Computational Complexity of Weighted Threshold Games

Edith Elkind
Electronics & Computer Science
University of Southampton
Southampton SO17 1BJ, UK

Leslie Ann Goldberg
Computer Science
University of Liverpool
Liverpool L69 3BX, UK

Abstract

Weighted threshold games are coalitional games in which
each player has a weight (intuitively corresponding to its vot-
ing power), and a coalition is successful if the sum of its
weights exceeds a given threshold. Key questions in coali-
tional games include finding coalitions that are stable (in the
sense that no member of the coalition has any rational incen-
tive to leave it), and finding a division of payoffs to coalition
members (an imputation) that is fair. We investigate the com-
putational complexity of such questions for weighted thresh-
old games. We study the core, the least core, and the nucle-
olus, distinguishing those problems that are polynomial-time
computable from those that are NP-hard, and providing pseu-
dopolynomial and approximation algorithms for the NP-hard
problems.

Introduction

Coalitional games provide a simple but rich mathematical
framework within which issues related to cooperation in
multi-agent systems can be investigated (Deng & Papadim-
itriou 1994; Ieong & Shoham 2005; Conitzer & Sandholm
2006). Crudely, a coalitional game can be understood as a
game in which players can benefit from cooperation. The
key questions in such games relate to which coalitions will
form, and how the benefits of cooperation will be shared.
With respect to the former question, solution concepts such
as the core have been formulated, in an attempt to charac-
terise “stable” coalitions. With respect to the latter question,
the Shapley value is perhaps the best-known attempt to char-
acterise a fair distribution of coalitional value.

From a computational perspective, the key issues relating
to coalitional games are, first, how such games should be
represented, (since the obvious representation is exponen-
tially large in the number of players, and is hence infeasi-
ble); and second, the extent to which cooperative solution
concepts can be efficiently computed.

In this paper we consider the computational complexity of
solution concepts for weighted threshold games. A weighted
threshold game is one in which each player is given a nu-
meric weight, and a coalition takes the value 1 if the sum
of its weights exceeds a particular threshold, and the value
0 otherwise. Weighted threshold games are widely used in
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practice. For example, the voting system of the European
Union is a combination of weighted threshold games (Bil-
bao et al. 2002).

From previous research, we know that for weighted
threshold games it is #P-hard to compute the Shapley value
of a given player, and that it is NP-hard to determine whether
this value is zero (Matsui & Matsui 2001; Deng & Papadim-
itriou 1994; Prasad & Kelly 1990). It is also known that
there is a pseudopolynomial time algorithm for computing
the Shapley value by dynamic programming (Garey & John-
son 1990; Matsui & Matsui 2000). However, even approx-
imating the Shapley value within a constant factor is in-
tractable unless P=NP — see Remark 11. In this paper, we
focus on three solution concepts — the nucleolus, the core,
and its natural relaxation, the least core. Although the com-
plexity of determining non-emptiness of the core has been
studied for a variety of representations, comparatively lit-
tle research has considered the least core and the nucleolus.
Following a brief statement of the relevant definitions from
coalitional game theory, we show that the problem of deter-
mining whether the core is empty is solvable in polynomial
time, and that the nucleolus can be computed in polynomial
time when the core is non-empty. Next, we show that it
is NP-hard to construct an imputation in the least core of a
weighted threshold game, or to determine whether a given
imputation is in the least core, or to determine, for a given e,
whether the least core is the e-core. We mitigate these hard-
ness results by giving a fully polynomial-time approxima-
tion scheme for the least core. Furthermore, we show that
all three problems can be solved in pseudopolynomial time:
that is, the problems can be solved in polynomial time for
weighted threshold games in which the weights are at most
polynomially large in the number of players. We then show
that it is NP-hard to determine whether the nucleolus pay-
off of a given agent is 0, which implies that it is NP-hard to
compute the nucleolus payment of an agent, or to approxi-
mate this nucleolus payment within a constant factor. Nev-
ertheless, we show that, for a wide class of weighted thresh-
old games, it is possible to easily approximate the nucleolus
payment of a minimal winning coalition.

