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Abstract

An important application area of detecting erroneous sen-
tences is to provide feedback for writers of English as a Sec-
ond Language. This problem is difficult since both erroneous
and correct sentences are diversified. In this paper, we pro-
pose a novel approach to identifying erroneous sentences. We
first mine labeled tree patterns and sequential patterns to char-
acterize both erroneous and correct sentences. Then the dis-
covered patterns are utilized in two ways to distinguish cor-
rect sentences from erroneous sentences: (1) the patterns are
transformed into sentence features for existing classification
models, e.g., SVM; (2) the patterns are used to build a rule-
based classification model. Experimental results show that
both techniques are promising while the second technique
outperforms the first approach. Moreover, the classification
model in the second proposal is easy to understand, and we
can provide intuitive explanation for classification results.

Introduction

For writers of English as a Second Language (ESL), tools
capable of automatically detecting errors in their writing
are useful and desirable. Moreover, detecting erroneous
sentences is also useful in controlling the quality of paral-
lel bilingual sentences mined from the Web, and evaluat-
ing machine translation results (Corston-Oliver, Gamon, &
Brockett 2001; Gamon, Aue, & Smets 2005). Unfortunately,
this problem is hard, despite its importance, since ESL writ-
ers of different first-language backgrounds and skill levels
may make various errors which are difficult to character-
ize. There has been little progress in the area over the last
decade (Brockett, Dolan, & Gamon 2006).

The common mistakes (Yukio et al., 2001; Gui and Yang,
2003) made by ESL learners include spelling, lexical collo-
cation, sentence structure, tense, agreement, verb formation,
wrong Part-Of-Speech (POS), article usage, etc. Research
into error detection for ESL writers remains largely focused
on certain kinds of grammar errors, including tense, agree-
ment, verb formation, article usage, etc. There has been little
work on detecting general grammatical errors (but not some
pre-defined types of errors) with the exception of commer-
cial grammar checker tools. However commercial tools are
usually not geared to meet the needs of ESL writers. For ex-
ample, the Grammar checker provided by Microsoft Word
is designed primarily with native writers in mind and often
fails to identify the mistakes made by ESL writers, e.g. Mi-
crosoft Word cannot detect the sentence structure error in

∗Work done while the author was a visiting student at MSRA
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the sentence “Only if my teacher has given permission, I am
allowed to enter this room.”

Some methods of detecting erroneous sentences are based
on manual rules. These methods (Heidorn 2000; Michaud,
McCoy, & Pennington 2000; Bender et al. 2004) have been
shown to be effective in detecting certain kinds of grammat-
ical errors in the writing of English learners. However, it
could be expensive to write rules manually. Linguistic ex-
perts are needed to write rules of high quality; Also, it is
difficult to produce and maintain a large number of non-
conflicting rules to cover a wide range of grammatical errors
for ESL writers with different first-language backgrounds.
Worse still, it is hard to write rules for some grammatical
errors, for example, detecting errors concerning the articles
and singular plural usage (Nagata et al. 2006).

Instead of using hand-crafted rules, statistical ap-
proaches (Chodorow & Leacock 2000; Izumi et al. 2003;
Brockett, Dolan, & Gamon 2006; Nagata et al. 2006)
build statistical models to identify sentences containing er-
rors. However, existing statistical approaches focus on some
pre-defined errors and the reported results are not attrac-
tive. Moreover, these approaches, e.g., (Izumi et al. 2003;
Brockett, Dolan, & Gamon 2006) usually need errors to be
specified and tagged in the training sentences, which re-
quires expert help to be recruited.

In this paper we propose a novel approach to identifying
erroneous sentences. The basic idea of the approach is out-
lined as follows. We first generate two datasets, POS tags
of sentences and parse trees of sentences, by pre-processing
each sentence. We then mine labeled tree from parse trees
and labeled sequential patterns from POS tags, respectively,
for both erroneous sentences and correct sentences. The dis-
covered patterns are used in two fashions to build classifica-
tion models. (1) They are used as features for existing learn-
ing models; and (2) They are used to build a pattern based
classifier. The problem of using sequential patterns and tree
patterns for classification remains largely unexplored while
there are a host of studies on leveraging association rules for
classification, e.g. (Liu, Hsu, & Ma 1998).

