
Concurrent Action Execution with Shared Fluents

Michael Buro and Alexander Kovarsky
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{mburo,kovarsky}@cs.ualberta.ca

Abstract

Concurrent action execution is important for plan-length min-
imization. However, action specifications are often limited to
avoid conflicts arising from precondition/effect interactions.
PDDL — the planning domain definition language — for
example, implements the “no moving targets” rule, which
means that no two actions can simultaneously make use of a
value if one of the two is updating the value. This rule poses
problems for resource allocation planning in which resource
values are accessed in preconditions and effects. A simple ex-
ample is construction actions that consume certain amounts
of a resource. For speeding up plan execution, we would like
to be able to dispatch several construction actions simulta-
neously. Because action preconditions depend on resource
values and action effects change them, the “no moving tar-
gets” rule does not allow concurrent execution. However, if
sufficient resources are available, executing actions simulta-
neously poses no problems. This paper addresses the problem
of deciding whether a set of actions produced by a planning
system can be executed concurrently in the presence of fluent
variables that occur in both action preconditions and effects.
We first motivate the concurrent action execution problem by
introducing a fair action scheduling algorithm for real-time
strategy (RTS) games. Then we prove that the general de-
cision problem, when restricting effects and preconditions to
polynomial time computations, is co-NP complete. There-
after, we focus on problem restrictions based on commutative
operators which allow us to specify sufficient conditions for
concurrent executability that can be checked quickly if the
number of shared fluents is small. Finally, we apply these
findings to action execution with shared resources in RTS
games.

Introduction

Planning is an important cognitive process in which steps
towards reaching a goal are laid out before we start acting.
For planning problems that involve multiple acting entities
it is preferable to schedule actions concurrently so that the
total plan execution time is minimized.

In classical planning actions cannot execute concurrently.
Temporal planning addresses this problem and is thus appli-
cable to a wider range of problems. Concurrent execution of
actions, however, poses new challenges. Take for instance

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the job scheduling problem in which we try to assign jobs to
processors with the objective of minimizing the parallel ex-
ecution time. Deciding whether there exists a schedule that
runs for at most time T is known to be NP-complete, whereas
all sequential schedules are valid and have the same easy to
compute execution time span. In the general planning set-
ting, concurrent action executability depends on the inter-
dependence among action preconditions and effects. If all
actions are independent of one another, such actions can be
executed concurrently. In many situations, however, several
actions access the same variables. We call such variables
(or fluents) shared. Consider, for example, production prob-
lems in which a final product is built from raw materials
called resources. In such domains there can be dependen-
cies between actions: some actions may accumulate certain
resources, while other actions consume resources to produce
something. In a situation where there is a single resource we
need to check whether several resource accumulating and
resource consuming actions are executable simultaneously.
The executability of such a set of actions depends on the
accumulated resource amount so far, the amount being pro-
duced, the amount being consumed, and other variables that
may effect preconditions and effects. In general, such a com-
putation may not be trivial.

In the popular genre of real-time strategy (RTS) video
games concurrent execution of actions that use shared re-
sources is common. Typical RTS games are fast-paced sim-
ulations, in which players try to eliminate opponents in real-
time by securing resources which are used to build military
equipment. At the beginning of an RTS game, players send
out workers to gather resources, such as gold and lumber,
which are needed to build structures (e.g., barracks and tank
factories) that in turn train/produce other units such as in-
fantry or tanks. After scouting and creating a sufficient at-
tack force, units are sent into battle. There are many chal-
lenges in RTS games that are of interest to AI researchers,
including multi-object pathfinding, learning squad strate-
gies, plan recognition, and opponent modeling (Buro 2003).

Our research focus is on the build-order optimization
problem for RTS games, in which resource gathering and the
creation of unit-producing buildings and units themselves in
the initial stage of an RTS game is optimized. In typical
problem instances, several actions can execute in parallel
at any given time as long as there are sufficient shared re-

950

sources available for each action. For example, two work-
ers can start building two structures that require shared re-
sources at the same time, as long as there is enough building
material available. In such a situation the ability to execute
actions concurrently will result in more efficient (shorter)
plans when compared with the sequential execution. Thus,
efficiently determining whether a set of actions that uses
shared resources is executable concurrently — which is the
focus of this paper — is important.