Throughout the paper, we assume some familiarity with
computational complexity (Papadimitriou 1994) and ap-
proximation algorithms (Ausiello et al. 1999).



Preliminary Definitions

We assume numbers are rationals, and unless explicitly
stated otherwise (specifically, in Theorem 6), we assume
that rational values are represented in binary. (Our results
extend straightforwardly to any “sensible” representation of
real numbers, but we use rationals to avoid tangential repre-
sentational issues.) This allows us to use the machinery of
polynomial-time reductions and NP-hardness. In all of our
proofs, “polynomial” means “polynomial in the size of the
input”. Some of the problems we consider are function prob-
lems, rather than decision problems (Papadimitriou 1994,
Chapter 10). We use the standard notion of NP-hardness for
function computation: when we say it is NP-hard to compute
a function, we mean that the existence of a polynomial-time
algorithm for computing the function would imply P=NP.

We briefly review relevant definitions from coalitional
game theory (Osborne & Rubinstein 1994, pp.255-298). A
(rational valued) coalitional game consists of a set I of play-
ers, or agents, and a total function v : ol s Q, which
assigns a rational value to every coalition (subset of the
agents). Intuitively, v(S) is the value that could be obtained
by coalition S C [ if they chose to cooperate, or form a
coalition. The question of how the agents cooperate to ob-
tain this value is not modeled at this level of analysis, and
the question of how this value is divided amongst coalition
members is similarly ignored for now. The grand coalition
is the set I of all agents. Often, the value of a coalition is
enhanced by the addition of a new participant, so the value
of the grand coalition is maximum amongst coalition values.
By rescaling, we may assume this value is 1.

An imputation is a division of this unit of value amongst
the agents. The goal is typically to find an imputation which
is “fair” in the sense that agents which contribute more to
the grand coalition receive a larger share of the value of the
coalition. There are many ways to formalise the notion of
fairness. These are known as solution concepts. In this pa-
per, we study three solution concepts: the core, the least
core, and the nucleolus.

A weighted threshold game is a coalitional game G given
by a set of agents I = {1,...,n}, their non-negative
weights w = {wi,...,wy,}, and a threshold T'; we write
G = (I;w;T). For a coalition S C I, its value v(S5) is
Lif )7, cgw; > T otherwise, v(S) = 0. Without loss of
generality, we assume that the value of the grand coalition
{1,...,n}is 1. Thatis, >, ., w; > T.

For a weighted threshold game, an imputation is a vector
of non-negative rational numbers (p1, . . ., p,), one for each
agentin I, suchthat ), p; = 1. We refer to p; as the pay-
off of agent i. We write w(S) to denote ), _ ¢ w;. Similarly,

p(S) denotes D, ¢ ;-

Given an imputation p = (p1, . . ., P ), the excess e(p, S)
of a coalition .S under p is defined as p(S) — v(S). The
core is a set of imputations defined as follows. An imputa-
tion p is in the core if it is the case that for every S C I,
e(p,S) > 0. Informally, p is in the core if it is the case that
no coalition can improve its payoff by breaking away from
the grand coalition because its payoff p(S) according to the
imputation is at least as high as the value v(S) that it would
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get by breaking away.

The excess vector of an imputation p is the vector
(e(p,S1),-..,e(p, Son)), where Sq,...,San is a list of all
subsets of I ordered so that e(p, S1) < e(p,S2) < -+ <
e(p, San). In other words, the excess vector lists the ex-
cesses of all coalitions from the smallest (which may be
negative) to the largest. The nucleolus is the imputation
x = (x1,...,2,) that has the lexicographically largest ex-
cess vector. Intuitively, the nucleolus is a good imputation
because it balances the excesses of the coalitions, making
them as equal as possible. It is easy to see that the nucleolus
is in the core whenever the core is non-empty. Furthermore,
the core is non-empty if and only if ; > 0.

