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Abstract

The paper introduces a new type of compression for de-
cision diagram data structures, such as BDDs, MDDs and
AOMDDs. The compression takes advantage of repeated
substructures within the decision diagram in order to lessen
redundancy beyond what is possible using simple subfunc-
tion sharing. The resulting compressed data structure allows
traversal of the original decision diagram with no significant
overhead. Specifically it allows the efficient computation of
valid domains, that is, the assignments for each encoded vari-
able that can participate in a solution, which is critical when
the decision diagram is used to support an interactive config-
urator. We relate these results to applications for interactively
configurable memory limited devices and give empirical re-
sults on the amount of saved space for a wide variety of in-
stances.

Introduction

Interactive Configuration is a special application of Con-
straint Satisfaction techniques. The idea is to provide a user
with interactive assistance in assigning values to variables in
order to obtain a customized solution to the Constraint Sat-
isfaction problem in question. Interactive configuration has
found many uses in customizing complex services and prod-
ucts during the sales process but also in configuring complex
products during installation or maintainance. One technique
for implementing an interactive configurator is to utilize Re-
duced Ordered Binary Decision Diagrams (ROBDDs, de-
noted BDDs from here on) (Bryant 1986), or similar data
structures, to compile all valid solutions to the configuration
rules in an off-line phase. It is then possible to assist the user
by, at all times, displaying exactly the variable assignments
that can lead to a valid configuration while guaranteeing a
time complexity that is polynomial in the size of the data
structure. The process of computing the choices for each
variable that can lead to a valid configuration is called valid
domains computation. There is a trend towards smart de-
vices where knowledge and rules about how a product may
be configured is embedded into the product itself. The prod-
uct configuration strategy described above can be employed
in order to achieve products with embedded configuration
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data as long as the device is capable of storing a BDD or sim-
ilar structure, representing the valid configuration state of
the device. If this is achieved, the product can be efficiently
configured with a guaranteed response time. However, a sig-
nificant amount of memory is required in order to store deci-
sion diagrams. While adding extra memory to a data center
or server is typically feasible, even adding a small fraction
of additional memory to a cheap mass-produced device can
incur an unacceptable increase in cost. It is therefore rele-
vant to consider strategies that allow the configuration data
to be made more succint without compromising the ability
to perform configuration operations efficiently. In this pa-
per we introduce a new compression technique for decision
diagrams that can be applied in the off-line phase after the
decision diagram has been constructed. Using this technique
the memory required from the configurable devices can be
significantly reduced without any significant effect on the
response time.

Related Work

The use of the BDD data structure for interactive configura-
tion was introduced in (Hadzic et al. 2004; Subbarayan et
al. 2004). A very successful approach to reducing the space
required for storing the configuration data using BDDs is to
use decomposition techniques as presented in (Subbarayan
2005). The technique relies on viewing the initial rules as
a set of small BDD constraints in a Constraint Satisfaction
Problem. These constraints form a dual constraint graph
(Rossi, van Beek, & Walsh 2006) with each node corre-
sponding to a single constraint and each edge being labeled
with shared variables. A join-tree is an acyclic dual con-
straint graph with the property that any two constraints shar-
ing a variable x are connected with a path where each edge
has x in its label. Given such a join-tree the corresponding
CSP can be made consistent by simply applying directional
arc-consistency along the join-tree. The idea is now to com-
pile subsets of the constraints into new (larger) constraints
in a manner such as to achieve a join-tree. It is very simple
to perform valid domains computation as the valid domains
are simply the union of the valid domains for each BDD
constraint in the join-tree. However, while the decomposi-
tion approach can significantly reduce the space required,
the complexity of applying restrictions to the data structure,
such as assigning a variable, are no longer polynomial in the
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size of the representation, or even polynomial in the size of
the corresponding monolithic representation using a single
decision diagram.

