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Abstract

In the field of heuristic search it is well-known that im-
proving the quality of an admissible heuristic can sig-
nificantly decrease the search effort required to find an
optimal solution. Existing literature often assumes that
admissible heuristics are consistent, implying that con-
sistency is a desirable attribute. To the contrary, this
paper shows that an inconsistent heuristic can be prefer-
able to a consistent heuristic. Theoretical and empirical
results show that, in many cases, inconsistency can be
used to achieve large performance improvements.

Introduction

Heuristic search algorithms such as A* and IDA* are guided
by the cost function f(n) = g(n) + h(n), where g(n) is the
actual distance from the initial state to state n and h(n) is a
heuristic function estimating the cost from n to a goal state.
If h(s) is “admissible” (i.e., is always a lower bound) these
algorithms are guaranteed to find optimal paths.

It is usually assumed that admissible heuristics are con-
sistent, implying that consistency is a desirable attribute. In
their popular Al textbook Artificial Intelligence: A Modern
Approach, Russell and Norvig write that “one has to work
quite hard to concoct heuristics that are admissible but not
consistent” (Russell & Norvig 2005). Many researches work
using the assumption that “almost all admissible heuristics
are consistent” (Korf 2000). The term “inconsistent heuris-
tic” is portrayed negatively; as something that should be
avoided. Part of this is historical: early research discovered
that inconsistency can lead to poor A* performance, how-
ever the issue has never been fully investigated, and was not
re-considered after the invention of IDA*.

This paper shows that many of the preconceived notions
about inconsistent heuristics are wrong. We first show that
while there can be drawbacks to using inconsistent heuristics
with A*, these do not affect IDA*. We then show that in-
consistent (admissible) heuristics are easy to create. Finally,
we show that there are many benefits for using inconsistent
heuristics and provide a number of techniques to do that.

Experimental results show significant reduction in search
effort for IDA*-based search applications. For A*, the issue
is not as clear and is left for future research.
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Results are demonstrated primarily using permutation
puzzles with pattern databases (PDBs) (Culberson & Scha-
effer 1998) which are heuristics in the form of lookup tables
which store solutions to instances of subproblems. However
the ideas are more general, and can be applied in any single-
agent search domain with any heuristic.

Background

An admissible heuristic h is consistent if for any two states,
x and y, |h(x) — h(y)| < dist(z,y) where dist(z,y) is
the shortest path between x and y. In particular, for neigh-
boring states the h-value never changes by more than the
change in the g-value. An admissible heuristics h is in-
consistent if for at least some pairs of nodes x and vy,
|h(z) — h(y)| > dist(z,y). For example, if a parent node
phas f(p) = g(p) + h(p) = 5+ 5 = 10, then (since the
heuristic is admissible) any path from the start node to the
goal node that passes through p has a cost of at least 10. If
the heuristic is inconsistent, then for some child ¢ of p, the
heuristic could return, e.g., h(c) = 2. If operators all have
cost 1, the total cost of getting to the goal through ¢ will be
atleast f(c) = g(c) + h(c) = (5 + 1) + 2 = 8. This lower
bound, 8, is weaker than the lower bound from the parent.
Thus the information provided by evaluating c is inconsis-
tent with the information from its parent p.

Pathmax (PMX) is one approach to correcting inconsis-
tent heuristics (Mero 1984). It propagates heuristic values
from a parent node p to its child ¢ as follows. h(p) —
dist(p,c) is a lower bound on dist(c, Goal) and therefore
can be used instead of h(c) if it is larger. In this case ¢ inher-
its its f-cost from p. Note that PMX is not needed for IDA*,
because if the parent node already exceeds the threshold than
the child node will not even be generated. Otherwise, if the
parent does not exceed the threshold then PMX will never
lift the f-cost of the child above that of its parent, which is
required for a cut-off to occur in IDA*.

