
Enabling Domain-Awareness for a Generic Natural Language Interface

Yunyao Li‡∗ Ishan Chaudhuri‡ Huahai Yang§
‡University of Michigan
Ann Arbor, MI 48109

{yunyaol,ishanrc,baveja,jag}@umich.edu

Satinder Singh‡† H. V. Jagadish‡∗
§University at Albany, SUNY

Albany, NY 12222
hyang@albany.edu

Abstract

In this paper, we present a learning-based approach for
enabling domain-awareness for a generic natural lan-
guage interface. Our approach automatically acquires
domain knowledge from user interactions and incorpo-
rates the knowledge learned to improve the generic sys-
tem. We have embedded our approach in a generic nat-
ural language interface and evaluated the extended sys-
tem against two benchmark datasets. We found that the
performance of the original generic system can be sub-
stantially improved through automatic domain knowl-
edge extraction and incorporation. We also show that
the generic system with domain-awareness enabled by
our approach can achieve performance similar to that of
previous learning-based domain-specific systems.

Introduction
This work is intended to achieve the promise shown by
NaLIX (Natural Language Interface to XML), a generic nat-
ural language interface for an XML database (Li 2005;
2006a). NaLIX can accept an arbitrary English language
sentence as a query input. This query, which can include
complex query semantics such as aggregation, nesting, and
value joins, is then translated into an XQuery expression.
The core system has limited linguistic capabilities. When-
ever the system cannot properly translate a given query, it
sends meaningful feedback to the user and asks her to refor-
mulate the query into one that the system can understand. A
previous study (Li 2006a) has shown that such a system is al-
ready usable in practice—users can issue complex database
queries in plain English and obtain precise results back.

While generic systems like NaLIX are widely praised for
their portability—they can be universally deployed without
expensive efforts for building domain knowledge bases—
their portability also comes at a price. For instance, in
NaLIX, reformulations are often required for queries con-
taining domain-specific terms; additionally, terms with im-
portant domain semantics may simply be ignored by the
generic system, resulting in loss of accuracy.

In this paper, we describe our approach to enable domain-
awareness for such a generic natural language interface to
improve its translation accuracy and reduce the need for re-
formulation without losing its portability. Whereas much

∗Supported in part by NSF grant IIS 0438909 and NIH grants R01
LM008106 and U54 DA021519.

†Supported in part by the NSF grant CCF-0432027.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research has been done on the use of learning to build
a domain-specific natural language interface for databases
(NLIDB), we believe ours is the first attempt to extend a
generic NLIDB by automatically extracting domain knowl-
edge from user interaction without explicitly burdening the
users. Below, we briefly summarize related research, and
then describe a motivational example, followed by our ap-
proach for extracting domain knowledge from user inter-
actions and incorporating domain knowledge into a generic
system. Finally, we report on experiments that evaluate our
approach against two benchmark datasets.

Related Work
Mapping a given sentence into a structured data query or a
general logical form is a central problem in designing natural
language interface to databases (NLIDB). Extensive research
has been done on NLIDBs. A comprehensive summary of
earlier efforts is provided by (Androutsopoulos 1995). Re-
cent research in this area has focused on leveraging advances
in parsing techniques to design generic systems with easy
portability (Popescu 2003; Li 2006a). Our approach can eas-
ily be adapted by such systems to enable domain-awareness.

Previous learning-based NLIDBs (Androutsopoulos
1995), including recent efforts by Tang & Mooney (2001)
and Zettlemoyer & Collins (2005), study how to learn
the mapping from sentences to logical forms. Expensive
training is required to learn such mapping rules, making it
difficult to adapt these systems to a new domain. In contrast,
the system with domain-awareness enabled by our approach
retains the portability of the original generic system and
thus requires no domain knowledge to be used in a new
domain. Furthermore, previous systems require expensive
manual creation of training data and demand expertise in
both a specific domain and a formal query language. By
comparison, building a knowledge base using our approach
is much easier—no expertise in any formal query language
is required: query pairs can easily be obtained as training
data from actual user interaction with the system. Finally,
unlike previous systems, where new training data typically
cannot be exploited without re-training of the entire system,
our approach allows incremental accumulation of the
knowledge base.

