in the preceding two subsections, the stopping rules
achieving the bound in Theorem 8 correspond to a posted-
price mechanism with a price that does not vary over time
(namely, a price of 1/2), so the allocation rule can be im-
plemented by a mechanism which satisfies temporal strate-
gyproofness.

The following theorem demonstrates that, unfortunately,
the O(k) additive error term in Theorem 8 can not be im-
proved by more than a constant factor, even when bids are
i.i.d. samples from a known distribution and n is randomly
sampled from a two-element set.

Theorem 9. Suppose that n is sampled uniformly at ran-
dom from the set {k, k3} and that the bids x1, x2, . . . , xn

are i.i.d. random samples from the distribution which as-
signs probability 1 − 1/k to the value 1/2 and probabil-
ity 1/k to the value 1. For any sequence of stopping rules
τ1 < . . . < τk, we have

E(xτ1 + . . .+xτk
)+

k

8
−1 ≤ E(OPTk(x1, . . . , xn)). (2)
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Conclusions and open problems
In this paper for the first time, we designed automated mech-
anism design techniques for designing online mechanisms
— in order to exploit distributional information about val-
uations of bidders who arrive online. Sometimes even the
number of bidders is not known in advance. Along the way,
we identified a rich interplay between these problems and
prophet inequalities from statistics. We also proved new
prophet inequalities motivated by the auction setting.

This is also a fertile area for future research. Suppose that
we have patient (not instantaneous) bidders who have arrival
and departure times as well as valuations. Suppose moreover
that the mechanism designer knows the joint distribution of
the entire input — the number of bidders, and all three pa-
rameters of their types. What is the complexity of designing
the optimal mechanism? Is there still a dynamic program of
subexponential size (or even PSPACE)? If the answer is no,
what about approximation? (Pai & Vohra 2006) have a dy-
namic program for designing an optimal auction, but it has
an exponential number of states. Even if bidders cannot lie
about their arrival and departure times (only about their val-
uations) and all valuations are i.i.d. from the same distribu-
tion of polynomially-bounded support, it is unclear whether
there is an efficient algorithm to design an optimal mecha-
nism. The same questions can be asked in the reusable good
setting, i.e., when at every time slot there is one unit which
may be allocated at that time but not at any other time.

It would also be desirable to obtain tight upper and lower
bounds in Theorem 7 (possibly βk = 1 + Θ(

√
1/k)), The-

orem 8 (possibly k/e), and Theorem 2 (possibly Õ(log n)).
Another open (but not practically important) problem is the
case of unit supply (k = 1) when bidders can have only two
possible valuations (say, 1 and h) or when there are only
two possible values of n. In the former case, there is a sim-
ple 2-competitive randomized algorithm (via the approach
of Theorem 2) and in the latter case there is an obvious 2-
competitive randomized algorithm which guesses one of the
two values uniformly at random, and then applies an opti-
mal pricing policy assuming that this guess is correct. But
can we get a competitive ratio better than 2 in either case?

References
Assaf, D., and Samuel-Cahn, E. 2000. Simple ratio prophet
inequalities for a mortal with multiple choices. J. Appl. Prob.
37(4):1084–1091.
Awerbuch, B.; Azar, Y.; and Meyerson, A. 2003. Reducing truth-
telling online mechanisms to online optimization. In ACM Sym-
posium on Theory of Computing, 503–510.
Babaioff, M.; Immorlica, N.; and Kleinberg, R. 2007. Matroids,
secretary problems, and online mechanisms. In ACM-SIAM Sym-
posium on Discrete Algorithms, 434–443.
Blum, A.; Kumar, V.; Rudra, A.; and Wu, F. 2003. Online learn-
ing in online auctions. In ACM-SIAM Symposium on Discrete
Algorithms, 202–204.
Blum, A.; Sandholm, T.; and Zinkevich, M. 2006. Online algo-
rithms for market clearing. Journal of the ACM 53:845–879.
Bredin, J., and Parkes, D. C. 2005. Models for truthful online
double auctions. In Conference on Uncertainty in Artificial Intel-
ligence, 50–59.
Conitzer, V., and Sandholm, T. 2002. Complexity of mechanism
design. In Conference on Uncertainty in Artificial Intelligence.