The adjective “inconsistent” has negative connotations,
implying that it is something to be avoided. The most im-
portant drawback of inconsistent heuristics is that the same
node can be expanded more than once when using A*, even
when pathmax is employed (Martelli 1977). With a con-
sistent heuristic, the first time a node is expanded by A* it
always has the minimal g value. By contrast, with inconsis-
tent heuristics the search might re-expand nodes when they
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are reached via a shorter path, especially if many small cy-
cles exist. This operation is sometimes referred to as the
reopening of nodes, since nodes from the closed list are re-
opened and moved back to the open list. An example is
shown in Figure 1. Assume that all edges have a weight
of 1 except edge (d, G) which has weight 5. Nodes are la-
beled with their h-values. With A* (even with PMX) nodes
a (f(a) = 1) and b (f(b) = 6) are generated first. Next,
node a is expanded, then ¢, leading to the expansion of node
d (f(d) = 3). There is no path to the goal of cost less than
or equal to 6 so A* returns to node b. Expanding b results in
reopening node d (with a new cost of f(d) = 6). Now the
g-value of d is the minimal value. The optimal path to the
goal has been found, but d was expanded twice.

Figure 1: Reopening of nodes with A*

With IDA*, d will be expanded twice, once for each of
the paths, regardless of whether the heuristic is consistent
or inconsistent. Thus the problem of re-expanding nodes
already exists in IDA*, and using inconsistent heuristics will
not make this behavior worse. This paper concentrates on
IDA*, returning to the issues surrounding A* at the end.

In most previous work on admissible heuristics, research
concentrated on improving the quality of the heuristic as-
sessment. A heuristic hy is considered to be more informed
(better quality) than ho if it usually returns higher values for
arbitrary states. For a state s, a more informed heuristic gen-
erally improves the f(s) value and increases the chance of
a cutoff in the search. In the 15-puzzle, for example, there
have been massive performance gains seen through the de-
velopment of more informed heuristics (20 years of research
have led a reduction of four orders of magnitude.)

A de facto standard usually used by researchers (e.g.,
(Korf 1997; Korf & Felner 2002; Felner et al. 2004)) for
comparing the “informedness” of heuristics is to compare
the average values of a given heuristic over the entire do-
main space or, if not practical, over a large sample of states
of the domain. This paper demonstrates that, while the av-
erage heuristic value is important, there are other considera-
tions that can influence the effectiveness of the heuristic.

Achieving Inconsistent Heuristics

As illustrated earlier, there is a perception that inconsistent
admissible heuristics are hard to create. However, inconsis-
tent heuristics have been used effectively in a number of ap-
plications, including puzzles (Zahavi et al. 2006), pathfind-
ing (Likhachev & Koenig 2005), learning real-time A* and
Moving Target Search (Shimbo & Isida 2000). Furthermore,
it is very easy to generate inconsistent heuristics with PDBs.
Three examples follow. The first is the most general. It is
new and is explored further in this paper.

1: Random selection of heuristics: A well-known
method for overcoming pitfalls of a given heuristic is to
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consult a number of heuristics and use their maximum. Of
course, there is a tradeoff for doing this—each heuristic cal-
culation increases the time it takes to compute h(s). Addi-
tional heuristic consultations provide diminishing returns, in
terms of the reduction in the number of nodes generated, so
it is not always best to use them all.

Given a number of heuristics one could alternatively se-
lect which heuristic to use randomly. One benefit is that only
a single heuristic will consulted at each node. Random se-
lection between heuristics will produce inconsistent values
if there is no (low) correlation between the heuristics.

Multiple heuristics often arise from domain-specific ge-
ometrical symmetries, meaning that there are no additional
storage costs associated with these extra heuristics.

2: Dual heuristics: In permutation spaces, for each state
s there exists a dual state s which shares many important
attributes with s, such as the distance to the goal (Felner
et al. 2005; Zahavi et al. 2006). Therefore, any admissi-
ble heuristic applied to s¢ is also admissible for 5. In the
permutation space puzzles used in this paper, the role of lo-
cations and objects (values) can be reversed; the “regular”
state uses a set of objects indexed by their current location,
while the “dual” state has a set of location indexed by the
objects they contain. Both mappings can be looked up in
the same PDB and return an admissible value. Performing
only regular PDB lookups for the states generated during
the search produces consistent values. However, the values
produced by performing the dual lookup can be inconsistent
because the identity of the objects being queried can change
dramatically between two consecutive lookups.