With the rise of semantic Web, growing attention has
been paid to domain-aware systems, with the focus on the
learning of ontology (Maedche & Staab 2001; Xu 2002;
Gómez-pérez & Manzano-macho 2004; Buitelaar 2005).
We view these learning approaches and our method as com-
plementary to each other: while a generic system can take

833

Table 1: Sample Types of Tokens and Marker

Type Semantic Contribution Description
Command Token(CMT) Return Clause Top main verb or wh-phrase (Quirk 1985) of parse tree, from an enum set of words and phrases

Operator Token(OT) Operator A phrase from an enum set of preposition phrases
Value Token(VT) Value A noun or noun phrase in quotation marks, a proper noun or noun phrase, or a number
Name token(NT) Basic Variable A non-VT noun or noun phrase

Connection Marker(CM) Connect two related tokens A preposition from an enumerated set, or non-token main verb
Modifier Marker(MM) Distinguish two NTs An adjectives as determiner or a numeral as predetermine or postdeterminer

(a) Invalid Query with a Domain-Specific Term

(b) Valid Query after Reformulation

Figure 1: Sample Iteration For Domain Knowledge Learning.

advantage of such learning methods to improve domain-
awareness through the use of ontology-based term expan-
sion, our learning approach can provide valuable training
data for these methods.

Approach
Our approach to enable domain-awareness is implemented
by extending the original NaLIX system with automatic
domain knowledge extraction and exploitation based on a
generic domain knowledge representation.

Background and Motivation
NaLIX consists of three main components for query transla-
tion: (a) given the dependency parse tree of a given English
sentence, the classifier classifies words/phrases that can be
mapped into XQuery components as tokens and those that

cannot as markers (sample types are listed in Table 1); (b)
the validator then determines whether the parse tree is one
that the system knows how to map into XQuery; if it is, (c)
the translator translates the parse tree into an XQuery ex-
pression; else, (d) the message generator sends feedback to
the user and asks for reformulation. For a more detailed de-
scription of NaLIX, the reader is referred to (Li 2006a).

NaLIX is purely generic and thus may not be able to cor-
rectly interpret terms with domain-specific semantics. Con-
sider a geographic database with information about states
and the rivers that run through their borders. Given the query
“What are the states that share a watershed with Califor-
nia?”, the system cannot properly interpret “watershed,” as
it is neither a generic term nor a term that can be found in the
database. The system then sends feedback to the user and
requests him to rephrase the query.1 The user might then
respond by submitting “What are the states where a river
of each state is the same as a river of California?”, which
contains no domain specific term.

Such an iteration results in a pair of queries with equiv-
alent semantics, where the first requires domain knowledge
and the second does not, providing a valuable opportunity
for learning new domain knowledge. Such pairs of queries
can be obtained automatically as a side effect of query re-
formulation by users. The goal of our approach is to take
advantage of such query pairs and allow the system to learn
from user actions while they are doing their normal work
and thus become more responsive to users over time.

To enable domain-awareness for NaLIX, we added the
knowledge extractor and knowledge base to extract domain
knowledge from user interactions and store the knowledge
respectively. We also added the domain adapter to deter-
mine and apply applicable domain knowledge on a classified
parse tree before sending it to the validator. The resulting
system is Domain-aware NaLIX(DaNaLIX).

Knowledge Representation
The knowledge base must capture useful domain-specific
semantics that can be used to improve query translation in
a generic NLIDB. The model for knowledge representation
needs to be generic enough to be able to capture such do-
main knowledge for any given domain. It should also be able
to exploit what the generic NLIDB can already do—mapping
domain-independent knowledge to query semantics. To do
so, we choose a simple term mapping form, which expresses
domain-specific knowledge in generic terms, over complex
semantic logical forms such as lambda-calculus (Barendregt
1984). Specifically, we represent domain knowledge as a
set of rules that can be used to transform the parse tree of
a sentence that contains terms with domain-specific seman-
tics into one that does not. The validator and translator

1Details of such feedback in NaLIX can be found in (Li 2006a).