Friedman, E. J., and Parkes, D. C. 2003. Pricing WiFi at star-
bucks: issues in online mechanism design. In ACM Conference
on Electronic Commerce, 240–241.
Gallien, J. 2006. Dynamic mechanism design for online com-
merce. Operations Research 54:291–310.
Hajiaghayi, M.; Kleinberg, R.; Mahdian, M.; and Parkes, D.
2005. Online auctions with re-usable goods. In ACM Conference
on Electronic Commerce, 165–174.
Hajiaghayi, M. T.; Kleinberg, R.; and Parkes, D. C. 2004. Adap-
tive limited-supply online auctions. In ACM conference on Elec-
tronic Commerce, 71–80.
Hill, T. P., and Kertz, R. P. 1983. Stop rule inequalities for uni-
formly bounded sequences of random variables. Trans. Am. Math.
Soc. 278:197–207.
Kennedy, D. P. 1987. Prophet-type inequalities for multi-choice
optimal stopping. Stoch. Proc. Applic. 24:77–88.
Kleinberg, R., and Leighton, T. 2003. The value of knowing a de-
mand curve: Bounds on regret for on-line posted-price auctions.
In Symposium on Foundations of Computer Science.
Kleinberg, R. 2005. A multiple-choice secretary algorithm with
applications to online auctions. In ACM-SIAM Symposium on
Discrete Algorithms, 630–631.
Krengel, U., and Sucheston, L. 1977. Semiamarts and finite val-
ues. Bull. Am. Math. Soc. 83:745–747.
Krengel, U., and Sucheston, L. 1978. On semiamarts, amarts,
and processes with finite value. In Kuelbs, J., ed., Probability on
Banach Spaces.
Lavi, R., and Nisan, N. 2000. Competitive analysis of incentive
compatible on-line auctions. In ACM Conference on Electronic
Commerce, 233–241.
Lavi, R., and Nisan, N. 2005. Online ascending auctions for
gradually expiring items. In ACM-SIAM Symposium on Discrete
Algorithms, 1146–1155.
Likhodedov, A., and Sandholm, T. 2005. Approximating revenue-
maximizing combinatorial auctions. In AAAI.
Mahdian, M., and Saberi, A. 2006. Multi-unit auctions with
unknown supply. In ACM Conference on Electronic Commerce,
243–249.
Myerson, R. 1981. Optimal auction design. Mathematics of
Operation Research 6:58–73.
Ng, C.; Buonadonna, P.; Chun, B. N.; Snoeren, A. C.; and Vah-
dat, A. 2005. Addressing strategic behavior in a deployed mi-
croeconomic resource allocator. In ACM SIGCOMM workshop
on Economics of peer-to-peer systems, 99–104.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. 2007.
Algorithmic Game Theory. To appear.
Pai, M., and Vohra, R. 2006. Optimal dynamic auctions. Techni-
cal report, Kellogg School of Mgmt., Northwestern University.
Parkes, D. C., and Singh, S. 2003. An MDP-based approach
to online mechanism design. Conference on Neural Information
Processing Systems.
Porter, R. 2004. Mechanism design for online real-time schedul-
ing. In ACM conference on Electronic Commerce, 61–70.
Samuel-Cahn, E. 1984. Comparisons of optimal stopping val-
ues and prophet inequalities for independent non-negative random
variables. Ann. Prob. 12:1213–1216.
Sandholm, T., and Gilpin, A. 2006. Sequences of take-it-or-leave-
it offers: Near-optimal auctions without full valuation revelation.
In AAMAS.
Sandholm, T.; Conitzer, V.; and Boutilier, C. 2007. Automated
design of multistage mechanisms. In IJCAI.
Sandholm, T. 2003. Automated mechanism design: A new appli-
cation area for search algorithms. In International Conference on
Principles and Practice of Constraint Programming.

65



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