A natural relaxation of the notion of the core is the least
core. We say that an imputation p is in the e-core if
e(p,S) > —eforall S C I; it is in the least core, if it is
in the e-core for some ¢ > 0 and the €'-core is empty for
any €’ < e. Clearly, the least core is always non-empty and
contains the nucleolus.

Another solution concept for a coalitional game is the
Shapley value. It is the imputation p, p; = ¢(i), with

>

S :1e€SCI

The Core and the Least Core

We start by considering the core — perhaps the best known
and most-studied solution concept in coalitional game the-
ory. Intuitively, the core of a coalitional game contains
imputations such that no sub-coalition could obtain a bet-
ter imputation for themselves by defecting from the grand
coalition. Asking whether the grand coalition is stable thus
amounts to asking whether the core of the game is non-
empty.

(] = [sphrdst = 1)
1!

o(1) = (¥ (S) = v(S\{i}))-

Name EMPTYCORE.
Instance Weighted threshold game (I; w; 7).
Question Is the core empty?

The following theorem shows that EMPTYCORE is solv-
able in polynomial time, and that computing the nucleolus
can be done in polynomial time when the core is non-empty.

Theorem 1. The core of a weighted threshold game G =
(I,{w1,...,wy},T) is non-empty if and only if there is an
agent i that is present in all winning coalitions, i.e., i €
Ny(5)=15. Moreover, if the core of G is non-empty, then the
nucleolus of G is given by x; = 1/k if i € Ny(5)=1.S and
x; = 0 otherwise, where k = |{i : i € N,(5)=15}.

Proof. The first part is straightforward, so we prove that
if the core of GG is non-empty, then the imputation x de-
scribed in the statement of the theorem is indeed the nucle-
olus of G. Let M = {i : i € Ny(g)=15}. Any impu-
tation (p1, ..., Dpn) that has p; > 0 for some ¢ ¢ M is not
in the core of G, as there exists a set S with v(S) = 1,
i ¢ S, for which we have e(p, S) < —p;. Hence, as the
nucleolus x is always in the core, it satisfies z; = 0 for
all i ¢ M. Now, consider a vector p with p; = 0 for



i € M, and suppose that p; # 1/k for some i € M.
Let j = argmin{p; | ¢ € M}. We have p; < 1/k. Let
t=|{S v(S) = 1} + {S S C I\ M}|. The
excess vectors for p and x start with ¢ zeros, followed by
p; and 1/k, respectively. Hence, the excess vector for p is
lexicographically smaller than the excess vector for x. [

Remark 2. [t is easy to check if there is a agent that is
present in all winning coalitions. Namely, for each agent
i, we check if w(I \ {i}) > T, if this is not the case,
1€ mw(S)ZTS-
Consider the following computational problems.
Name LEASTCORE.
Instance Weighted threshold game (I;w;T'), and rational
value € > 0.
Question Is the e-core of (I; w;T") non-empty?
The smallest € for which (G,¢€) is a “yes”-instance of
LEASTCORE corresponds to the least core of G.

Name IN-LEASTCORE.
Instance Weighted threshold game (I;w;7'), imputation

p.
Question Is p in the least core of (I; w;T)?

Name CONSTRUCT-LEASTCORE.
Instance Weighted threshold game (I; w; T).
Output An imputation p in the least core of (I; w;T).

We now show that the problems LEASTCORE, IN-
LEASTCORE, and CONSTRUCT-LEASTCORE are NP-hard.
We reduce from the well-known NP-complete PARTITION
problem, in which we are given positive integers a1, . . ., an,
such that >""" | a; = 2K, and asked whether there is a sub-
set of indices ./ such that ), ; a; = K (Garey & Johnson
1990, p.223).

Given an instance (a1, . .., ay; K) of PARTITION, let I =
{1,...,n,n 4+ 1} be a set of agents. Let G = (I;w;T)
be the welghted threshold game with T' = K, w; = a; for
i =1,...,nand w41 = K. We will use the following
lemmas

Lemma 3. For a “yes”-instance of PARTITION, the least
core of G is its 2/3-core, and any imputation q =

(q1,- - Gny1) in the least core satisfies g, +1 = 1/3.
Proof. Consider the imputation p given by p; = 57 fori =
1,...,n+1 (this is a valid imputation, as E"+11 w; = 3K).