Another related result is the introduction of differential
BDDs in (Anuchitanukul, Manna, & Uribe 1995). In this
work the main reduction in the number of nodes is achieved
by replacing the usual OBDD labeling scheme based on the
variables by a labeling scheme based on the distance from
the node to its parent(s). The result of their new labeling
scheme is that the number of nodes that will be removed
by the standard reduction algorithm in (Bryant 1986) are in-
creased. Since they are relying on the recursive bottom-up
reduction, structures will only be merged if they are labeled
completely in the same way from the terminals and upwards.
Hence even very large sub-graphs that are almost labeled in
the same way will be not be merged if they disagree on the
labeling of a few nodes. We make use of a top-down label-
ing and compression which are more time-consuming, but
makes it possible for us to merge structures that do not agree
on all labels.

Preliminaries

In this paper we consider a configuration problem
CP(X, D, F ), where X = {x1, . . . , xN} is the set of vari-
ables, F the set of constraints and D = {D1, . . . , DN} is
the multi-set of variable domains, such that the domain of
a variable xi is Di. A single assignment α is a pair (xi, a)
where xi ∈ X and a ∈ Di. The assignment α is said to
have support, iff there exists a solution to CP where xi is
assigned a. If a single assignment (xi, a), where a ∈ Di,
has support, a is said to be in the valid domain for xi. A
partial assignment ρ is a set of single assignments to dis-
tinct variables, and a complete assignment is an assignment
that assigns all variables in X .

Interactive Configuration One successful approach to
storing configuration data for use in interactive configuration
is to compute a succint representation of all valid solutions
to the configuration problem. If the resulting data structure
is sufficiently succint and it is possible to efficiently compute
the valid domains based on it, we can support an interactive
configurator. One data structure that has found frequent use
for this problem is the OBDD as defined below:

Definition 1 (Ordered Binary Decision Diagram). An or-
dered binary decision diagram (OBDD) on n binary vari-
ables Xbin = {xbin

1 , . . . , xbin
n } is a layered directed acyclic

graph G(V, E) with n + 1 layers (some of which may be
empty) and exactly one root. We use d(u) to denote the layer
in which the node u resides. In addition the following prop-
erties must be satisfied:

• There are exactly two nodes in layer n + 1. These nodes
have no outgoing edges and are denoted the 1-terminal
and the 0-terminal

• All nodes in layer 1 to n have exactly two outgoing edges,
denoted the low and high edge respectively. We use
low(u) and high(u) to denote the end-point of the low
and high edge of u respectively.

• For any edge (u, v) ∈ E it is the case that d(u) < d(v)

We use Elow and Ehigh to denote the set of low and high
edges respectively. An edge (u, v) such that d(u)+1 < d(v)
is called a long edge and is said to skip layer d(u) + 1 to
d(v) − 1.

Definition 2 (Reduced OBDD). An OBDD is called re-
duced iff for any two distinct nodes u, v it holds that
low(u) �= low(v) ∨ high(u) �= high(v) and further that
high(u) �= low(u) for all nodes u.

Definition 3 (Solution to an OBDD). A complete assign-
ment ρbin to Xbin is a solution to an OBDD G(V, E) iff there
exists a path P from the root in G to the 1-terminal such that
for every assignment (xi, b) ∈ ρbin, where b ∈ {low, high},
there exists an edge (u, v) in P such that one of the following
holds:

- d(u) < i < d(v)

- d(u) = i and (u, v) ∈ Eb

As an OBDD only allows binary variables, additional
steps must be taken in order to encode solutions to prob-
lems containing variables with domains of size larger than
2. In order to define such a solution space with domains
of size |Di| > 2 we use �lg |Di|� binary variables, and the
constraints are modified accordingly. Let Xbin(i) ⊆ Xbin

denote the ordered set of binary variables used to encode
the domain variable xi. For each complete assignment ρbin

to Xbin that is a solution to the OBDD, the corresponding
assignment to each domain variable xi is simply the bit-
string obtained by concatenating the assignments in ρbin to
Xbin(i), interpreting low as 0 and high as 1.