834

Algorithm 1: ApplyRule(Node n, Rule r)

// check whether the left-hand side of
the rule matches the

// tree rooted at n
if treeMatches(r.leftSide(),n) then

// all matching conditions are
satisfied

// transform the subtree rooted at n
return transformTree(n,r.rightSide());

else
foreach child in n.children() do

// search the rest of the tree for
matches

applyRule(child,r);

can then operate on the transformed tree using only domain-
independent knowledge.

Figure 2 shows an example of transformation rules. Each
transformation rule is composed of two parts: a source tree
and a target tree. The source tree and target tree in each
rule are semantically equivalent, but the source tree contains
terms with domain-specific meanings (e.g., “watershed”),
while the target tree does not.

Figure 3 depicts the data structure of source tree nodes
in a transformation rule.2 In addition to the value and type
of its corresponding classified parse tree node, a source
tree node also contains information indicating how this
node should be matched during transformation (denoted
as matchCriteria). Each node is assigned a default
matchCriteria value based on its node type and position
in the tree. For example, the default matchCriteria value
for root node (e.g., the node labeled as [CMT] in Figure 2(a))
in the transformation rule is byType.

In this paper, we only consider domain knowledge in the
form of pairwise equivalence that can improve the domain-
awareness for the generic NLIDB. Other forms of domain
knowledge (e.g., is-a-part-of relationship), although useful
in generating suitable query relaxation, are not considered,
because issues related to such domain knowledge are uni-
versal regardless of whether a query is written in English or
in a formal database language. In addition, one may argue
that a better representation for pairwise equivalence (e.g.,
A ⇒ B and A ⇒ C) is in the form of a set of equivalences
(e.g., eq(A,B, C)). While such an argument may be true in
theory, the simple pairwise representation is more suitable
for enabling domain-awareness of a generic NLIDB. First,
knowing A ⇒ B and A ⇒ C is already adequate to allow
the system to correctly interpret A; knowing B ⇒ C will
not contribute to the translation. More importantly, since
in our approach rules are incrementally learned from user
interactions, it is unlikely that A ⇒ B and A ⇒ C will
coexist—once A ⇒ B is created, it will be applied for any
later queries and thus A ⇒ C will not be created unless B
and C are not deemed as equivalent by different users.

Domain Knowledge Learning
Algorithm 2 shows how we extract domain knowledge from
user interaction with the system. Consider a pair of queries
in the form of classified parse trees (denoted as S and T
respectively), where S is the parse tree of a query that the

2The data structure for target tree nodes is the same as that for clas-
sified parse tree nodes.

(a) Visualization

(b) Shorthand Representation

Figure 2: Sample Transformation Rule.
Symbol ⇒ stands for “transform into.” return and equal in (b) correspond to

[CMT] and (is, same as) in (a) respectively; [id0] in (b) corresponds to [VT] in (a);

markers such as the, a in (a) are not included in (b) for the purpose of presentation.

Figure 3: Data Structure of Source Tree Nodes in a Transforma-
tion Rule. The hollow triangle shape indicates inheritance relationship between the
two types of nodes.

system was unable to process without domain knowledge,
and T is the parse tree for the query that requires no domain
knowledge to be correctly translated. Our algorithm begins
with the roots of the parse trees: s (root of S) and t (root of
T). We then recursively traverse these two trees in parallel
starting from the roots. Two nodes for each tree are consid-
ered equivalent if their parents are equivalent, and each of
their corresponding children have the same type and value.
If two nodes from S and T are found to be not equivalent, we
create a new rule, denoted rule, and add these two nodes to
it. We then add nodes3 in the subtrees of these nodes to rule.
The creation of rule does not stop until we have found two
nodes with identical types, values and subtrees4 or we have
already traversed the entire subtrees. The algorithm contin-
ues to traverse the tree until all pairs of non-equivalent nodes
have been found. Multiple rules may be found for a given

3Whenever a node added to the source tree of the rule, it is automati-
cally assigned a default matchCriteria value based on its type
and position in the source tree. Details are omitted for simplicity.