We make the following main contributions in this paper.

• We propose two approaches to employing labeled tree
patterns (LTPs) and labeled sequential patterns(LSPs) to
build learning models for error detection: (1) patterns are
converted into features for existing classification models,
including SVM and NB; (2) we develop a new pattern-
based classification (PBC) model.

• We define the most significant k (to be explained) la-
beled tree patterns and labeled sequential patterns for
each training sentence, and develop algorithms for min-
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ing them to build classification models.

• We evaluate our methods on two datasets consisting
of sentences written by Japanese and Chinese, respec-
tively. Experimental results show that our proposed tech-
niques are promising. Our method outperforms Microsoft
Word03 and ALEK (Chodorow & Leacock 2000) from
Educational Testing Service (ETS) on the data that we
tested. Experimental results also show that pattern based
classification method outperforms NB and SVM using
our discovered patterns as features. Moreover, the pattern
based classification method can provide intuitive expla-
nation for classification results while it is hard to derive
explanation for SVM results, and thus can provide feed-
back on the specific errors in erroneous sentences.

The rest of this paper is organized as follows. The next
section discusses related work. Section 3 presents the pro-
posed technique. We evaluate our proposed technique in
Section 4. Section 5 concludes this paper and discusses fu-
ture work.

Related Work

Research on detecting erroneous sentences can be classified
into two categories. The first category makes use of hand-
crafted rules, e.g., template rules (Heidorn 2000) and mal-
rules in context-free grammars (Michaud, McCoy, & Pen-
nington 2000; Bender et al. 2004). As discussed in Sec-
tion 1, manual rule based methods have some shortcomings.

The second category uses statistical techniques to detect
erroneous sentences. An unsupervised method (Chodorow
& Leacock 2000) is employed to detect grammatical
errors by inferring negative evidence from TOEFL ad-
ministrated by ETS. The method (Izumi et al. 2003)
aims to detect omission-type and replacement-type errors.
Transformation-based leaning is employed in (Shi & Zhou
2005) to learn rules to detect errors for speech recognition
outputs. They also require specifying error tags that can
tell the specific errors and their corrections in the training
corpus. The phrasal Statistical Machine Translation (SMT)
technique is employed to identify and correct writing er-
rors (Brockett, Dolan, & Gamon 2006). This method must
collect a large number of parallel corpora (pairs of erroneous
sentences and their corrections) and performance depends
on SMT techniques that are not yet mature. The work in (Na-
gata et al. 2006) focuses on a type of error, namely mass vs.
count nouns. In contrast to these statistical methods, our
technique needs neither errors tagged nor parallel corpora,
and is not limited to a specific type of grammatical error.

There are also studies on automatic essay scoring at
document-level. For example, E-rater (Burstein et al. 1998),
developed by the ETS, and Intelligent Essay Assessor (Foltz,
Laham, & Landauer 1999). The evaluation criteria for docu-
ments are different from those for sentences. A document is
evaluated mainly by its organization, topic, diversity of vo-
cabulary, and grammar while a sentence is done by grammar
and lexical choice.

In our preliminary work (Sun et al. 2007), we investi-
gate using labeled sequential patterns mined from POS tags

of sentences as features for SVM to detect erroneous sen-
tences; our results show that labeled sequential patterns are
more effective than other features, e.g. lexical collocation,
syntactic score etc. This paper extends the work (Sun et
al. 2007) in three aspects: 1) we use both labeled tree pat-
terns and sequential patterns to build classification models to
detect erroneous sentences. 2) we impose constraints when
mining sequential patterns, which enable us to mine more
meaningful and robust patterns for classification. 3) we build
pattern-based classification models.