3: Compressed PDBs: Larger PDBs tend to be more ac-
curate than smaller PDBs and thus reduce the number of
generated nodes. Lossy PDB compression, by storing the
minimum of a group of PDB entries in one entry, proved to
preserve most of the information of the larger (more accu-
rate PDB) but with less space (Felner er al. 2004). Heuristic
values obtained by compressed PDBs might be inconsistent
even if the original PDB heuristic is consistent, because the
PDB values for two neighboring nodes can be compressed
into two different entries in the compressed PDB.

In summary, there are two easy ways to generate incon-
sistent heuristics: 1) the use of multiple different heuristics
(e.g., symmetries, dual states), and 2) using a heuristic that
has some values missing or degraded (e.g.,compression).
This list is not exhaustive and the above examples are by
no means the only ways of creating inconsistent heuristics.

Benefits of Inconsistency

Consider a consistent heuristic that is being applied to state
s in a region of the search space where the heuristic is a
poor estimator of the true distance to the goal. Since the
heuristic is consistent, each of the children of s have a value
that differs from that of s by at most ¢, where c is the cost
of the operator used to reach them. In other words, the value
of a node and its children are correlated. A search algorithm
will incur significant costs before it is able to escape this
region of poor heuristic values.

Consider using an inconsistent heuristic. Heuristics that
arise from random or dual lookups might have no correla-



@/@@
®
Figure 2: Bidirectional pathmax

tion or only little correlation between the heuristic value of
s and that of the children of s. Thus when reaching a state
with a poor heuristic estimation, a child of s might have a
much larger heuristic value — possibly large enough to es-
cape from this region of the search space. This can be done
with bidirectional pathmax (BPMX) which we introduced
in (Felner e al. 2005). BPMX further improves the origi-
nal pathmax method and is illustrated in Figure 2. The left
side of the figure shows the (inconsistent) heuristic values
for a node and its two children. When the left child is gen-
erated, its heuristic (b = 5) can propagate up to the parent
and then down again to the right child. To preserve admis-
sibility, each propagation reduces h by the cost of traversing
that path (1 in this example). This results in h = 4 for the
root and h = 3 for the right child. Note that BPMX is only
applicable for undirected graphs. When using IDA*, BPMX
can cause many nodes to be pruned that would otherwise be
expanded. For example, suppose the current IDA* threshold
is 2. Without the propagation of h from the left child, both
the root node (f = g + h = 0 + 2 = 2) and the right child
(f = g+h =141 = 2) would be expanded. Using BPMX,
the left child will improve the parent’s h value to 4, resulting
in a cutoff without even generating the right child.

In summary, inconsistent heuristics are valuable when the
values are not highly correlated between neighboring nodes.
This greatly reduces the chance of entering a region of the
search space where all the heuristic values are low. Because
heuristic values can be propagated with PMX and BPMX, a
single node with a good heuristic may be sufficient to direct
the search into better parts of the search space.

Static Distribution and Korf’s Formula

The distribution of values from a heuristic function can be
used to measure the “informedness” of the function. Typi-
cally this distribution is statically computed over the space
of all possible states or, if impractical, a large random sam-
ple of states. Doing this for admissible heuristics will usu-
ally show that if a heuristic is more informed then the distri-
bution of values will be higher, as will be the average value.

(Korf, Reid, & Edelkamp 2001) suggested that the num-
ber of nodes expanded by IDA* with a consistent admissible
heuristic is N (b, ¢, P) = Z';:O b'P(c — i) where b is the
brute-force branching factor, c is the depth of the search and
P is the static distribution function of heuristics. They first
showed that the expected number of all nodes n such that
f(n) < cisequal to N(b,c, P). These nodes have the po-
tential to be expanded. They then proved that all the poten-
tial nodes will eventually be expanded by IDA* as follows.
Assume that n is a potential node. Since the heuristic is con-
sistent then any ancestor of n, p, must also have f(p) < ¢
and is also a potential node. Then, by induction they showed
that the entire branch from the root to n will be expanded
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since all the nodes of the branch are potential nodes.