In what follows, we first give an overview of related pre-
vious work in the area of planning with concurrency and
fluents. Then we describe our model of concurrent action
execution, which is motivated by action execution in RTS
games. Thereafter, we show that the general decision prob-
lem of determining concurrent execution of actions is co-NP
complete, followed by presenting tractable problem simpli-
fications and applying them to the build-order optimization
problem in RTS games. We also discuss the problem of gen-
erating concurrent action sets, which is closely related to this
research and finish the paper with conclusions and future re-
search directions.

Related Work

Execution of actions with numeric fluents has been stud-
ied extensively (Lee & Lifschitz 2001) (Erdem & Gabal-
don 2005). The main focus of this research was the for-
malization of the semantics of concurrently executed actions
with fluents. (Brenner 2001) discussed various forms of
concurrency and event interactions and devised a descrip-
tion language for concurrent domains. (Boutilier & Braf-
man 2001) developed a partial-order non-temporal planner
(POMP) that can generate plans for actions with concurrent
interacting effects. To achieve this the STRIPS action rep-
resentation language was modified. (Rohanimanesh & Ma-
hadevan 2001) showed that a planning model under uncer-
tainty, which allows concurrent action execution, produces
shorter plans than a model that does not. In (Bacchus & Ady
2001) the focus was extending the types of problems that
could be addressed by planners to problems with concur-
rent execution and metric resources. Using forward chaining
with heuristics and domain specific information the TLplan
planner generated concurrent plans.

As far as we know, however, the computational effort re-
quired for determining concurrent executability of actions
with numerical fluents has not been addressed in previous
research. Furthermore, the most widely used planning lan-
guage PDDL (McDermott & AIPS’98 Committee 1998)
sidetracked the issue of concurrent execution by not allow-
ing simultaneous use of fluents. PDDL was later extended to
deal with temporal planning problems (version 2.1, (Fox &
Long 2003)) by allowing actions to execute simultaneously
as long as there is no potential conflict. In PDDL 2.1, when
one action obtains a certain resource to update its value,
PDDL adopts a no “moving targets” rule on that resource,
subsequently preventing other actions from accessing that
resource until the original action finishes its execution.

Concurrent Action Execution
In order to better understand the issues of concurrently ex-
ecuting actions, let us examine the structure of actions. In
most planning languages (both classical and temporal) an
action is divided into two parts: preconditions and effects.
A precondition is a Boolean function that must evaluate to
true for an action to execute, while an effect is a certain
consequence of executing that action. For example, a pre-
condition could be of the form iron ≥ 100, where iron is
a resource fluent, and the associated effect could be “build
control center and deduct 100 from iron amount”. In non-
temporal planning, actions are executed sequentially one af-
ter another, thus only one action is executed at a time. Also,
actions are instantaneous and the effects are executed imme-
diately.

Temporal planning allows for concurrent execution of
several actions and for actions to take more than one step
to execute. Allowing temporal execution means that pre-
conditions are checked only at certain times during action
execution and that effects are also executed only at certain
times. The focus of this paper, however, is the concurrent
execution of actions. If we want several actions to execute
at the same time, it is not sufficient to check whether each
action’s individual preconditions are satisfied. The precon-
ditions of two or more actions in the set might conflict with
each other, allowing the actions to be executed individually
but not in concert with one another. For example, given a
resource whose current amount is 100 and two actions that
each require 100 of that resource, each action is executable
individually, but not together. Similarly, effects can also
determine whether two actions can be executed simultane-
ously. For example, if one action requires a certain resource
amount which a second action creates, then we may want to
allow the two actions to execute concurrently, irrespective of
the current resource amount.

Additionally, in the planning literature a distinction is
drawn with respect to serializable and non-serializable ac-
tion sets. A set of actions is called serializable if the result of
executing the actions sequentially is the same as the result of
executing the actions concurrently. Non-serializable actions
produce different results. Two actions are non-serializable
if the precondition of each action requires the effect of the
other action to be executed.