For any set S with v(S) = 1 we have ), . qw; > K, so
Y icgPi = 1/3 and e(p, S) > —2/3; for any set S with
v(S) = 0 we have e(p, .S) > 0. We conclude that the least
core of G is contained in its 2/3-core, i.e., the least core of
G is its e-core for some € < 2/3.

On the other hand, for a “yes”-instance of PARTITION,
there are three disjoint coalitions in I that have value 1:
Sy =J,5 ={1l,...,n}\ J,and S5 = {n + 1}. Any
imputation p such that p,,41 # 1/3 has p(S;) < 1/3 for
some ¢ = 1,2,3 and hence e(p, S;) < —2/3. Hence, any
imputation q that maximizes the minimum excess satisfies
gn+1 = 1/3. Consequently, the value of e that corresponds
to the least core satisfies ¢ = 2/3, and any imputation in the
least core has ¢, +1 = 1/3. O
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Lemma 4. For a “no”-instance of PARTITION, the least
core of G is its e-core for some ¢ < 2/3 and any imputa-
tion q in the least core satisfies q,+1 > 1/3.

Wi

Proof. We will start with the imputation p; = 53+ defined in
the proof of the previous lemma, and modify it so as to en-
sure that for a new imputation p’, the excess of each coali-
tion is strictly greater than —2/3. The imputation p’ will
serve as a witness that the least core of G is its e-core for
e < 2/3. Consequently, for any imputation q in the least
core we have e(q, S) > —2/3 for any S C I. In particular,
taking S = {n + 1}, we obtain ¢,,-1 > 1/3.

The imputation p’ is defined as follows pi = pi —

GnK
fori =1,...,n, 9,1 = pny1 + GK To see that p’ is a
valid 1mputat1on note that >, p; = > ,c;pi = 1, and

/—ﬂ_L

D; > 0. Now, consider any set S’ such that

v(S) = "1 If G C {1,...,n}, as our game was constructed
from a “no”-instance of PARTITION, we have ZieS w; >
K + 1. Hence,

>

€S
Consequently, e(p’, S) > —2/3. On the other hand, if n +
1 € S, we have p/(S) > % + 5, so again e(p’,5) >
—2/3. -

=23

1 _1+1
3K 6nK ) 3 6K’
€8

Theorem S. The problems LEASTCORE, IN-LEASTCORE,
and CONSTRUCT-LEASTCORE are NP-hard.

Proof. By combining Lemmas 3 and 4, we conclude that
if we can decide whether the 2/3 — 1/(6K)-core of G =
(I;w;T) is nonempty then we can correctly solve PARTI-
TION. Also, if we can construct a solution in the least core,
we can solve PARTITION by looking at its last component
Gn+1- Finally, the imputation p, where p; = 3 K, is in the
least core if and only if the game G was constructed from
a “yes”-instance of PARTITION. Hence, correctly deciding
whether p is in the least core allows us to solve PARTITION
as well. (]

Pseudopolynomial time algorithm for the least core

The following theorem gives a pseudopolynomial time al-
gorithm for the problems CONSTRUCT-LEASTCORE, IN-
LEASTCORE and LEASTCORE. This means that all three
problems can be solved in polynomial time if the weights
are bounded (at most polynomially large in n), or (equiva-
lently) if they are represented in unary notation.

Theorem 6. If all weights are represented in unary, the
problems CONSTRUCT-LEASTCORE, IN-LEASTCORE and
LEASTCORE are in P.

Proof. Consider the following linear program:

max (|
i+ +pn=1
p; >0foralli=1,...,n

> pi > Cforall J C I'suchthat Y w; > T
e

1)

ieJ



This linear program attempts to maximize the minimum ex-
cess by computing the greatest lower bound C' on the pay-
ment to each winning coalition (i.e., a coalition whose total
weight is at least T"). Any solution to this linear program is
a vector of the form (p1, ..., p,, C); clearly, the imputation
(p1,-..,pn) is in the least core, which coincides with the
(1 = C)-core.