Compressing BDDs

BDDs give a compact but explicit representation of a
boolean function. The compression achieved by a BDD is
possible mainly because identical subfunctions are only rep-
resented once, that is, nodes representing identical solution
space are merged. Unfortunately, if two subfunctions are
closely related but disagree on one or more variables that
are placed low in the BDD, the merging of identical subfunc-
tions is of little use. An example of this can be seen Figure
2, where the subfunctions rooted by the nodes labeled ’A’
are identical except on the last variable. In some cases (in-
cluding Figure 2) this can be rectified by choosing a better
variable ordering, placing the variables in question earlier
in the ordering. However, moving a variable in this way is
not always possible without introducing new redundancies
due to the dependencies between variables. In this paper we
therefore seek to identify repeated substructures that are em-
bedded within the BDD and compress them. By ’embedded
structures’ we refer to identical substructures repeated in the
BDD because they do not remain identical all the way to the
terminals as defined below.

Definition 4 (embedded structure). An embedded struc-
ture in a BDD is a set of rooted disjoint DAGs S = {G1 =
(V 1, E1, r1), . . . , Gk = (V k, Ek, rk)}, for which there ex-
ists a labeling l of the nodes such that every pair of distinct
nodes in Gi ∈ S are labeled differently. Further for every
path πi = vi

1, . . . , v
i
c in Gi where vi

1 = ri there exist for
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some j �= i a path πj = vj
1, . . . v

j
c in Gj where vj

1 = rj such
that:

- l(vi
k) = l(vj

k) for all 1 ≤ k ≤ c

- d(ri) − d(vi
k) = d(rj) − d(vj

k) for all 1 ≤ k ≤ c

- (vi
k, vi

k+1) ∈ Elow ⇐⇒ (vj
i , v

j
k+1) ∈ Elow

for all 1 ≤ k < c

Given an embedded structure in a BDD we define:

• Internal nodes VS : The set of nodes contained in S, that
is VS = {v ∈ V i | 1 ≤ i ≤ k}.

• Internal edges ES : The set of edges contained in S, that
is ES = {e ∈ Ei | 1 ≤ i ≤ k}.

• Incoming edges EI : The set of non-internal edges with
endpoint in VS , that is EI = {(u, v) ∈ E \ES | v ∈ VS}.

• Outgoing edges EO: The set of non-internal edges origi-
nating from VS , that is EO = {(u, v) ∈ E\ES | u ∈ VS}.

• The ith component: Gi = (V i, Ei, ri).

Suppose that we are given a BDD with nodes labeled by
l and a set of roots r1, . . . , rk that unambiguously defines
an embedded structure. For simplicity we assume for now
that all components are rooted in the same layer. We further
assume that every node that is not contained in the embedded
structure as well as the terminals all have distinct labels that
differs from the labels used in the embedded structure. We
note that VS , EI , ES and EO are unambiguously defined by
the specified roots and the labeling of V .

In order to use the supplied embedded structure to ob-
tain a more compact representation of the BDD contain-
ing the embedded structure, we create an auxiliary structure
G′ = (V ′, E′) based on the embedded structure and then
subsequently replace the entire embedded structure by this
more compact auxiliary structure. All nodes in the embed-
ded structure with the same label lb will be represented by a
unique node v′lb ∈ V ′. We define the function μ : V → V ′

that maps every node v that is part of the embedded struc-
ture to the node v′

l(v) ∈ V ′, and maps all other nodes to

themselves.
For every edge (u, v) ∈ E where u ∈ V i we add an edge

(μ(u), μ(v)) with the out-mark i to E′, in case v is in V ′

but in a different component than u, the added edge is also
given an in-mark indicating the component of v (we denote
such an edge as a transit edge). For every edge (u, v) where
v ∈ V i and u �∈ V ′ we add the edge (u, μ(v)) with an
in-mark i to E′. In the following we will use markin(e)
and markout(e) to denote the in and out marks of an edge e
respectively.