4Nodes with subtrees composed solely of markers, such as “the” or
“a,” are not considered for stop condition.

835

Algorithm 2: ExtractKnowledge(Node s,Node t)

// addSubtreesToRule(s,t) recursively adds
nodes from

// the subtrees rooted at s and t until
nodes with identical

// subtrees are found

// Learn a rule if the children do not
match

if isNonEquivalent(s,t) then
rule ← addSubtreesToRule(s,t);
return rule ;

else
// traverse the trees in parallel
childPairs ← (s.children(),t.children());
foreach (s,t) in childPairs do

// find non-equivalent nodes under
s and t

rules ← rules + extractKnowledge(s,t);
return rules

Figure 4: Sample Knowledge Incorporation.
The parse tree after transformation based on the rule illustrated in Figure 2.

pair of queries. Each rule maps a source tree (a partial tree
from S) to a target tree (a partial tree form T).

Figure 1 illustrates an iteration through which
DaNaLIX learns the sample rule shown in Figure 2.
We can find that the roots of the classified parse trees in
Figure 1(a) and Figure 1(b) are not equivalent, as they have
different children. Based on Algorithm 2, nodes in their
subtree are added to a rule until the stop condition is met.
In this particular case, such nodes are the last nodes of the
trees, the value tokens “California.” The two nodes are
added to the target tree and the source tree respectively,
with their matchCriteria values set to be byValue, thus
denoted as [VT] by their types in Figure 2(a). Since we have
already traversed all the nodes at this point, the algorithm
stops and returns the rule. The result is a rule that captures
the meaning of the domain-specific term “watershed” in the
context of states and rivers as shown in Figure 2.

Domain Knowledge Incorporation
Algorithm 1 presents how the domain adapter uses a rule to
transform a given query. It begins by traversing the parse

tree of the query until it finds a portion of the tree that
matches the source tree specified by the left-hand side of
the rule (based on the matchCriterias of the source tree
nodes). The domain adapter then replaces this portion of
parse tree with the target tree specified by the right-hand side
of the rule.

In our example of a geographic database, consider the fol-
lowing query submitted after the iteration illustrated in Fig-
ure 1—“What are the states that share a watershed with New
York, ordered by their population?” The domain adapter
can find that the rule (Figure 2) learned from the iteration
matches the query. One may notice that the value of [VT]
in original queries in Figure 1 is “California,” which is not
contained by the new query. Since the matchCriteria for
[VT] is byType, [VT] is still considered as matching with
“New York,” which is also a value token. The parse tree after
the transformation is shown in Figure 4.

Given a query with terms that have domain-specific mean-
ings, DaNaLIX searches the knowledge base for matching
rules. If one is found, DaNaLIX uses it to transform the origi-
nal parse tree and returns results based on the parse tree after
transformation. If more than one rule is found, a randomly
selected rule from applicable rules with the highest confi-
dence score5 is used to transform the query. The system
then informs the user about this transformation and gives
him the option of rejecting the rule used, or processing the
query with another suitable rule. The confidence score of
a rule will be decreased for rejections and increased for se-
lections. If the user does not reject the rule or attempt to
rephrase the query, the rule is considered as selected. Rules
with sufficiently low confidence score will be eliminated.

Experimental Evaluation
To evaluate the effectiveness of our approach, we con-
ducted an experiment comparing NaLIX and its domain-
aware enhancement, DaNaLIX. In addition, we compare
these systems with two notable learning-based NLIDBs,
COCKTAIL (Tang & Mooney 2001) and GENLEX (Zettle-
moyer & Collins 2005), both mapping natural language
questions to semantic representations. For our experi-
ment, we chose the datasets on which COCKTAIL and
GENLEX have previously reported results.