There is little work making use of sequential patterns and
tree patterns for classification. To our knowledge, sequen-
tial patterns are used to identify comparative sentences (Jin-
dal & Liu 2006) and tree patterns are employed to clas-
sify XML data (Zaki & Aggarwal 2003). Our pattern-based
classification approach differs from the two previous ap-
proaches in that 1) we use both tree patterns and sequential
patterns; 2)classification methods are different. Out patten-
based classification method is inspired by the RCBT classi-
fication method (Cong et al. 2005) using top-k rule groups
to classify microarray data.

Proposed Technique

This section first gives our problem statement and then
presents our proposed technique to build learning models.

Problem Statement

Given a set of training data containing correct and erro-
neous sentences, we study the problem of identifying erro-
neous/correct sentences. Unlike some previous work, our
technique requires neither that the erroneous sentences are
tagged with detailed errors, nor that the training data con-
sist of parallel pairs of sentences (an error sentence and its
correction). The erroneous sentence contains a wide range
of grammatical errors. We do not consider spelling errors in
this paper.

We address the problem by building classification models.
The main challenge is to automatically extract representative
features for both correct and erroneous sentences to build
effective classification models. We illustrate the challenge
with an example. Consider an erroneous sentence, “If Mag-
gie will go to supermarket, she will buy a bag for you.” It is
difficult for previous methods using statistical techniques to
capture such an error. For example, N-gram language model
is considered to be effective in writing evaluation (Burstein
et al. 1998; Corston-Oliver, Gamon, & Brockett 2001).
However, it becomes very expensive if N > 3 and N-grams
only consider continuous sequence of words, which is un-
able to detect the above error “if...will...will”.

We propose labeled tree patterns (LTPs) and labeled se-
quential patterns (LSPs) to effectively characterize the fea-
tures of correct and erroneous sentences. We next illustrate
the two kinds of patterns with examples.

Example 1: Consider an erroneous sentence, “A beauti-
ful dog.” A labeled tree pattern (LTP) (S(NPB)(.)) ⇒ E
(E denotes Erroneous) is contained by its syntax tree 1,

1In this paper we use nested brackets to represent tree structure.
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(S(NPB(DT)(JJ)(NN))(.)). Consider another erroneous sen-
tence, “He visit here yesterday.” Two LSPs, <he, VB>
⇒ E and <VB, yesterday> ⇒ E, where VB is POS tag
of base form verb, are contained by the sentence. �

Mining Labeled Tree Patterns

Labeled Tree Patterns (LTPs): Each sentence can be
parsed into a syntactic tree using the Collins’ Parser
Toolkit (Collins 1997). For example, sentence “Jake hit the
ball” will be parsed into S(NP)(VP(VB)(NP(DT)(NN))). We
denote each syntactic tree as t = (V, E,�), where V is
the set of labeled nodes, E the set of edges and � the set
of sibling relations. All the syntactic trees form the dataset
T . We say that a tree t1 = (V1, E1,�1) is contained in tree
t2 = (V2, E2,�2) if there exists a matching function ψ: t1
→ t2 satisfying the following conditions for any v, v1, v2

∈ t1.V1: 1) ψ preserves the parent relation, i.e., (v1, v2) ∈
E1 iff (ψ(v1), ψ(v2)) ∈ E2; 2) ψ preserves the sibling re-
lation, i.e., (v1, v2) ∈ �1 iff (ψ(v1), ψ(v2)) ∈�2; 3) ψ pre-
serves the labels, i.e., the label of v in t1 is the same with the
label of ψ(v) in t2. We also say that t2 contains t1. It is de-
noted by t1 � t2. The support of tree t, denoted by sup(t),
is the fraction of trees in database T containing t.

A labeled tree pattern tp is in the form of t⇒ c, where
t is an ordered tree and c is a class label. We say that LTP
tp1 is contained by tp2, denoted by tp1 � tp2, if tp1.t �
tp2.t and tp1.c = tp2.c. The support of LTP tp is the joint
probability of tp.t and tp.c, i.e. the fraction of the trees in T
containing tp. The confidence, denoted by conf(tp), of LSP
p is the probability of tp being true. Formally, conf(tp) =
sup(tp)
sup(tp.t) . Support is to measure the generality of tp and con-
fidence is a statement of predictive ability of tp. The higher
the confidence of a pattern is, the better it can distinguish
between correct sentences and erroneous sentences.