Given these complications and multiple views of what
constitutes concurrent action execution, we need to give a
precise definition of our execution model before we proceed.
We motivate our choice by describing a fair action execution
framework for RTS games.

A Fair Execution Framework for RTS Games

In typical RTS games multiple players are connected to ei-
ther a central server — which sends out game state infor-
mation regularly and receives action sequences from play-
ers — or directly to their peers, in which case all player
computers run identical game simulations and exchange ac-
tions. Because the peer-to-peer mode is vulnerable to client
hacks that potentially reveal state information the player is
not supposed to know, server-client RTS game architectures
are preferable.

951

In one RTS game simulation cycle the server receives ac-
tions from players, executes them in addition to internally
scheduled actions, and sends out the resulting game state
information back to the players (Figure 1). Typically, RTS
game actions are scripted and action invocation triggered by
players can be viewed as remote procedure calls that check
preconditions, and if they succeed, sequentially execute ef-
fects that change the game state and potentially schedule
subsequent actions by appending them to an action queue.
Actions in RTS games span a wide spectrum of precondi-
tions and effects. For example, units can move, collide, and
attack each other, resources can be gathered and consumed
to create game objects, and area effects can reveal portions
of the playing field or alter the landscape. In addition, ac-
tions may not be commutative (e.g., whose attack action is
executed first or who is moving first may have an advan-
tage) and action preconditions may depend on other actions’
effects. The question now becomes how actions from mul-
tiple sources can be executed in a concurrent yet fair fash-
ion. We propose to shuffle all actions that are due to be ex-
ecuted in the current game simulation cycle (Figure 2) and
execute all actions sequentially. In the long run, this strat-
egy ensures fairness for all players involved in the game.
Executing actions sequentially does not mean that we have
given up on the concept of concurrency. Instead, we de-
fine concurrency as a serialized execution of actions within
a very short time period. Looking from the perspective of
a planner we can identify two time scales. The first is the
environment time scale in which the temporal planner op-
erates. It is divided into longer time periods called game
cycles. The second is the much shorter concurrent execu-
tion time scale, in which action sets that were determined to
be concurrently executable by their planners are executed in
a randomly-serialized ordering by the server. Because the
actual action execution ordering is unknown to the players,
they have to make sure that all execution sequences of the
transmitted action set are valid, if the action throughput is to
be maximized. This leads us to the following formal defini-
tions which form the basis for subsequent deliberations:

• An action is a pair (p, e), where p — the precondition —
is a procedure that computes a Boolean value over fluent
variables and e is an effect, i.e., a procedure that changes
fluent variables. An action is executable if its precondi-
tion evaluates to true. If an action is executed, its effect
procedure is run — changing fluent variables. Precondi-
tion and effect computations are considered atomic, i.e., at
any given time only one action is being processed.

• An action sequence �a = (a1, . . . , an), where ai =
(pi, ei), is called executable starting with fluent vector
�f if and only if — when actions are executed sequentially
in order i = 1, . . . , n — precondition pi evaluates to true
after i − 1 steps, i.e., at the time ai is to be executed, its
precondition is true.

• An execution instance (�f, (a1, . . . , an)) can be exe-
cuted concurrently if and only if for all execution
orderings π ∈ Sn (the symmetric group of degree
n) (aπ(1), . . . aπ(n)) is executable starting with fluent vec-
tor f and each execution order results in the same fluent

Action Set C

SERVER

GAME
RTS

Action Set BAction Set A

C 3

C 1 C 2

D 3 D 4

D 2D 1

B 3

B 2B 1

A 4

A 2A 1

A 3

Action Set D

Figure 1: The RTS game server has received four action sets
from players A, B, C, and D in the current game cycle. All
actions need to be executed.

D 4

A 3

D 3

B 2

C 3

C 1

A 4

B 1

D 2

C 2

A 2

B 3

A 1

D 1

Action Set A

Action Set C

Action Set D

Action Set B

SHUFFLE

Execution Time Scale
Environment Time Scale

Figure 2: To ensure fairness, actions are shuffled and then
executed sequentially.

vector.