Unfortunately, the size of this linear program may be ex-
ponential in n, as there is a constraint for each winning
coalition. Nevertheless, we will now show how to solve
it in time polynomial in 7 and ), _; w;, by constructing
a separation oracle for it. A separation oracle for a lin-
ear program is an algorithm that, given an alleged feasible
solution, checks whether it is indeed feasible, and if not,
outputs a violated constraint (Schrijver 2003). It is known
that a linear program can be solved in polynomial time as
long as it has a polynomial-time separation oracle. In our
case, this means that we need an algorithm that given a pair
((p1,-.-,pn),C), checks if there is a winning coalition J
such that >, ; p; < C.

To construct the separation oracle, we will use dynamic
programming to determine P, = minp(J) over all win-
ning coalitions J. If Py < (|, then the constraint that
corresponds to argmin,,y>p p(J) is violated. Let W =
Yierwi. Fork = 1,....nand w = 1,...,W, let
Tpw = min{p(J) | J C {1,...,k},w(J) = w}. Clearly,
we have Py = miny,—r,.._ w Tn . It remains to show how
to compute xy,,,,. For k = 1, we have z1 , = p1 if w = w4
and z1,, = 400 otherwise. Now, suppose we have com-
puted xy, ., for all w = 1,...,W. Then we can compute
Tht1,w a8 MIN{Tk 1, Pk+1 + Thw—uwy, ;- The running time
of this algorithm is polynomial in n and W, i.e., in the size
of the input.

Now, consider the application of the linear program for a
weighted threshold game G = (I; w;T'). The constructed
imputation p is a solution for CONSTRUCT-LEASTCORE
with instance G. Also, the solution to LEASTCORE with
instance G, € should be “yes” iff ¢ = C' — 1. The solution
to IN-LEASTCORE with instance G, p’ should be “yes” if
and only if every winning coalition S C I has p’(S) > C.
This can be checked in polynomial time using the separation
oracle from the proof of Theorem 6.

Approximation scheme for the least core

In this section, we show that the pseudopolynomial algo-
rithm of the previous section can be converted into an ap-
proximation scheme. More precisely, we construct an algo-
rithm that, given a game G = (I; w;T) and a d > 0, outputs
¢’ such that if the least core of G is equal to its e-core then
e < ¢ < e+ 24. The running time of our algorithm is
polynomial in the size of the input as well as 1/4, i.e., it is
a fully polynomial additive approximation scheme. Subse-
quently, we show that it can be modified into a fully polyno-
mial multiplicative approximation scheme (FPTAS), i.e., an
algorithm that outputs € satisfying e < € < (1 + d)e.
Consider the linear program (1) in which C' is some fixed
integer multiple of § and the goal is to find a feasible solution
for this value of C or report than none exists. It is known that
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problems of this type can be solved in polynomial time as
long as they have a polynomial-time separation oracle. We
will describe a subroutine A that, given C, either outputs a
feasible solution p for C' — § or correctly solves the problem
for C. Our algorithm runs A for C = 0,6,24,...,1 and
outputs ¢ = 1 — C’, where C is the maximum value of C
for which A finds a feasible solution.

Clearly, we have ¢ < 1 — C’. Now, let C* = 1 — € be
the optimal solution to the original linear program and let
k* = max{k | kd < C*}. As k*§ < C*, there is a feasible
solution for k*0. When A is given k*4, it either solves the
linear program correctly, i.e., finds a feasible solution for
k*4, or finds a feasible solution for £*§ — 4. In any case, we
have C' > (k* — 1)§ > C* — 26,ie.,1 — C" < e+ 2.