We say that a LTP tp1 is more significant than tp2 if
(conf(tp1) > conf(tp2)) ∨ (sup(tp1) > sup(tp2) ∧
conf(tp1) = conf(tp2)). Given a user-specified minimum
support threshold minsup, the top-k LTPs for each tree t in
T , denoted by LTP(k, t), is the most significant k LTPs in
which sup(tp) ≥ minsup, tp.t � t and there exists no LTP
tp′ such that tp′ /∈ LTP(k, t) and tp′ is more significant than
any tp in LTP(k, t). For brevity, we will use the abbreviation
TkLTPs to refer to the top k LTPs for each tree.

Example 2: Consider a tree database containing three tu-
ples t1 = (S(NP(DT)(JJ)(NNP))(VP(VBD)(PP)(.)), C), t2
= (S(NP(NNP))(VP(VBD)(NP)(PP)((IN)(NPB)(.))), C) and
t3 = (S(NP(PRP)(PRP)(NN)(.)), E). Each tuple is a pair of
tree and label, where label E denotes erroneous sentence and
label C denotes correct sentence. The corresponding trees of
the three tuples are shown in Fig 1. One example LTP is tp1,
S(NP(NNP))(VP(VBD)(PP)) ⇒ C with support 66.7% and
confidence 100%, which is contained in tuples t1 and t2. As
another example, LTP tp2, S(NP)⇒ C with support 66.7%
and confidence 66.7%. LTP tp1 is a better indication of class
C than tp2. LTP tp1 is a top-1 LTP for tuples t1 and t2.
S(NP(DT)) ⇒ C is not a top-1 LTP for tuple t1 since its sup-
port is 33.3% and confidence 100%, which is less significant
than tp1. For tuple t3 S(NP(PRP)) ⇒ E is a top-1 LTP with

Figure 1: Running Example of Parse Trees

Algorithm MineLTP(T , r, minsup, k)
Input: Database T , tree r, minimum support minsup and k.
/*Initially, T is the tree database, r is empty tree/*
Output: The TkLTPs, denoted by LTP(k, t), for each tree t in T .
1. for each tree ri generated by extending r with i, where i will be

a rightmost occurrence node of ri, we count the supports of ri

in both erroneous and correct sequences, denoted by supE(ri)
and supC(ri), respectively;

2. for each ri, /*E: Erroneous, C: Correct/*
for each t, ri � t, if LTP ri ⇒ E (or ri ⇒ C) is more
significant than LTPs in LTP(k, t),

update LTP(k, t) with the new LTP;
Let mconfE (resp. mconfC ) be the minimum confidence
for all LTP(k, t), ri � t and t is labeled with E (resp. C);
if supE(ri) (resp. supC(ri)) is larger than minsup and
further extension could generate LTPs with confidence
larger than mconfE (resp. mconfC ),

let Dri be the set of trees in D containing ri;
call MineLTP(Dri , ri, minsup, k);