For inconsistent heuristics this is not necessarily true.
Compare, for example, the dual (or random) PDB lookup
to the regular consistent lookup of the same PDB. Since ex-
actly the same PDB is used, all heuristics will have the same
static distribution of values. Thus, according to Korf’s for-
mula, the number of potential nodes (i.e., their f(n) < ¢)
will again be N (b, ¢, P). However, Korf’s proof that given
a potential node n all its ancestors must also be potential
nodes is not true. Due to inconsistency there might exist
an ancestor p with f(p) > ¢. Once IDA* visits this node
the entire subtree below it is pruned and n will not even be
generated. A potential node will be expanded only if all
its ancestors are also potential nodes. This is guaranteed
for consistent heuristics but not for inconsistent heuristics.
Thus, for inconsistent heuristic N (b, ¢, P) is only an upper
bound on the number of generated nodes.

consistent [ expanded @] inconsistent
generated Q
not generated O

Figure 3: Consistent versus inconsistent heuristics

An example of the difference between consistent and in-
consistent heuristics is shown in Figure 3. Nodes are marked
with their h-value. Observe that in both cases we have ex-
actly the same h-value distribution in the various levels of
the tree. For the consistent case, if the current IDA* thresh-
old is 5, all 3 nodes at depth 2 with h-value of 3 have
f =9+ h=2+3 =5 and will be expanded. The right
subtree is pruned because the f-value of the right node at
level 1is f =g+ h =1+ 5 = 6 > 5. For the inconsistent
case, however, only one node at depth 2 will be expanded —
the leftmost node. The second node with h-value of 6 will
be generated but not expanded because its f-value is 8 and
exceeds the threshold. Due to BPMX, its value will be prop-
agated to its parent and its right sibling (a potential node
with h = 3) will not even be generated. The right subtree
will be pruned again and, due to PMX, the rightmost node —
with h-value of 3 — will not be generated.

Dynamic Distribution of Heuristic Values

There is no guarantee that the static distribution of values
in a heuristic will have the same distribution as the values
actually considered during search. What makes a heuristic
effective is not its overall static distribution but the dynamic
distribution of the values generated during search.

The idea of static and dynamic distributions of heuristic
values is not new; it has been previously used to explain why
the maximum of several weak heuristics can outperform one
stronger heuristic (Holte ef al. 2006). In this paper we ex-
amine the distributions generated by inconsistent heuristics
and analyze their influence on the search.



# | No | Lookup | Nodes | Time |

One PDB lookup
1 1 | Regular 90,930,662 | 28.18
2| 1 | Dual 19,653,386 7.38
3| 1 | Dual +BPMX 8,315,116 3.24
4 1 Random 9,652,138 3.30
5| 1 | Random + BPMX 3,829,138 1.25
Maxing over multiple PDB lookups
6 | 2 | Regular 13,380,154 7.85
7| 4 | Regular 10,574,180 | 11.60
8 | 2 | Random + BPMX 1,902,730 1.14
9 | 4 | Random + BPMX 1,042,451 1.20

Table 1: Rubik’s Cube results for 100 instances

To illustrate the impact of inconsistent heuristics on the
search we use Rubik’s Cube which has 20 movable cubes
(or “cubies”); 8 are corners and 12 are edges. The 8-corners
PDB (first used by (Korf 1997)) cannot be used here be-
cause it is always consistent since all 8 corners are always
examined. We experimented with a large variety of other
PDBs where inconsistency can be achieved. For example,
we added a single edge cubie to the 8-corner PDB resulting
in a large PDB with 9 cubies. For compatibility, we chose
to report the results for the same 7-edge PDB that we used
in (Felner et al. 2005; Zahavi et al. 2006) but similar ten-
dencies were observed in our other experiments. There are
24 lines of geometrical symmetries, which arise from dif-
ferent ways to rotate and reflect the cube. For our 7-edge
PDB, each of these symmetries considers a different set of
edges, and thus results in a different PDB lookup. The tradi-
tional (“regular”) and dual state (“‘dual”’) PDB lookups im-
plemented in (Felner et al. 2005) was used for comparison.

Table 1 shows the average number of generated nodes and
the average running time over the same set of 100 depth-
14 Rubik’s cube instances taken from (Felner et al. 2005).
Column No gives the number of PDB lookups used. The
following PDB lookups were used for lines 1 — 5:

Regular: The regular PDB lookup. This heuristic is con-
sistent because the same set of cubies is used for the PDB
lookup of both parent and child nodes.

Dual: For each node, the dual state is calculated and is
looked up in the PDB. This will produce inconsistent heuris-
tic values because the dual lookup of the parent might con-
sult different cubies than the dual lookup of the child.