Methods
Data Set The experiment uses datasets from two do-
mains (Tang & Mooney 2001): Geo880, a set of 880 queries
to a database of U.S. geography, and Jobs640, a set of 640
queries to a database of job listings. Both databases are orig-
inally tagged in Prolog-style; we converted them into XML
format to be used by NaLIX and DaNaLIX.

The main goal of our experiment is to evaluate the im-
provement of DaNaLIX over NaLIX. As mentioned earlier,
NaLIX only accepts queries satisfying a specific grammar
derived from XQuery semantics. For instance, NaLIX re-
quires a query to explicitly specify the object(s) to be re-
turned. A query that fails to do so (e.g., a yes/no question)
will need to be rewritten. Such a reformulation demands
only grammatical changes and has been found to be rel-
atively trivial for users to do, especially with the help of
system suggestions (Li 2006b). To be able to make a fair
comparison between DaNaLIX and NaLIX, we first examined

5Every rule is initially assigned with the same default confidence
score.

836

Table 2: Sample Ambiguous Queries
• I wonder what JPL does on Unix with Prolog and Vax ?
• Prolog AI and LISP and Graphics?
• Vanity wants 5000 a month with buzzwords like Java Apple

Internet and California?

queries in the data set to ensure that queries in the experi-
ment were already NaLIX-acceptable; for those that are not,
we manually made the necessary grammatical changes.

Our learning algorithm requires pairs of semantically
equivalent natural language queries as input for rule ex-
traction. Both Geo880 and Jobs640 provide only Eng-
lish queries and their corresponding Prolog-style semantic
representations. To create training data for DaNaLIX, se-
mantic representation of queries in the datasets were con-
verted into equivalent natural language queries that can be
correctly translated by NaLIX. To reduce the bias resulted
from one person’s natural language formulation, the datasets
were randomly divided in half, and each half was assigned
to a student involved in this project for independent conver-
sion. The converted queries were randomly mixed up, and
paired with their corresponding original queries. Each such
pair of queries was then used as either a training sample or
test data in the experiment.

Eight queries in the Jobs640 dataset are highly am-
biguous, as can be seen from the samples listed in Table 2:
these queries are excluded from our experiment. Addition-
ally, NaLIX does not support mathematical calculations. As
such, we changed any query requiring mathematical calcu-
lation into one that returns the needed information for the
calculation. For example, the query “What is the density of
Texas?” is changed into “What is the population and area
of Texas?”, where density = population/area. Queries
asking for aggregated information over the results of calcu-
lation, e.g., “What is the state with the smallest density?”,
cannot be supported without the actual calculation. Such
queries (totally 35 out of 880 from Geo880) were excluded
from our experiment.

Measurement The evaluation metrics we used
were precision and recall, defined as precision =

correct queries
total # parsed queries and recall = # correct query

total # queries .

A correct query is one that is translated into a completely
correct XQuery expression by NaLIX or DaNaLIX with se-
mantic equivalent to the original natural language query (or
other equivalent representations used by previous systems).

Training Data To make a direct comparison with previ-
ous systems, it is important to choose a training data set
with a size similar to those used previously. COCKTAIL
conducted ten-fold cross validation of the entire data set,
while GENLEX made an explicit split between training and
test data sets, with nearly 70% of Geo880 and 80% of
Jobs640 queries used for training. Similar to GENLEX,
we made an explicit split between training and test data
sets: 85% of the queries in each data set were randomly
chosen as training data, with the remaining queries as test
data. It is important to realize that although our training
data sets appear slightly larger than those used by GENLEX,
the number of examples that can be utilized by our learn-
ing algorithm is actually smaller—a significant portion of
queries in the training set do not contribute to new rules,
since they can already be correctly translated by the system
without domain knowledge. For example, the training data

in Geo880 contains only 470 useful examples for DaNaLIX,
whereas GENLEX used 600 training examples.