The proposed action execution model is not restricted to
RTS games. It can be applied to discrete simulation systems
where the environmental time proceeds at a slower pace than
the time for executing interacting actions in sequence.

Worst Case Time Complexity

To study the complexity of deciding whether an execution
instance is concurrently executable, we define the Concur-
rent Action Execution decision problem CAE as follows:

CAE := {r = (�f,�a) | r can be executed concurrently}.

Moreover, CAEP is the subset of CAE for which the fluent
vector as well as precondition and effect computations are
discrete and their runtime is polynomial. We now proceed
to show that testing membership of CAEP is a hard problem.

Theorem 1: CAEP is co-NP-complete.

952

Proof: We show that the complement of CAEP — CAEc
P

— is NP-complete by reducing the Subset Sum problem
(SUBS) to CAEc

P and proving that CAEc
P is in NP.

The following algorithm shows that CAEc
P can be recog-

nized by a polynomial time bounded non-deterministic Tur-
ing machine: first we check whether the input encodes an

action execution problem, say (�f, (a1, . . . , an)). If not, we
accept. Otherwise, we proceed by guessing two execution
orderings π1, π2 ∈ Sn and checking whether a precondition
is violated when executing π1 or whether executing π1 and
π2 create different effects. If so, we accept. Otherwise, the
input is rejected. This algorithm runs in polynomial time
and recognizes CAEc

P , which therefore belongs to NP.
We now show SUBS ≤ CAEc

P , which completes the
proof, because

SUBS := {(K, {s1, . . . , sn}) |

K, si ∈ N, ∃I ⊆ {1, . . . , n} :
∑
i∈I

si = K},

is NP-complete (Cormen et al. 2001). We need to construct
a polynomial time transformation function g with the fol-
lowing property:

w ∈ SUBS ⇔ g(w) ∈ CAEc
P

Transformation g maps (K, {s1, . . . , sn}) to ((s =
0), (a1, . . . , an+1)), with

• a single numerical fluent s initialized with 0,

• ai = (“ s �= K ” , “ s := s + si ”) for 1 ≤ i ≤ n, and

• an+1 = (“ s �= K ”, “ ”)

If w ∈ SUBS, then ∃I ⊆ {1, . . . , n} :
∑

i∈I si = K . This
means that action sequences that start with indexes from I
fail to execute, because s reaches value K and the precondi-
tion of the subsequent action evaluates to false. Therefore,
g(w) ∈ CAEc

P .
Conversely, if g(w) ∈ CAEc

P then there exists an execu-
tion ordering where at least one precondition fails, because
by construction we know that g(w) is syntactically correct
and its effects are commutative. We collect action indexes
up to the failure point and call this set I . Then, by definition
of the action effects in g(w),

∑
i∈I si = K follows, which

concludes the proof. �

Problem Simplifications

Although the co-NP-completeness of CAEP suggests that it
may not be decidable in polynomial time, checking the exe-

cutability of an instance r = (�f, (a1, . . . , an)) can be done
in time Θ(n! · poly(|code(r)|)) by enumerating all execu-
tion orderings and checking preconditions and total effects.
If n is small, this brute-force approach may still lead to ac-
ceptable runtimes. In this section we turn our attention to
the case where n is big compared to the number of shared
fluent variables, in which case – under certain restrictions –
we will be able to check executability more quickly, while
still maintaining sufficient expressiveness for many practical
applications.

For an execution instance to be executable concurrently,
each ordering has to result in the same fluent vector. One

way to ensure this condition is to base effects on commu-
tative operators ◦, i.e., effects are sequences consisting of
assignments of the following form: fi := fi ◦ c, where c is
a constant. We call such effects commutative. The second
condition for an execution instance to be executed concur-
rently is for all preconditions to hold in all execution order-
ings. Thus, as seen earlier, we could check every execution
ordering to satisfy the second requirement. However, if we
restrict preconditions, fewer checks may be required.

Consider, for example, operator + applied to integers.
Looking at a sequence of +ci operations applied to a fluent
variable, we can quickly establish lower and upper bounds
for that variable that are valid for any execution ordering. A
sufficiently simple form of preconditions may then allow us
to quickly test executability by simply checking precondi-
tions at the extreme points.