Figure 2: The MineLTP Algorithm

support 33.3% and confidence 100%. �

Mining top-k LTPs of each tree (TkLTPs): One naive way
of mining TkLTPs is to first find the set P of patterns satis-
fying a user specified minimum support minsup using the
previous algorithms for mining frequent subtrees, e.g., (Zaki
& Aggarwal 2003), then for each tree t in database find the
set of patterns contained in t from P , and return the most
significant k patterns for each t. This solution is effective,
but inefficient. Instead of mining all the patterns satisfying
minsup and then finding TkLTPs for each tree, we directly
mine the final set TkLTPs for each tree. The idea is to make
use of TkLTPs to generate dynamic minimum confidences to
prune search space although we do not have user-specified
confidence threshold. We maintain the dynamic minimum
confidence by tracking the lowest confidence among the cur-
rent TkLTPs for each training tree during the mining pro-
cess. The framework of our algorithm is similar to that of
algorithm (Zaki & Aggarwal 2003): it first discovers tree
patterns of size 1 (containing 1 node), then extends them to
generate tree patterns of size 2 (containing 2 nodes), and so
on; this process continues until further extension will not
generate TkLTPs. Two effective pruning strategies are inte-
grated into the framework: 1) if a LTP does not satisfy min-
imum support constraint, any extension of this LTP cannot
have the minimum support; 2) if further extensions cannot
generate patterns with higher minimum confidence, we can
stop. We outline the algorithm MineLSP in Fig. 2. Details
are ignored due to space limitation.

927



Mining Labeled Sequential Patterns ( LSPs )

We next introduce Labeled Sequential Patterns (LSPs). The
features captured by LTPs and LSPs for erroneous (or cor-
rect) sentences may be similar. LSPs and LTPs, however,
can also be mutual complementary. We illustrate this using
several erroneous sentences. 1) Erroneous sentences that
can be captured by LSPs but not LTPs. a) Sentence “He
visit here yesterday.”contain LSP <VB, yesterday>⇒ E; b)
Sentence “He was so effect that many person know he.” con-
tains <so, NN, that>⇒ E; c) Sentence“although he likes
it, but he can’t buy it.” contains “<although, but>”⇒ E.
2) Erroneous sentences that can be captured by LTPs by
not LSPs: a) Sentence “He gives me very impress.”contains
LTP (NP(JJ)(VB)) ⇒ E; b) Sentence “Will you want to buy
them.”contains LTP (SINV(VBZ)(NPB)(.))⇒ E.

Labeled Sequential Patterns (LSPs): Let I be a set of
items and L be a set of class labels. Let D be a sequence
database in which each tuple is composed of a list of items
in I and a class label in L. We define that a sequence s1 =<
a1, ..., am > is contained in a sequence s2 =< b1, ..., bn >,
denoted by s1 � s2, if there exist integers i1, ...im such
that 1 ≤ i1 < i2 < ... < im ≤ n and aj = bij for all
j ∈ 1, ..., m. Note that it is not required that s1 appears
continuously in s2. The support of sequence s, denoted by
sup(s), is the fraction of tuples in database D containing s.

A labeled sequential pattern p is in the form of s ⇒ c,
where s is a sequence and c is a class label. We say that
LSP p1 is contained by p2, denoted by p1 � p2, if p1.s �
p2.s and p1.c = p2.c. Following the definitions of support,
confidence, significant and top-k for LTPs, we can derive the
corresponding definitions for LSPs. Due to space limitation,
we do not give them.

Generating Sequence Database: We apply Part-Of-Speech
(POS) tagger to tag each training sentence while keeping
function words2 and time words3. After the processing, each
sentence together with its label becomes a database tuple.
The function words and POS tags play important roles in
both grammars and sentence structures. In addition, the time
words are key clues in detecting errors of tense usage. We
use the method in (Sun et al. 2007) to process each sentence.
For example, after the processing, the sentence “In the past,
John was kind to his sister” is converted into “In the past,
NNP was JJ to his NN”, where the words “in”, “the”, “was”,
“to” and “his” are function words, the word “past” is time
word, and “NNP”, “JJ”, and “NN” are POS tags.

Mining TkLSPs with Constraints: The length of the dis-
covered LSPs is flexible and they can be composed of con-
tiguous or distant words/tags. To reduce generating spuri-
ous patterns, we also employ distance constraints to reduce
noisy LSPs. More specifically, the “containment” relation-
ship between two sequences is refined as follows: if two
adjacent items in a sequence s1 are function word and POS
tag, in addition to the conditions in the previous definition of
“s1 is contained in s2”, the function word and POS tags in
s2 needs to adjacent. Note that the distance between other

2http://www.marlodge.supanet.com/museum/funcword.html
3http://www.wjh.harvard.edu/%7Einquirer/Time%40.html

items is not limited, e.g. distance between function words
since two distant function words may represent meaningful
sentence structure. By following the algorithm in Fig 2, one
can derive an algorithm for mining TkLSPs.