We can now remove all nodes and edges from the embed-
ded structure and still traverse the BDD using the new nodes
and edges of G′, the only change being that the components
visited must be tracked by remembering the most recent in-
mark mi encountered. Faced with a node with more than
two outgoing edges, the edge e such that markout(e) = mi

should be followed.
The above step can remove a significant number of nodes

from the BDD, but their edges remain and carries more in-
formation than before. In order to compress the edges as

well, every node in the auxiliary structure is given an un-
marked default high and low edge. The default high and
low edge of a node points to the most frequent end-point
among the marked high and low edge respectively. Hence
if a node in the auxiliary structure corresponds to a set of
nodes in the embedded structure each having a low child
with the same label, all necessary information on the loca-
tion of the low children is contained in the single default
low edge. For all edges that disagree with the default edge
we keep the edge and its out-mark. We denote the lat-
ter type of edges as extended edges and denote all other
edges in E as default edges. For each node u we denote
by lowext(u) and highext(u) the extended low and high
edges originating from u respectively. In order to traverse
the compressed BDD, we as before follow the edge e such
that markout(e) = mi, if it exists, and otherwise follow the
default edge. An example showing how an embedded struc-
ture is compressed is shown in Figure 2 and pseudo-code is
given in Figure 1.

COMPRESSEMBEDDING(G, L, l, cp)

1 V ′ ← cld ← lowext ← highext ← ∅
2 for each lb ∈ L
3 do make new node vS

lb

4 add vS
lb to V ′

5 for each lb ∈ L
6 do for each w ∈ V ′ where l(w) = lb
7 do add (w, l(low(w))) to cld
8 let lmax be the label occurring most often in cld

9 low(vS
lb) ← vS

lmax

10 for each (w, lb′) ∈ cld where lb′ �= lmax

11 do add μ(low(w)) to lowext(v
S
lb)

12 markout((v
S
lb , μ(low(w)))) ← cp(w)

13 for each (w, lb′) ∈ cld
14 do if w, low(w) ∈ V ′ ∧ cp(w) �= cp(low(w))

15 then e ← (vS
lb , μ(low(w)))

16 markin(e) ← cp(low(w))
17 for each u ∈ V \ V ′ for which l(low(u)) = lb
18 do component ← cp(low(u))
19 low(u) ← μ(low(u))
20 markin((u, low(u)) ← component
21 cld ← ∅
22 (Line 5-21 repeated with low replaced by high)
23 Remove nodes v such that l(v) ∈ L and all incident edges

Figure 1: Above, G is the original BDD, L the set of labels
in the embedded structure, l the node labeling and cp maps
v ∈ V i to i. Line 6-9 sets the default edge, while line 10-
12 adds extended edges for those edges that disagree with
the default edge. Line 13-16 set in-marks on transit edges.
Line 17-20 redirects incoming edges and sets in-marks ac-
cording to the component they pointed to previously. Line
23 removes the embedded structure from the BDD.
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Figure 2: On the left is shown an example BDD. Dotted edges are
low edges and solid edges are high edges. An embedded structure
with components c1 and c2 is indicated. On the right is the result
of running COMPRESSEMBEDDING. The outgoing edges of the
root node have in-marks indicating which of the components they
originally lead to. The compressed node ’C’ has one extended edge
with the out-mark c2.

In summary COMPRESSEMBEDDING saves( ∑
1≤i≤k

|V i|

)
− |L|

nodes and saves Esaved =
∑

1≤lstart≤k

max
lend∈N

∣∣∣∣{(u, v) | l(u) = lstart ∧ l(v) = lend}

∣∣∣∣−1

edges. We add ES + EO − Esaved out-marks and EI in-
marks, if we assume that all components are rooted in the
same layer.

Handling components rooted in different layers

In order to handle embedded structures that consist of com-
ponents rooted in different layers, we give each incoming
edge an offset-mark, that indicates the difference between
the layers of the nodes in the compressed embedded struc-
ture and the layers of the nodes in the original component,
specifically, we give every incoming edge, entering a com-
ponent rooted in r, the offset-mark d(μ(r)) − d(r). During
a traversal we can then determine the layer of a compressed
node v as being d(v) + offset where offset is the offset-
marking of the most recently traversed incoming edge. This
approach requires that we know whether or not a node is
located in a compressed embedded structure. This informa-
tion could for instance be specified by adding a flag to every
node in the compressed BDD.