Procedure We first extracted a collection of rules from the
training data sets of each domain. Next, for test data in
each domain, we translated queries in the test data into
XQuery expressions using DaNaLIX with an empty knowl-
edge base (equivalent to running NaLIX). We then ran
DaNaLIX again after loading the rules obtained from the
training data. The XQuery expressions generated in each
run were then recorded and manually examined for correct-
ness. No ontology-based term expansion was used.

Results
Table 3 presents our experiment results. As can be seen,
the learning and incorporation of domain knowledge in
DaNaLIX has successfully improved recall over NaLIX on
both datasets, with the recall increased from less than 70% to
over 80%. In particular, the recall for queries on Geo880 has
been substantially increased by 129.8%. Such a remarkable
improvement of DaNaLIX over NaLIX is not surprising—
semantics of queries in Geo880 often rely on terms with
domain-specific meanings; a purely generic system like
NaLIX simply cannot correctly interpret such terms. This re-
sult demonstrates that our approach can be especially useful
in domains with rich domain-specific knowledge. For do-
mains with less domain-specific knowledge, our approach
still improves the system performance. For instance, jobs
postings typically do not involve much domain knowledge.
However, DaNaLIX still made an evident improvement of
19.63% on Jobs640.

Table 3 shows a slight decrease in precision in DaNaLIX.
The small reduction in precision can mainly be attributed to
two factors. First, both rule extraction and learning rely on
dependency parse trees obtained from MINIPAR (Lin 1998),
the dependency parser used by NaLIX. Like any other exist-
ing parser, MINIPAR may generate imperfect results,6 lead-
ing to issues in both rule extraction and matching. Sec-
ond, in our experiment, nodes in all the rules keep their
default matchCriteria values assigned at rule creation
time. The default matchCriteria values may cause a
rule to be too general or too restrictive, resulting in er-
rors in rule matching. In fact, in our experiment we found
that a single rule extracted from the query pair for “Find
the states with the most cities”— “[id0](the most) ⇒
max(count)([id0])”—has led to nearly 80% of the
false positives in rule matching on Geo880. The default
matchCriteria for [id0] is byType. As a result, this rule
was wrongly matched with queries such as “What is the
cities with the most people?” as both “cities” and “people”
are of the same type (name token).

Table 3 also reports performance of GENLEX and
COCKTAIL. When comparing the results, it is impor-
tant to note that the comparison is not really about
whether DaNaLIX can outperform the previous learning-
based domain-specific systems, but to examine whether a
generic system enhanced with domain-awareness using our
approach can achieve performance similar to that of domain-
specific systems. Since systems based on our approach are
easily portable and require much lower manual effort in cre-
ating training data compared to previous domain-specific
systems, we would be happy if DaNaLIX could achieve com-

6Minipar achieves about 88% precision and 80% recall with respect
to dependency relations with the SUSANNE Corpus.

837

Table 3: Experimental results for NaLIX, DaNaLIX and pre-
vious systems.

Geo880 Jobs640
P R P R

NaLIX 97.87 35.07 100.00 68.75
DaNaLIX 89.85 80.60 98.71 81.25
GENLEX 96.25 79.29 97.36 79.29
COCKTAIL 89.92 79.40 93.25 79.84

P: Precision (%); R: Recall (%)

Figure 5: Example Rules Learned In Our Experiment.
Symbol ⇒ stands for “transform into.”

parable performance. We were thrilled to find that DaNaLIX,
a generic system with enhancement of domain knowledge
learning and incorporation, actually achieves higher recall
than GENLEX and COCKTAIL on both datasets and higher
precision than both systems on Jobs640, with only a small
reduction in precision on Geo880, mainly due to the same
over-general rule noted earlier.

Figure 5 gives a sample list of domain knowledge rules
that have been learned and applied by DaNaLIX in our ex-
periment. We can see that these rules contribute important
domain knowledge for the system to correctly interpret the
corresponding queries. Furthermore, these rules are well
generalized to be applicable to unseen queries.