Classification models

On one hand, the discovered LTPs and LSPs can be used as
binary features to represent the erroneous/correct sentences,
in which any learning algorithm can be used. In this paper,
support vector machine (SVM) and Naive Bayesian (NB)
classification models are employed for the purpose.

On the other hand, we also propose a pattern based clas-
sification (PBC) method using the discovered TkLTPs and
TkLSPs. We build a main classifier using the set of most sig-
nificant patterns for each training sentence. We then build k
-1 standby classifiers using the other LTPs and LSPs to clas-
sify sentences that cannot be handled by the main classifier.
Building Classifier: We next compute the set of combined
top-k patterns from TkLTPs and TkLSPs. Let TPj denote
the set of LTPs that appear as a top-j LTP in at least one of the
training sentences, and SPj denote the set of LSPs that ap-
pear as a top-j LSP in at least one of the training sentences.
According to the definition of significant, we compute the
set, P1, of combined top-1 patterns for each training sen-
tence from the set TP1 of top-1 LTPs and the set SP1 of top-
1 LSPs. Let TSP2 be ((TP1∪SP1)\P1) ∪ TP2 ∪ SP2. We
generate the top-j (j = 2, ..., k) from TSPj , where TSPj =
(TSPj−1 \Pj−1) ∪ TPj ∪ SPj , j = 3, ..., k.

We will thus have k sets of patterns P1,...,Pk. The k sets
of patterns are used to build k classifiers CL1,...,CLk with
CLj being built from Pj . We call CL1 the main classi-
fier and CL2,...,CLk standby classifiers. Besides main and
standby classifiers, we set a default class if none of them can
classify a sentence. This default class is set as the majority
class of the remaining training data.
Prediction: Given a test data t, we will go through CL1 to
CLk in that order to see if t can be handled by any of these
classifiers. The first classifier that has matching rules for t
will determine its class. If the test data cannot be handled by
any of the classifiers, then the default class will be used for
the prediction.

PBC matches a test sentence with all patterns of an indi-
vidual classifier (the main classifier or individual standby
classifiers) and makes a decision by aggregating voting
scores. We use a voting score for a pattern p with class label
ci by considering both confidence and support as follows:

S(p) = conf(p) ∗ sup(p) ∗ |D|/dci ,

where dci is the number of training sentences of the class
ci and |D| is the total number of training sentences. Note
that 0 ≤ S(p) ≤ 1. By summing up the scores of all pat-
terns in each class ci, we get a score Sci

norm for normalization
purpose. Given a test sentence t, we suppose that t satisfies
the following mi patterns of class ci: p(t)1, ..., p(t)mi . The
classification score of class ci for test t is calculated as:

Score(t)ci = (
∑mi

i=1 S(p(t)i))/Sci
norm.

We make a prediction for test t with the highest classifi-
cation score.
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Dataset Type Source Number

JC
(+) the Japan Times newspaper

and Model English Essay
16,857

(-)
HEL (Hiroshima English
Learners’ Corpus) and JLE
(Japanese Learners of En-
glish Corpus)

17,301

CC
(+) the 21st Century newspaper 3,200

(-)
CLEC (Chinese Learner Er-
ror Corpus) 3,199

Table 1: Corpora ((+): correct; (-): erroneous)

Experimental Evaluation

Experimental Setup

Classification Methods: One method is the pattern based
classifier (PBC). The other two classification models are
SVM4 and NB. For SVM, we vary the linear kernel and
polynomial kernel and report the better results.
Data: We collect two datasets from different domains,
Japanese Corpus (JC) and Chinese Corpus (CC). Table 1
gives the details of our corpora. Note that our data does
not consist of parallel pairs of sentences (one error sentence
and its correction). The erroneous sentences include a wide
range of grammatical errors, but not spelling errors.