Finding and choosing embeddings

In the previous section we covered how an embedded struc-
ture can be utilized to compress a BDD, in this section we

discuss how to find and choose between embedded struc-
tures. Suppose that we have a set of nodes {r′1, . . . , r

′
k}

and we want to construct an embedded structure rooted in
r′1, . . . , r

′
k that satisfies Definition 4. We start by giving an

algorithm that can find all possible embedded structures and
based on this present a feasible heuristic method. The basis
of this algorithm is a specialized simultaneous DFS starting
in the nodes r′1, . . . r

′
k. In each step of the DFS, let r and p

be vectors of elements drawn from V ∪ {∅}, such that ri is
either the node visited by the ith DFS or ∅ to indicate that the
ith DFS did not visit a node in this step, while p is a similar
vector of the nodes from which r was visited. Additionally
define |r| as the number of elements in r different from ∅.
Hence, initially r = (r′1, . . . r

′
k) and |r| = k. We assume

that initially p = r.
In each step the algorithm starts by replacing any nodes

in r that have already been labeled by ∅. Then, for each pos-
sible length of a long edge λ (in the order determined by the
permutation function π), the function dropλ(r, p) is used to
create a vector vλ containing the elements from r with some
entries replaced by ∅. Specifically dropλ replaces a node
ri with ∅ if d(ri) − d(pi) �= λ. Additionally dropλ may
replace any additional number of nodes with ∅, in such a
way that there are no duplicate nodes in vλ. If at least two
elements different from ∅ remains in vλ the algorithm la-
bels all remaining nodes in vλ with the same timestamp and
continues the DFS by visiting all high and all low children
of the nodes in vλ. The order in which the high and low
children are visited is determined by the function w. The
pseudo-code for this algorithm is given as DFS-LABEL in
Figure 3. Intuitively the algorithm is simply a simultaneous
DFS that explores subgraph isomorhisms, allowing subsets
of the traversals to pause, or partition into separate searches.
The important property of DFS-LABEL is that we by using
it in combination with each possible choice of initial roots,
dropλ, w and π, can enumerate all embedded structures sat-
isfying Definition 4.

However, while we could use this method to obtain all
possible embeddings it should be clear that this is not fea-
sible. Just considering embedded structures with two roots,
we are in the worst case able to produce a number of em-
beddings that are exponential in the height of the BDD. Fur-
ther there are |V |2/2! different pairs to choose from, |V |3/3!
triplets etc. Hence even if there was not an exponential num-
ber of embedded structures for each set of roots, it would be
infeasible to consider them all.

Implementation

Given the infeasibility of working with all possible embed-
dings we constrain our-selves to considering a small sub-
set of all possible embeddings in our implementation. First
off, we only consider sets of roots on the same level. Ad-
ditionally we only consider the weight function by which
the shortest edge is visited first. Finally we do not let the
simultaneous DFS partition into multiple separate searches.
Instead the layer in which the first ri �= ∅ resides is used
to decide for which nodes the search continues, that is, all
nodes in r in a different layer are replaced by ∅. Note that
the embedding that will be found by this approach is com-
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DFS-LABEL(r, p)

1 replace all labeled nodes in r by ∅
2 for i ← 0 to n
3 do λ ← π(i)
4 vλ ← dropλ(r, p)
5 if |v| ≥ 2
6 then c1 ← c2 ← (∅, . . . , ∅)
7 for each vλ

i �= ∅
8 do time ← time + 1
9 l(vλ

i ) ← time
10 cp(vλ

i ) ← i
11 c1

i ← high(vλ
i )

12 c2
i ← low(vλ

i )
13 if w(r, high) < w(r, low)
14 then exchange c1 ↔ c2

15 DFS-LABEL(c1, vλ)
16 DFS-LABEL(c2, vλ)

Figure 3: Line 1 exclude the labeled nodes from the cur-
rent search. Line 4 invokes dropλ, storing in vλ a subset
of the nodes in r for which the simultaneous DFS should
continue. In line 8-9 the selected nodes are given identical
labels, marking them for merging by COMPRESSEMBED-
DING. Line 11-12 builds the vectors of the high and low
children of the visited nodes. In line 13, the function w is
used to determine whether to visit the high or low children
first. Line 15-16 continues the search for the selected nodes.

pletely determined by the roots.