Random: Randomly select one of the different 24 pos-
sible symmetric PDB lookups for the given node. This is
inconsistent because the set of cubies that are used for the
parent are not necessarily the same as for the child.

The table shows that a random lookup (with BPMX) is
much faster than either one regular lookup (a factor of 24)
or one dual lookup (a factor of 2). Lines 6-9 shows the
results of maximizing over a number of regular and ran-
dom lookups. It is interesting to note that even one ran-
dom lookup (line 5) generates just one third of the nodes
than with 4 regular lookups (line 7). Note that performing
more PDB lookups can only decrease the number of nodes
but there is a diminishing return in terms of time because
each PDB lookup incurs overhead. The best time for regular
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# | No | Lookup | Nodes | Time |

One PDB lookup
1 1 | Regular 136,289 | 0.081
2 | 1 | Dual + BPMX 247,299 | 0.139
3 | 1 | Random + BPMX 44,829 | 0.029
Maxing over multiple PDB lookups
4 | 2 | Regular* 36,710 | 0.034
5 2 2 Randoms + BPMX 26,863 | 0.025
6 | 3 | 3 Randoms + BPMX 21,425 | 0.026
7 | 4 | Regular* + Dual* + BPMX 18,601 | 0.022

Table 2: Random lookups on the 15-puzzle

PDB lookups (2 regular lookups, line 6) was improved by
one random lookup (line 5) by factor of 5.

60 T T T T T
Dynamic Regular [n
50 1 Dynamic Dual &
@ L Dynamic Random
—Q-; 40 Static
z 30
R

20
10
0

Heuristic Value

Figure 4: Rubik’s Cube value distributions

Figure 4 shows the distribution of the heuristic values seen
during the searches of Table 1. We make the following ob-
servations from these results. First, note the dramatic dif-
ference between the static distribution of values and the dy-
namic distribution for the regular (consistent) heuristic. As
pointed out by others, the static distribution is a poor approx-
imation of the dynamic distribution (Holte ez al. 2006). Sec-
ond, it is easy to recognize that the heuristic that performed
the best also had a higher distribution of heuristic values.
Note that all these versions used exactly the same PDB with
the same overall static distribution of values. Third, the reg-
ular heuristic did not gain from the potential of the static
distribution because it is consistent; when the heuristic for a
state is low, the children of that state will also have low val-
ues. The inconsistent heuristics do not have this problem:;
a node can receive any value, meaning that the distribution
of values seen is closer to the potential of the static distribu-
tion. Finally, inconsistency has the effect of improving the
dynamic runtime distribution towards that of the static dis-
tribution. The greater the level of inconsistency, the closer
the dynamic distribution approaches the static distribution.

Table 2 shows similar results for the 15-puzzle based
based on the four possible lookups of the 7-8 additive PDBS
from (Korf & Felner 2002). In the table, the “*” indicates
the use of the state and its reflection. Again, the benefit of
random is shown. A single random lookup (line 3) clearly
outperforms a single regular lookup (line 1) but it is also
faster than the best results of (Korf & Felner 2002) (line 4).



Inconsistency Rate

An inconsistent heuristic is most useful if there is a low cor-
relation between heuristic values in adjacent states. To better
understand the behavior of the different heuristics, two new
terms are introduced:

1) Inconsistency rate of an edge (IRE): The inconsis-
tency rate of a heuristic & and an edge e = (m,n) is the
difference in the heuristic value for the two nodes incident
to this edge. TRE(h,e) = |h(m) — h(n)|. The IRE of the
entire domain is defined as the average IRE over the entire
set of edges of the state space.

2) Inconsistency rate of a node (IRN): For a given node,
choose the incident edge with the maximum inconsistency
rate. IRN (h,n) = maxX,,cqq;(n) |h(m) — h(n)|. The IRN
of the entire domain is defined as the average IRN over the
entire set of nodes of the state space.

For a consistent heuristic with a uniform edge cost of 1
(as in Rubik’s Cube), both the IRN and IRE for all edges
and nodes are less than or equal to 1.