In what follows, we will first generalize this idea and then
present some specializations.

Corner and Box Tests

For the bounds checking idea to work we need the following:

• A totally ordered fluent value set,

• commutative effects of the form f := f ◦ ci, and

• a fast method of determining good lower and upper
bounds l, u for f when considering all ci values and ar-
bitrary execution orders.

We then have the choice of either checking all preconditions
for all values in interval [l, u] — which, in case of being
universally true, implies executability — or simply checking
all preconditions at l and u, provided that being true there
implies being true in (l, u) as well. This idea can be easily
extended to multiple fluents:

Corner/Box Test. Given an execution instance
((f1 . . . fm), (a1 . . . an)) with ak = (pk, ek) and ef-
fects ek of the form fi1 := fi1 ◦ c1 . . . fin

:= fit
◦ ct, for

each k = 1 . . . n:

1. Compute vectors (l
(k)
1 . . . l

(k)
m) and (u

(k)
1 . . . u

(k)
m) of flu-

ent variable lower and upper bounds for action ak by con-
sidering all effects of actions ai (i �= k).

2. Define box Bk = {(x1 . . . xm) | ∀j : xj ∈ [l
(k)
j , u

(k)
j]}

and corners Ck = {(x1 . . . xm) | ∀j : xj ∈ {l
(k)
j , u

(k)
j }}

Return true if and only if for all k = 1 . . . n: pk(�f) is true

for all �f ∈ Ck (Corner Test) or �f ∈ Bk (Box Test)

The following theorem states that the Corner and Box Tests
are sound and partially complete:

Theorem 2: Let r = ((f1 . . . fm), (a1 . . . an)).

1. If the Box Test applied to r returns true, then r is exe-
cutable concurrently.

953

2. If the Corner Test applied to r returns true and the corner
generalization property

∀k ∈ {1 . . . n} : (∀�f ∈ Ck : pk(�f)) ⇒ (∀�f ∈ Bk : pk(�f))
(1)

holds, then r is executable concurrently.

3. If 1) all action effects in r only change a single fluent vari-
able, 2) the Corner Test applied to r fails, and 3) the found
lower and upper bounds can be reached by execution se-
quences, then r is not executable concurrently.

Proof: For each action ak the Corner/Box Test determines
lower and upper bounds for all fluents by taking all effects

except ek into account. If pk(�f) is true for all �f ∈ Bk,
then irrespective of the action sequence preceding ak, pk

will evaluate to true when ak is to be executed, because the
fluent vector at that time will be an element of Bk. This

proves claim 1. Likewise, if pk(�f) is true for all �f ∈ Ck

and the corner generalization holds, then pk(�f) is true for

all �f ∈ Bk, which proves claim 2 using the same argument.
For claim 3, it suffices to produce an action sequence that vi-
olates a precondition. Because the upper and lower bounds
are reachable and effects only change individual fluent vari-
ables, we can execute actions so that the extreme value of
each fluent variable is reached. This generates a fluent vec-
tor for which the precondition fails. �

Both tests are therefore sound, but neither is generally com-
plete, because not all fluent vectors in Bk or Ck may be
reachable by any execution ordering. This can be easily
verified by considering effects that change two fluents in a
correlated fashion, say f1 := f1 + 5; f2 := f2 + 10 and
f1 := f1 − 3; f2 := f2 − 6. The runtime of the Corner Test
is Θ(2mpoly(|code(r)|)), where m is the number of shared
fluents and r is the execution instance. It can be much faster
than the brute-force approach described earlier if m < n.
The Box Test runtime depends on the size of the Bks and is
at least as high as for Corner Test.

As an example consider cumulative effects which are
common in practice. As we have seen in the introduction,
resource gathering and spending can be modeled by effects
of the form f := f + c applied to integer fluent f . Lower
and upper bounds for such effects can be established by
only considering negative effects and positive effects, re-

spectively: for action ak, l
(k)
i [u

(k)
i] is the sum of all negative

[positive] effects on fluent fi in effects ej (j �= k) added to
the initial value of fi. These bounds can be reached, because
executing the respective actions in sequence will set fi to

l
(k)
i or u

(k)
i , respectively. Lower and upper fluent bounds for

other commutative effects such as f := f ·c, f := min(f, c),
and f := f c can be computed similarly.