It remains to describe the subroutine A. Given a C' = k9§,
it attempts to solve the linear program using the ellipsoid
method. However, whenever the ellipsoid method calls the
separation oracle for some payoff vector p, we simulate it
as follows. We set 6’ = §/n and round down p to the near-
est multiple of ', i.e., set p; = max{jd’ | jo' < p;}. We
have 0 < p; — p, < ¢'. Let x;; = max{w(J) | J C
{1,...,73},p'(J) = i¢'}. The values x; ; are easy to com-
pute by dynamic programming. Consider U = max{x; ,, |
i=1,...,(k—1)n— 1}. This is the maximum weight of a
coalition whose total payoff under p’ is at most ¢ — & — §’.
Since payments increment by ¢’ this is the maximum weight
of a coalition whose total payoff is less than C' — §. If
U < T, the payoff to each winning coalition under p’ is
at least C' — ¢; as p; > p}, the same is true for p. Hence, p
is a feasible solution for C' — 4, so A outputs p and stops.

If U > T, there exists a winning coalition J such that
p'(J) < C — ¢ and hence p(J) < C; moreover, this .J can
be found using standard dynamic programming techniques.
This means that that we have found a violated constraint, i.e.,
successfully simulated the separation oracle and can con-
tinue with the ellipsoid method.

Remark 7. It is easy to verify that if the least core of G =
(I;w;T) is its e-core, then we have € > 1/|I|. This means
that the algorithm described above can be converted into an
FPTAS; we omit the details.

The Nucleolus

Consider the following computational problems:

Name NUCLEOLUS.
Instance Weighted threshold game (I; w;T), agenti € I.
Output The nucleolus payoff of agent ¢ in (I; w; 7).

Name ISZERO-NUCLEOLUS.

Instance Weighted threshold game (I;w;T), agenti € I.

Question Is the nucleolus payoff of agent ¢ in (I;w;T)
equal to 0?

We will show that ISZERO-NUCLEOLUS is NP-hard.
Clearly, this implies that NUCLEOLUS is NP-hard as well.
We start with the following lemma.

Lemma 8. For weighted threshold games, if the Shapley
value of a agent is 0, his nucleolus payoff is 0 as well, i.e.,
¢(i) = 0 implies x; = 0.



Proof. For the Shapley value of a agent ¢ to be 0, it has to
be the case that v(S) = v(S U {i}) for all S C I. Now,
suppose that ¢(i) = 0, but z; # 0, and consider the excess
vector for x. Let e(x, S) be the first element of this vector;
clearly, v(S) = 1. It is easy to see that i ¢ S: otherwise,
we would have v(S \ {i}) = 1 and moreover, (S \ {i}) =
x(S) — x; < z(S). Now, consider an imputation g given
by g = %, q = x; + ﬁ for j # 4. For any non-
empty coalition T' such that ¢ ¢ T we have ¢(T) > z(T).
Moreover, as g; # 0, using the same argument as for x, we
conclude that the first element of the excess vector e(q, T")
satisfies ¢ ¢ T'. Hence,

e(q,T) = q(T)—v(T) > x(T)—v(T) = e(x,T) = e(x, 5)

a contradiction with the definition of the nucleolus. O

Remark 9. The converse of Lemma 8 is not true. Consider
the coalitional game with I = {1,2,3}, w = {3, 1, 1} and
T = %. Winning coalitions are those that contain agent 1
and at least one of agents 2 and 3. The Shapley value ¢(3) is
positive because there is a positive coalition from the coali-
tion S = {1, 3} (see the definition of ¢). However, by Theo-

rem 1, the nucleolus payoff x3 = 0.

Theorem 10. The problem ISZERO-NUCLEOLUS is NP-
hard.

Proof. As in the proof of Theorem 5, we construct a
weighted threshold game based on an instance of PARTI-
TION. Given an instance A = (a1, ..., a,; K) of PARTI-
TION, let G = (I;w;T) be the weighted threshold game
with I = {1,...,n,n+1},T = K 4+ 1, wy41 = 1, and
w; = a; fori = 1,...,n. We will show that x,, 1 # 0 if
and only if A is a “yes”-instance of PARTITION.