The performance of a search can also be characterized by
its branching factor. The dynamic branching factor (DBF) is
defined to be the average number of children that are gener-
ated for each node that is expanded in the search. When the
heuristic function is inconsistent and BPMX is employed,
the dynamic branching factor can dramatically decrease.

[ # [IRE | IRN| DBF|  Nodes | BPMX Cuts |
T [ 0434 | 1.000 | 13355 | 90,930,662 0
2 | 0490 | 1.237 | 9.389 | 17,098,875 717,151
3| 0510 | 1.306 | 9.388 | 14,938,502 623,554
5 10553 | 1424 | 7.152 | 5,132,396 457,253
8 | 0.571 | 1467 | 7.043 | 4,466,428 402,560
12 | 0597 | 1.527 | 7.036 | 3,781,716 337,114
16 | 0.607 | 1552 | 6.867 | 3,822,422 356,327
20 | 0.608 | 1.558 | 6.852 | 3,819,699 357,436
24 | 0.609 | 1.561 | 6.834 | 3,829,139 360,067

dual | 0.441 [ 1.358 | 7.681 | 8315117 796,849

Table 3: Rubik’s Cube: random heuristic with BPMX

Table 3 presents results for these new measurements on
Rubik’s Cube obtained using the 7-edges PDB. There are
24 possible symmetric lookups that could be used. We var-
ied the number of possible symmetries that random could
choose from to perform a single lookup. The first column
gives this number. The next columns present the IRE and
IRN averaged over 100 Million random states. The last three
columns show results averaged over the same set instances
of table 1 for searches with the particular random heuristic.
We report the DBF, the number of nodes that were generated
and the number of times that BPMX was used in the search.

In the first row, only one symmetry was allowed and thus
the same PDB lookup was performed at all times. This is the
benchmark case of a single consistent regular PDB heuristic
lookup. Note that the IRE is close to 0.5, implying that the
difference in the heuristic for two neighboring nodes was
roughly O half the time, and 1 the other half. The IRN was
exactly 1 showing that for each node in Rubik’s Cube there
exists at least one neighbor whose heuristic is different by 1.
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The dynamic branching factor here is equal to 13.355, which
is consistent with the results in (Korf 1997).

As the heuristic randomly considers progressively more
symmetries, the inconsistency rates increase and the DBF
decreases. This results in a significant reduction in the num-
ber of generated nodes. It is important to note two issues
here. First, the range of heuristic values in Rubik’s Cube is
rather small, as can be seen in Figure 4. Thus, the poten-
tial for a large inconsistency rate is rather modest. However,
even in this domain, a rather small IRN of 1.5 caused a dra-
matic speedup in the search. Second, no extra overhead is
needed by these heuristics as only a single PDB lookup is
performed at each node. Thus, the reduction in nodes is fully
reflected in the running times.

Decreasing the Effective Branching Factor

When performing BPMX cutoffs the DBF decreases. As
stated previously, we can generate BPMX cutoffs when the
heuristic value of a child is larger than the heuristic of the
parent by more than 1, assuming an edge cost of 1. Thus,
if such a child exists, we would like to generate it as fast
as possible. If, in a particular domain, the operators have
different inconsistency rates, we can order the application of
operators to maximize the chance of a BPMX cutoff.

The operators on Rubiks cube are symmetric, there is no
way to order them. Thus, we demonstrate this in the pan-
cake puzzle Imagine a waiter with a stack of n pancakes.
The waiter wants to sort the pancakes ordered by size. The
only available operation is to lift a top portion of the stack
and reverse it. Here, a state is a permutation of the values
0...(N — 1). The size of this state space is N! and there is
a uniform static branching factor of N — 1. The k*" succes-
sor formed by reversing the order of the first k£ 4 1 elements
of the permutation (1 < k£ < N). An important attribute
of this domain is that the number of tokens (pancakes) that
change their locations is different for each of the operators.
As we noted in (Zahavi et al. 2006), here, there are no pos-
sible geometrical symmetric PDB lookups and the only way
to achieve inconsistency is with the dual lookup.