Corner-Generalizing Preconditions

In this subsection we will explore types of preconditions that
have the corner generalization property which is required by
the more efficient Corner Test. If we start with preconditions
ej , we can form conjunctions such as

e1 ∧ e2 . . . ∧ et

which have the corner generalization property if and only
if all ejs have it. Disjunctions of corner-generalizing pre-
conditions also generalize corners. However, the speci-
ficity of such conditions suffers, because disjunctions
of non-corner-generalizing preconditions can be corner-
generalizing. Negations of corner-generalizing precondi-
tions generally do not retain this property.

When considering numerical fluents �f , a common condi-
tion type is

g(�f) ≥ 0.

For such conditions p the corner generalization property (1)
becomes:

(∀�f ∈ C : g(�f) ≥ 0) ⇒ (∀�f ∈ B : g(�f) ≥ 0),

where C is the set of corners of box B which is determined
by the lower and upper bounds of the particular fluent vari-
ables. This property holds if g assumes its minimum value
in the box at one of its corners, i.e.,

∀�f ∈ B : g(�f) ≥ min
�h∈C

g(�h) (2)

If it is possible to locate the minimal corner quickly without
having to check all corners, the runtime of the Corner Test
can potentially become polynomial. Linear functions

g(f1 . . . fm) = w0 +

m∑
i=1

wi · fi

have this property because a minimal corner is given by

fi =

{
li, if wi ≥ 0
ui, otherwise

Thus, if preconditions have form w0 +
∑m

i=1 wi · fi ≥
0 (or ≤ 0) the quick Corner Test only requires one evalu-
ation rather than 2m.

Slightly more general, property (2) applies to concave
functions. This is a well-known result which can be proved
by induction over the number of variables: in the one-
dimensional case it follows from the definition of concavity:

g((1 − λ)�f1 + λ�f2) ≥ (1 − λ)g(�f1) + λg(�f2)

for all λ ∈ [0, 1]. In the general case, for non-corner points,
we pick a variable fi and consider the two box planes de-
fined by fi = li and fi = ui. We then know by the induction
hypothesis that the function values at these two points are at
least as big as the respective minimal corners. Applying the
definition of concavity once more to the endpoints finishes
the induction proof.

Again, if the concave precondition function is sufficiently
simple, it may allow us to find minimal corners quicker than
by complete enumeration, and thus speed up the Corner Test
considerably.

Application to RTS Game Action Execution

In this subsection we look at action execution in RTS games
in light of the just established ideas on checking concurrent
executability. Typical RTS games begin with a build-order

954

optimization problem where workers are sent out to gather
resources which are then consumed to build other units (in-
cluding workers) and structures, until a certain condition —
such as creating a certain amount of units — is met. Con-
struction actions (p, e) usually have the form

p = f1 ≥ c1 ∧ . . . ∧ ft ≥ ct

e = f1 := f1 − c1; . . . ft := ft − ct; create-obj(type),

where the fi represent amounts of resources — such as iron,
lumber, or oil — and the ci indicate the cost of the object
to be built. Additionally, object creation may be delayed to
account for construction time. Resource-gathering actions
(p, e) typically look like:

p = “worker w close to control center” ∧ “w has mineral”

e = fm := fm + 1; “worker w has no mineral”

Here, worker w is returning a mineral to the control center
with the effect of increasing the mineral count fm by one
and emptying the worker’s mineral storage bin.

The total effect of a series of such resource gathering and
construction actions is the same for each action ordering pro-
vided all preconditions evaluate to true regardless of the ac-
tual execution sequence. The construction action precondi-
tions are conjunctions of linear inequalities that qualify for
the quick Corner Test which only checks the minimal corner.
Furthermore, the minimal corner for a specific action can
be determined by summing up all costs for single resources
excluding the costs accrued in the current action effect and
subtracting these values from the initial resource amounts.