Suppose first that A is a “no”-instance of PARTITION.
Consider any winning coalition S C I suchthatn 4+ 1 € S.
We have w(S) > K + 1. Moreover, if w(S) = K + 1,
then w(S \ {n+ 1}) = K, implying that there is a partition.
Hence, w(S) > K +1, or, equivalently, v(S\ {n+1}) = 1.
We conclude that the Shapley value of the (n + 1)st agent is
0. By Lemma 8, this implies z,,4+1 = 0.

Now, suppose that A is a “yes”-instance of PARTITION.
Let I' = I — {n + 1} and let J be a partition of I’ sat-
isfying w(J) = w(l’ \ J) K. Consider an imputa-
tion p with p,y; = 0. The sets 1 = J U {n + 1} and
Sy = (I'\ J) U {n + 1} satisfy v(S1) = v(S2) = 1. As
Pn+1 = 0, we have p(S1) + p(52) = p(J) + p(I"\ J) =1,
so min{e(p, S1), (p, S2)} < —1/2. That is, for any impu-
tation with p,,11 = 0 the minimum excess is at most —1/2.
On the other hand, under the imputation ¢; = 5774 the pay-

off of each winning coalition is at least 211?;11 > 1/2,1.e., for
this imputation the minimum excess is strictly greater than
—1/2. As we have mingcye(x,S5) > mingcye(q, S), we

conclude that z,, 1 # 0. O

Remark 11. Theorem 10 implies that the problem NUCLE-
OLUS cannot be approximated within any constant factor
unless P=NP. More formally, it is not in the complexity class
APX (Ausiello et al. 1999, p.91) unless P=NP. The same
holds for the problem of computing the Shapley value.
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Remark 12. We can use the construction in the proof of
Theorem 5 to show that NUCLEOLUS is NP-hard; however,
it does not imply the NP-hardness of ISZERO-NUCLEOLUS.
Conversely, the proof of Theorem 10 does not immediately
imply that the least core-related problems are NP-hard.
Therefore, to prove that all of our problems are NP-hard,
we need both constructions.

Remark 13. While we have proved that the problems con-
sidered in this subsection are NP-hard, it is not clear
that they are in NP. Consider, for example, 1SZERO-
NUCLEOLUS. To verify that the nucleolus payoff of an
agent i is 0, we would have to prove that there is an imputa-
tion x (the nucleolus) with x; = 0, and that any imputation
p with p; > 0 produces an excess vector that is lexicograph-
ically smaller than that of x. The latter condition involves
exponentially-long vectors.

Approximating the Nucleolus

Without loss of generality, we can assume that the sum of
the weights in a weighted threshold game is 1. We will refer
to such a game as a normalised weighted threshold game.
Note that any weighted threshold game is equivalent to some
normalised game.

For many normalised weighted threshold games consid-
ered in the literature, the vector w coincides with the nucleo-
lus. For example, consider the set C of constant-sum games.
A normalised weighted threshold game G = (I; w;T) is in
Cif,forany S C I, v(S)+v(I\S) = 1. (Peleg 1968) shows
the following. Suppose G = (I;w;T) € C. Let x be the
nucleolus for G and let G’ = (I;x;T). Then the nucleolus
of G’ is also equal to x. (Wolsey 1976) shows a simlar result
for the set C’ of symmetric games. A normalised weighted
threshold game G = (I; w; T) is in C" if T = 1/2 and there
is a coalition S with v(S) = v (I \ 5).

It is not true in general that the vector w coincides with
the nucleolus. It is also not true that w; is a good approxi-
mation to the nucleolus payoff z;. For example, in the game
considered in Remark 9 the nucleolus payment x3 is 0 but
w3y = % (so these are not related by a constant factor). The
nucleolus payment z; can also exceed w; by an arbitrary fac-
tor. For example, take an arbitrarily small 6 > 0. Consider
the game with I = {1,2},w = {1—-4,6},and T = 1—4/2.
By Theorem 1, z = (0.5,0.5) so zo = 0.5. In any case, it is
clear from Corollary 11 that w; cannot be a constant-factor
approximation to the nucleolus payment x; of an individual
agent ¢, since that would imply P=NP.