Regular Dual

Op | Max | IRE Max | IRE

2-10 1 0.370 - 0.397 0 0
11 1 0.396 2 0.613
12 1 0.397 4 0.958
13 1 0.400 6 1.165
14 1 0.401 8 1.291
15 1 0.402 9 1.358
16 1 0.411 10 1.376
17 1 0.216 9 1.321

Table 4: IRE for operators of the 17-pancake

Table 4 shows different measurements on the operators of
the 17 pancake puzzle. To measure the inconsistency rate of
an operator, we first chose a random state, s;. We then per-
formed the relevant operator on this state, arriving at state so,
and measured the difference in the heuristic value between
s1 and so. This was repeated for 100 million different states.



The Max column presents the maximal heuristic difference
(maximal IRE) found for the specific operator. The IRE col-
umn presents the average IRE over all instances. Similar
measurements are reported for the dual PDB lookup.

The regular PDB lookup is consistent. Indeed, the table
shows that for all the operators, the maximal IRE was 1 and
the average IRE was smaller than 0.5. For the dual PDB
lookups the results are more interesting. First, we note that
for operators 2-10 all the IRE values were exactly 0. This is
an artifact of the particular PDB used for these experiments
(which are based on locations 11-17). The dual lookup of
this PDB was not changed by operators 2-10. But, for larger
operators (13-17), the IRE for the dual lookup is more than
1. Note that operator 16 has a larger IRE than operator 17
even though it only changes a smaller number of locations.

[ # | Lookup | Order | Nodes | DBF |
1 | Regular incr. | 342,308,368,717 | 15.00
2 | Dual incr. 27,641,066,268 | 15.00
3 | Dual + BPMX incr. 14,387,002,121 | 10.11
4 | Regular IRE | 113,681,386,064 | 15.00
5 | Dual IRE 13,389,133,741 | 15.00
6 | Dual + BPMX IRE 85,086,120 4.18
Maxing over two PDB lookups
7 | R+D+BPMX | incr. 2,478,269,076 | 10.45
8 | R+D+BPMX | IRE 39,563,288 5.93

Table 5: 17-pancake results.

Table 5 shows the average number of nodes that were gen-
erated by IDA* using different heuristics and different oper-
ator ordering when optimally solving the same 10 random
instances from (Zahavi et al. 2006). The Order column
presents the operator ordering that was used. Rows (1-3)
are for the trivial case were the operators are ordered in in-
creasing order, the ordering we used in (Zahavi et al. 2006).
Rows (4-6) correspond to the operator ordering in the ex-
act decreasing order of IRE imposed by our measures from
Table 4. In both cases, there is a dramatic decrease when
moving from the regular to the dual lookup and when further
adding BPMX. However, operator ordering significantly in-
fluences the results. With the operator ordering based on the
IRE we get an additional 500 times reduction in nodes ex-
panded over the simple operator ordering. The new state-of
the art performance for this domain is obtained by using the
maximum of two heuristics (regular and dual) with BPMX
and operator ordering. This version outperforms the single
regular lookup by 4 orders of magnitude.

Inconsistency with A*

BPMX for A* works as follows. Assume that node p is ex-
panded and that its k children vy, va, ..., v are generated.
Let v,,42 be the node with the maximum heuristic among all
the children and let hyqp = R(Umaz). Assuming that each
edge has a unit cost, we can now propagate iy, to the par-
ent node by decreasing 1 and then to the other children by
decreasing 1 again. Thus, each of the other children v; can
be inserted to the open list with a heuristic of:

hppux (vi) = max(h(vi), h(p) — 1, himaz — 2)
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We have performed experiments with inconsistent heuris-
tics in several domains, including the top-spin puzzle and
several different types of pathfinding grids. The results are
not conclusive. In top-spin there are large gains from using
inconsistent heuristics and BPMX. In pathfinding problems
there can be gains, but this depends on the types of maps be-
ing used. It is our conjecture that the gains from BPMX and
inconsistent heuristics with A* are related to the number and
size of cycles within the state space. A detailed exploration
of inconsistent heuristics in A* is left as future work.

Conclusions and Future Work

Historically, inconsistent heuristics have been avoided be-
cause of the cost of re-expanding closed nodes with A*, but
this is not a concern with IDA*. This paper has demon-
strated that inconsistent heuristics are easy to create, and that
alarge speedup can be achieved when using them with IDA*
and BPMX. This represents a significant change to the con-
ventional wisdom for heuristic search.

Exploring the possible potential gain for using inconsis-
tent heuristics with A* is the subject of on-going research.
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