We mine TkLTPs and TkLSPs for each sentence. We em-
pirically set minimum support at 0.1% and k at 3.
Metrics: We report the overall accuracy. To show the clas-
sification performance for both classes, we also report the
precision, recall, and F-score for correct and er-
roneous sentences, respectively.

Experimental Results

The Effectiveness of Classification Methods: The exper-
iment is to evaluate three classification methods, pattern-
based classification (PBC), SVM and NB. The discovered
SkLTPs, SkLSPs, and their combination are used as features,
respectively. The experimental results are obtained through
10-fold cross-validation, and are given in Table 2. We can
see that the performance of PBC is consistently better than
NB and is comparable with SVM. When both SkLTPs and
SkLSPs are employed, PBC performs better than SVM.

In addition, the complexity together with the distance
model of SVM is much more complicated than PBC clas-
sifier and it is hard to derive understandable explanation of
any decision made by SVM. This limits the practical use of
SVM in erroneous/correct sentences. In contrast, the PBC
classifier is very intuitive and easy to understand. The dis-
covered LTPs and LSPs themselves are intuitive and mean-
ingful, and characterize significant linguistic features. We
discovered 18,367 LTPs in JC data and 12,186 LTPs in CC
data; we discovered 26,309 LSPs in JC data and 16,295 LSPs
in CC data.

We next give some examples of discovered LTPs. 1)
Erroneous labels: a) (VP(VB)(ADJP)(NP) (verb phrase
containing verb, adjective phrase and noun phrase)
with support 0.178% and confidence 94.12%, and b)
(S(NPB(ADJP(JJR)))) (sentence containing a base noun

4http://svmlight.joachims.org/

phrase containing adjective phrase containing compara-
tive adjective) with support 0.243% and confidence 100%;
2) Correct labels: a) (S(NP(NNP))(VP(VBD)(ADVP)))
with support 0.434% and confidence 100%, and b)
(VP(VBG)(NPB(DT)(JJ)(NN))) with support 0.815% and
confidence 85.71%.

We also give some examples of discovered LSPs. 1) Erro-
neous labels: a) <a, NNS> (a + plural noun) with support
0.39% and confidence 85.71%, b) <to, VBD> (to + past
tense format) with support 0.11% and confidence 84.21%,
and c) <the, more, the, JJ> (the more + the + base form
of adjective) with support 0.19% and confidence 0.93%; 2)
Correct labels: a) <NN, VBZ> (singular or mass noun +
the 3rd person singular present format) with support 2.29%
and confidence 75.23%, b) <have, VBN, since> (have +
past participle format + since) with support 0.11% and con-
fidence 85.71%, and c) <one, of, NNS> (one of + plural
noun) with support 0.25% and confidence 98.91%.

Comparing with other Methods: It is difficult to find
benchmark methods to compare with our technique be-
cause, as discussed in Section 2, existing methods often re-
quire error tagged corpora or parallel corpora, or focus on
a specific type of errors. In this paper, we compare our
technique with the grammar checker of Microsoft Word03
and the ALEK (Chodorow & Leacock 2000) method used
by ETS. ALEK is used to detect inappropriate usage of
specific vocabulary words. Note that we do not consider
spelling errors. Due to space limitation, we only report the
precision, recall, F-score for erroneous sentences,
and the overall accuracy.

As can be seen from Table 3, our method outperforms the
other two methods in terms of overall accuracy, F-score, and
recall, while the three methods achieve comparable preci-
sion 5. We realize that the grammar checker of Word is a
general tool and the performance of ALEK (Chodorow &
Leacock 2000) could be improved if larger training data is
used. We find that Word and ALEK usually cannot find sen-
tence structure errors, e.g., “The more you listen to English,
the easy it becomes.” contains the discovered LSP <the,
more, the, JJ> ⇒ Error.