In Theorem 20 we show that, for an appropriate sense of
approximation based on coalitions rather than on individual
agents, the vector w provides a good approximation to the
nucleolus. Our result applies to a large class of weighted
threshold games. We start with a simple lower bound on
nucleolus payments.

Lemma 14. Let G = (I;w;T) be a normalised weighted
threshold game. If w(S) > T then x(S) > T.

Proof. A winning coalition S has e(w,S) = w(S) — 1 >
T — 1. The nucleolus maximizes the minimum payoff to a
winning coalition, so e(x,S) > T — landx(s) >T. O



A minimal winning coalition is a coalition S with w(S) >
T for which every proper subset S’ C S has w(S’) < T.
We will now use Lemma 14 to show that the weight of any
minimal winning coalition is at most twice its nucleolus pay-
off.

Lemma 15. Ler G = (I;w;T) be a normalised weighted
threshold game. Suppose that every agent i € I has w; <
T. Let S C I be a minimal winning coalition in G. Then
w(S) < 2z(5).

Proof. Let i be an agent in S. Since S is minimal, w(S \
{i}) < T.Sow(S) < T4+w; < 2T. The result now follows
from Lemma 14. (|

We do not know whether there is a value a such ev-
ery minimal winning coalition S of a normalised weighted
threshold game satisfies z(S) < aw(S). However, it is easy
to see that this is true with o = 2if T' > 1/2 since z(5) < 1
and, for a winning coalition S, w(S) > T > 1/2. So we get
the following observation.

Observation 16. Ler G (I;w;T) be a normalised

weighted threshold game with T > 1/2. Let S C I be a
winning coalition in G. Then x(S) < 2w(S).

If T is less than 1/2 but is relatively large compared to the
individual weights, the vector w is still a good approxima-
tion to the nucleolus.

Lemma 17. Consider a normalised weighted threshold
game G = (I;w;T) that satisfies w; < €I, T > 1+ for
some € < 1. For any such game, any minimal winning coali-
tion S C I satisfies x(S) < 3w(S)

Proof. For any minimal winning coalition S, we have w(S'\
{i}) < T forany i € S,sow(S) < T +w; <T(1+e).
Now, fix a minimal winning coalition Sy. We have w(Sy) >
T, w(l \ So) > 1 —T(1+ ¢€). We can construct a col-
1-T(1+¢€)
T(1+e€)
winning coalitions in I \ S. (For example, we can construct
these coalitions consecutively by adding agents to a current
coalition one by one until the weight of the coalition under
construction becomes at least 1.) Let these coalitions be
S1,...,S5;. Lemma 14 implies z(S;) > T fori = 1,...,t.
Hence, z(Sy) < 1 —tT < 2T — +1<2T+ <% =

14e€
37 < 3w(So). O

lection of t = |

| 2 7 — 2 disjoint minimal

1+e

Remark 18. Let G = (I;w;T) be a normalised weighted
threshold game which satisfies w; < T? for every agent i €
1. Then Lemma 17 applies with e =T

Remark 19. By setting € = 1 in Lemma 17, we can obtain
that x(S) < 3w(S) for T > 1/2 with the additional restric-
tion that w; < T for all w;; considering the case T > 1/2
separately using Observation 16 gives us a stronger result.

Lemma 15, Observation 16 and Lemma 17 give us the fol-
lowing theorem. The theorem shows that, for a wide class of
normalised weighted threshold games, the weight vector w
approximates the nucleolus x in the sense that the payoff to
a minimal winning coalition only differs by at most a factor
of 3 in these two imputations.
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Theorem 20. Let G = (I;w;T') be a normalised weighted
threshold game. Suppose that every agenti € I hasw; < T.
If T > 1/2 then any minimal winning coalition S satisfies
w(8)/2 < z(S) < 2w(S). If there is an € € (0,1] such
that T > 1:—6 and every agent satisfies w; < €I then any
minimal winning coalition S satisfies w(S)/2 < x(S) <
3w(S).
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