Our implemented algorithm considers all ordered pairs
consisting of nodes from the same layer. Triplets (v1, v2, v3)
are only considered if we find that (v1, v2) and (v2, v3)
both roots worthwhile embedded structures, quadruples
(v1, v2, v3, v4) are only considered if (v1, v2, v3) and
(v2, v3, v4) are considered and are worthwhile and so forth.

Each embedded structure S discovered in this way is an-
alyzed to compute the potential saving of compressing it. If
this saving is above a certain threshold S is added to a queue,
otherwise it is discarded. Even so, there will frequently not
be sufficient internal memory to store the roots and saving
of all embedded structures that can yield savings larger than
the threshold. If the queue grows too large the embedded
structures yielding the poorest savings are removed from the
queue to make room.

Given that we have computed some selection of embed-
ded structures, we place them in a max-priority queue us-
ing the saving of each as priority. We then simply com-
press them one by one until no embedded structure yielding
a positive saving is left. Each time we dequeue an embed-
ded structure S from the priority queue we reanalyze the
saving of compressing it. This is necessary as the compres-
sion of other embedded structures might have decreased the
saving that can be obtained from S. If the recalculated sav-
ing is smaller than the embedded structure at the top of the
queue we dequeue the top element and enqueue the reana-
lyzed structure with its updated saving as priority. Otherwise

we compress the BDD based on S.

Terminal suppression

In most BDDs it is natural to expect a very large number
of long edges leading to terminals. We therefore apply a
very simple method for saving additional space, by simply
not storing the edge to the terminal for nodes with exactly
one terminal edge. Instead all nodes are given a mark in-
dicating whether they have two normal edges, a high edge
to the 1-terminal, etc. While this mark incurs an additional
space cost for all nodes, it fits well with our other compres-
sion scheme which will remove a large part of the nodes in
the BDD. Edges to terminals that have an out-mark are not
suppressed in this manner.

Valid domains and restrictions

In order to utilize the compressed BDD for interactive con-
figuration we need to efficiently support the computation of
valid domains. Recall that given a configuration problem
CP on some variables X = {x1, . . . , xN}, and a partial as-
signment ρ to X , the valid domain for xi is the set of values
a such that there exists a solution to CP, consistent with ρ,
where xi is assigned a.

We will not describe here how to calculate valid domains
but instead refer to (Hadzic 2006). For our purpose the ap-
plied restrictions are stored outside the compressed BDD
and are only used to determine which combinations of edges
that may be traversed. We first note that any traversal of
the original BDD taking time t can be trivially performed
in time O(t) in the compressed BDD, hence the traversal
needed in computing the valid domains will not be signifi-
cantly slower.

The algorithm used for calculating the valid domains
needs to mark every node in the original BDD. These mark-
ings cannot be compressed along with the node they are
placed on, and hence needs to be replicated in the com-
pressed BDD. This implies that the space usage for these
markings will be proportional to the number of nodes in
the original BDD. By making a slight modification of the
algorithm described in (Hadzic 2006), where we calculate
the valid domains in a bottom-up fashion, it is possible to
achieve an algorithm that only requires three bits per node
in the original BDD. This does not affect the worst-case run-
ning time which remains O(n +

∑
1≤i≤N |V (xi)||Di|).

Experiments

In this section we apply our compression scheme to a wide
variety of BDD instances. Nearly all of them have been
compiled by either ConfigIT Product Modeler (2007) or
CLab (2007), encoding domains of size d using �lg d� binary
variables. All instances but the 10-queen problem and the 9-
bit multiplier are available online from either CLib (2007)
or (Hadzic 2005). Below we quickly summarize the origin
and nature of each of the included instances.

Product Configuration We have included four instances
constructed to provide interactive configuration of customiz-
able products. The instance ’Bike’ is constructed based on
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configuration options for a bike shop, ’PC1’ and ’PC2’ is
based on the same PC configurator but with different vari-
able orderings and ’Big-PC’ represent a more complicated
PC configurator. Finally the instance ’Renault’ is an repre-
sentation of the valid configuration options for the Renault
Megane family of cars.