Discussion
In our experiment, a query was sometimes matched with
multiple rules. The existence of such conflicting rules was
not accidental. It actually reflects several interesting issues
worth further exploration. First, conflicting rules can result
from ambiguous terms. For instance, we found more than
one rule for the query “Give me the largest state.” One of
the rules maps the query into “Give me the state with the
largest population,” while another transforms it into “Give
me the state with the largest size.” Both transformations
may be considered correct, depending on the actual user
needs. Second, conflicting rules may also be caused by the
matchCriteria value of a node being overly general. For
example, for the same query just noted, a matching rule ob-
tained from “What is the largest river?” is found to match
the query, and maps the query into “Give me the state with
the largest length,” resulting in a query with incorrect se-
mantics. Exploring techniques to address the above issues
related to conflicting rules is an important area for future
work. One interesting direction is to investigate how the
matchCriteria for different nodes in each rule can be in-
crementally updated based on the statistics of the rule col-
lection in the knowledge base to reduce the number of rules
that are too general or too restrictive.

We have already mentioned that the imperfect results
given by the parser may cause difficulties in both rule learn-
ing and matching. Even simple grammatical changes, such

as adding or removing a modifier, may yield two dramati-
cally different parse trees. Learning from such a pair of parse
trees often results in a fairly narrow rule, which essentially
requires the matching of the entire parse tree. Since such
changes are commonly found in our training data, many
rules learned are too narrow to be useful. In future work,
we plan to investigate how to make our learning algorithm
robust against such parser idiosyncrasies.

Conclusion
We have presented an approach to build a domain-aware
natural language interface for querying databases with a
generic framework. We extended the framework of an ex-
isting generic natural language interface for querying XML
to allow domain knowledge extraction and incorporation.
A key element of our approach is to automatically obtain
domain knowledge from user interactions. This feature al-
lows a generic NLIDB to directly take advantage of the user
traffic—users of the same system can benefit from each
other, by contributing to the knowledge base of the system
while doing their normal work. Our experimental results
demonstrate that such a system can improve search perfor-
mance across different domains, with an especially signifi-
cant advantage in domains with rich domain-specific knowl-
edge such as geography, biology, and health care.

References
Androutsopoulos, I. el al. 1995. Natural language inter-
faces to databases — an introduction. Journal of Language
Engineering 1(1):29–81.
Barendregt, H. 1984. The lambda calculus, its syntax and
semantics. North-Holland.
Buitelaar, P. el al., ed. 2005. Ontology Learning from Text:
Methods, Evaluation and Applications. Amsterdam, The
Netherlands: IOS Press.
Gómez-pérez, A., and Manzano-macho, D. 2004. An
overview of methods and tools for ontology learning from
texts. The Knowledge Engineering Review 19:187–212.
Li, Y. el al. 2005. NaLIX: an Interactive Natural Language
Interface for Querying XML. In SIGMOD, 900–902.
Li, Y. el al. 2006a. Constructing a Generic Natural Lan-
guage Interface for an XML Database. In EDBT, 737–754.
Li, Y. el al. 2006b. Term Disambiguation in Natural Lan-
guage Query for XML. In FQAS, 133–146.
Lin, D. 1998. Dependency-based evaluation of MINIPAR.
In Workshop on the Evaluation of Parsing Systems.
Maedche, A., and Staab, S. 2001. Ontology learning for
the semantic web. IEEE Intelligent Systems 16(2).
Popescu, A.-M. e. 2003. Towards a theory of natural lan-
guage interfaces to databases. In IUI, 149–157.
Quirk, R. el al. 1985. A Comprehensive Grammar of the
English Language. London: Longman.
Tang, L. R., and Mooney, R. J. 2001. Using multiple clause
constructors in inductive logic programming for semantic
parsing. In ECML, 149–157.
Xu, F. el al. 2002. A domain adaptive approach to auto-
matic acquisition of domain relevant terms and their rela-
tions with bootstrapping. In LREC.
Zettlemoyer, L. S., and Collins, M. 2005. Learning to map
sentences to logical form: Structured classification with
probabilistic categorial grammars. In UAI, 658–666.

838

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