Generation of Concurrent Action Sets

A research issue closely related to concurrent action exe-
cutability is the generation of action sets that can be exe-
cuted concurrently by a planning system. Given a set of
actions that are individually executable at a given time, the
goal is to generate potentially concurrent sets of actions. In-
stead of generating action sets and then checking their con-
current executability — which can be inefficient — we could
try to directly generate concurrently executable sets. Indeed
such an approach can be used in domains with simple pre-
conditions and effects. For example, when simplifying the
just described RTS game scenario further to a bare minimum
of one type of precondition f ≥ c and effect f := f − c, we
can sequentially add actions to the concurrently executable
set, as long as the available resource amount is bigger than
the cumulative resource amount needed for all actions added
so far. However, if several resources are used in the same
precondition or if preconditions have a more complex struc-
ture such straightforward computation may not be sufficient
and consequently directly generating actions sets may be in-
feasible. Furthermore, even in the simplest case it is possible
to have a large number of potential action sets to generate,
which compromises efficient real-time planning. A more ef-
fective approach to generating action sets in real-time could
be to produce a small number of “promising” action sets us-
ing heuristic methods and then use the tests such as those
proposed in this paper to check concurrent executability.

Conclusion and Future Work

The focus of this paper has been on deciding whether a given
action sequence can be executed concurrently in the pres-
ence of fluents that are shared by preconditions and effects.
By defining concurrent executability in terms of serializabil-
ity and generating the same overall effect regardless of ex-
ecution order, the “no moving targets” rule implemented by
PDDL can be mitigated with the result that more actions can
be scheduled in one time frame for simultaneous execution.
In addition, the following research contributions have been
made:

• a technique for fair and concurrent action execution in
RTS games,

• proving the co-NP-completeness of the concurrent action
execution decision problem for polynomial-time precon-
ditions and effects, and

• establishing concurrent executability tests that can work
faster than complete enumeration for a restricted yet ex-
pressive class of preconditions and effects.

We have started to look at the build-order optimization prob-
lem in RTS games as a prototypical planning domain that
features object creation. The potentially large number of in-
dependently acting entities and relatively short action dura-
tions make it necessary to maximize the number of actions
executed in a single execution frame. While optimization
problems like this are generally NP-hard, we hope that the
heuristics presented in this paper can help us to quickly test
action sequences for their concurrent executability potential.

Acknowledgments
We thank Timothy Furtak for feedback on an earlier draft. Finan-
cial support was provided by NSERC and iCORE.

References
Bacchus, F., and Ady, M. 2001. Planning with resources and concurrency: A forward

chaining approach. In Proceedings of IJCAI, 417–424.

Boutilier, C., and Brafman, R. 2001. Partial-order planning with concurrent inter-

acting actions. Journal of Artificial Intelligence 14:105–136.

Brenner, M. 2001. A formal model of planning for concurrency. Technical Report.

Institute for Computer Science, Albert Ludwigs University, Freiburg, Germany.

Buro, M. 2003. Real-time strategy games: A new AI research challenge. In Pro-

ceedings of IJCAI, 485–486.

Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001. Introduction to Algorithms

(2nd edition). MIT Press.

Erdem, E., and Gabaldon, A. 2005. Cumulative effects of concurrent actions on

numeric-valued fluents. In Proceedings of the AAAI Conference, 627–632.

Fox, M., and Long, D. 2003. PDDL 2.1: An extension to PDDL for expressing

temporal planning domains. Journal of Artificial Intelligence 20:61–124.

Lee, J., and Lifschitz, V. 2001. Additive fluents. In Proceedings of the AAAI Spring

Symposium: Answer Set Programming: Towards Efficient and Scalable Knowledge

Representation and Reasoning, 116–123.

McDermott, D., and AIPS’98 Committee. 1998. PDDL – the planning domain

definition language. Technical Report. Department of Computing Science, Yale Uni-

versity.

Rohanimanesh, K., and Mahadevan, S. 2001. Decision-theoretic planning with

concurrent temporally extended actions. In Proceedings of UAI, 100–107.

955

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