Cross-domain Results: To see the performance of our
method on cross-domain data from writers of different first-
language backgrounds, we use the JC dataset (resp. CC
dataset) for training while the CC dataset (resp. JC dataset)
is used as test data. The results are shown in Table 4. This
experiment shows that the performance is not as good as that
on data of the same first-language background, although it
still outperforms Word and ALEK. The reason is that the
mistakes made by Japanese and Chinese are different, thus
the learning model trained on one data does not fit very well
on the other data. Moreover, we also merge the JC dataset
and CC dataset, and conduct 10-fold cross-validation test on
the merged dataset. The result is similar to the results on
Dataset CC in Table 2.

5Similar to most classifiers, PBC can easily make a compromise
between precision and recall by setting a threshold.
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Dataset Feature Method A(%) (-)F(%) (-)R(%) (-)P(%) (+)F(%) (+)R(%) (+)P(%)

CC

TkLTP PBC 74.45 74.53 75.72 73.37 74.37 73.21 75.56
NB 70.71 71.28 72.18 70.4 70.11 69.21 71.03
SVM 73.12 68.57 58.21 83.45 76.51 88,27 67.52

TkLSP PBC 78.86 79.12 81.15 77.20 78.59 76.64 80.66
NB 74.92 74.01 71.57 76.68 75.75 78.25 73.44
SVM 77.84 79.30 85.86 73.68 76.16 70.01 83.50

TkLTP+TkLSP PBC 80.44 79.47 76.68 82.47 81.33 84.11 78.72
NB 75.01 74.59 74.00 75.18 75.43 76.01 74.86
SVM 78.55 77.33 74.12 80.84 79.64 82.87 76.66

JC

TkLTP PBC 72.24 72.67 74.76 70.69 71.79 69.78 73.93
NB 70.94 73.58 81.54 67.04 67.72 60.50 76.90
SVM 73.16 76.92 90.34 66.97 67.97 56.35 85.62

TkLSP PBC 75.12 73.83 70.83 77.11 76.30 79.35 73.48
NB 72.39 77.36 95.26 65.13 64.61 49.94 91.49
SVM 76.43 74.75 69.66 80.65 77.91 83.23 73.22

TkLTP+TkLSP PBC 77.21 79.03 86.03 73.09 75.04 83.08 68.42
NB 73.35 77.10 90.41 67.21 68.13 56.55 85.68
SVM 76.66 75.97 72.67 76.59 77.30 80.77 74.12

Table 2: The Experimental Results of three Classification Methods (A: overall accuracy; (-): erroneous sentences; (+): correct
sentences; F: F-score; R: recall; P: precision)

Dataset Method A (-)F (-)R (-)P

CC
PBC 80.44 79.47 76.68 82.47
Word 58.47 32.02 19.81 84.22
ALEK 55.21 22.83 13.42 76.36

JC
PBC 77.21 79.03 86.03 73.09
Word 58.87 33.67 21.03 84.73
ALEK 54.69 20.33 11.67 78.95

Table 3: The Comparison Results

Dataset Feature A (-)F (-)R (-)P
CC(Train)+ TkLTP 69.08 77.84 88.69 69.35
JC(Test) TkLSP 74 80.28 86.43 74.95

TkLSP+TkLTP 75.20 76.58 80.75 72.83
JC(Train)+ TkLTP 65.32 70.76 87.67 59.32
CC(Test) TkLSP 68.82 65.87 59.73 73.43

TkLSP+TkLTP 69.55 67.02 61.36 73.82

Table 4: The Cross-domain Results of PBC

Conclusions and Future Work

This paper proposed a new approach to identifying erro-
neous/correct sentences. The approach mined TkLTPs and
TkLSPs for each training sentence and used the discovered
patterns to build classification models. Empirical evaluation
on diverse data demonstrated the effectiveness of our tech-
niques.

In the future, we plan to work on providing suggested cor-
rection feedback for ESL learners. The discovered LTPs and
LSPs indicate the specific errors in the erroneous sentence.
This makes it possible for us to mine their corrections from
parallel corpora, and thus to suggest corrections.
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