Power Supply Restoration The Power Supply Restora-
tion (PSR) problem involves manipulating a power grid in
order to return power to the consumers in the grid. We have
included two such instances, for further information please
see (Hadzic & Andersen 2005).

Other Finally we have tested some assorted BDDs, one
representing an 9-bit multiplier (’9-bit Mult.’), one repre-
senting the solutions to the 10-Queen problem (’10-queen’)
and one being a small fault tree representation (’Chinese’).

Calculating saved space

For each of the tested instances in our experiments we iden-
tify a number of embedded structures in the tested instance
and use a greedy approach to choose which structures to
compress as described previously. While we calculate the
number of nodes removed, labels added, space used for
markings etc, the precise saving will depend on the exact
implementation of the original BDD data structure, in par-
ticular the number of bits used for each node.

Instead of making assumptions on the original data struc-
ture, we make the following sceptic estimate on the costs.
The cost of an edge is 1 unit, the cost of a node with its
edges is 2 units, the cost of marking an extended node as ex-
tended and the cost of an in-mark or out-mark is 1/2 a unit.
The cost of marking an edge for terminal suppression is 3/8
units. The space used for the markings required to support
valid domains computation is |V |/8 units in total.

Results

The results of our tests are shown in Figure 4. For most
instances our compression technique removes at least half
the nodes in the original BDD. In most instances this node
reduction is achieved while only adding a small number of
extended edges and markings, resulting in a high saving. As
can be seen from PC1/2, a poor variable ordering means that
we can compress more, though the better ordered BDD re-
mains significantly compressed. The worst result is achieved
with the 9-bit multiplier for which the estimate is 3%, due to
the high number of extended edges and markings that were
added to the compressed structure. We note however that
our estimate of the cost of labeling an edge is a bit exagger-
ated so in practice the saving would be larger. Additionally
we believe the result for the multiplier would have been sig-
nificantly improved if we had allowed embedded structures
rooted in different layers in our implementation. Overall, the
results indicate a consistent and significant saving in space.

Application to other data structures

While we have presented our results within the context of bi-
nary decision diagrams it should be clear that our approach

Instance |V | In Out Ext. Rem. TS Sav

Product Customization

Bike 1514 152 174 112 761 15% 40%

PC1 16496 453 792 317 11998 33% 67%

PC2 3467 726 837 271 2625 8% 44%

Big-PC 6468 566 567 450 3170 11% 39%

Renault 455798 13580 16513 7355 267356 24% 58%

Power Supply Restoration

1-6+22-32 20937 2497 2428 1099 12863 22% 50%

Cplx-P2 163432 8930 13540 5098 89442 22% 51%

Other

9-bit Mult. 13918 2375 4907 3370 6195 -16% 3%

10-queen 10049 1161 1498 902 5297 24% 44%

Chinese 3590 228 427 194 2113 21% 51%

Figure 4: The table shows the result of applying our com-
pression technique to a variety of different BDDs. The col-
umn |V | contains the number of nodes in the original BDDs,
In is the number of in-markings, Out is the number of out-
markings, Ext. is the number of extended nodes and Rem. is
the number of nodes removed by the compression step. The
entry TS gives an estimate on the amount of space saved
solely by using terminal suppression and Sav gives a pes-
simistic estimate on the space saved by combining termi-
nal suppression with compression of embedded structures,
based on our sceptical estimate. Note that for the instance
9-bit Mult the Sav entry gives the saving for applying just
compression of embedded structures as terminal suppression
increase the amount of space required.

applies to, for example, multi-valued decision diagrams and
even AND/OR multi-valued decision diagrams with only
trivial modifications, as we are simply taking advantage of
repeated subgraph structures. We do note however that it is
not possible to easily predict the compression performance
of applying our approach to these data structures based on
our current experiments.

Conclusion

In this paper we have introduced a new type of compres-
sion for decision diagram data structures for the purpose of
storing configuration data on memory limited devices. For
the case of binary decision diagrams we have shown how to
perform restrictions and valid domains computation on the
compressed data structure. In addition we have given ex-
perimental results for a wide variety of relevant instances of
configuration data and shown that the compression achieved
is significant in most cases.
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