Sampling with Memoization

Avi Pfeffer
School of Engineering and Applied Sciences
Harvard University
avi@eecs.harvard.edu

Abstract

Memoization is a fundamental technique in computer sci-
ence, providing the basis for dynamic programming. This pa-
per explores using memoization to improve the performance
of rejection sampling algorithms. It is shown that reusing
values produced in previous samples and stored in a cache is
beneficial. The paper goes on to explore the idea of recursive
memoization, in which values are aggressively reused from
the cache even in the process of computing a value to store
in the cache. This leads to the values in the cache becom-
ing dependent on each other, and therefore produces a biased
sampler. However in practice this seems to be quite benefi-
cial. Furthermore, we show that the error in the cache tends
to zero in the long run. We demonstrate the usefulness of
memoized sampling in a duplicate bridge simulation, and in
experiments with probabilistic grammars.

Memoization is a fundamental technique in computer sci-
ence. In memoization, when a function is evaluated on argu-
ments, the value returned is cached, so that whenever the
function is called again on the same arguments the value
can be retrieved from the cache. This can potentially save
a great deal of computation, as the function does not have
to be evaluated again. Memoization provides the basis for
dynamic programming.

Probabilistic models are a basic tool of artifi cial intelli-
gence. The approach is to represent the domain using a prob-
abilistic model, make observations, and infer probabilities of
query variables using probabilistic inference. In many cases,
the models are too complex to perform inference exactly,
so approximate algorithms are needed. Sampling is one of
the most important approaches to approximate inference in
probabilistic models. There are various families of sampling
algorithms, including rejection sampling (see e.g. (Robert &
Casella 2004)), importance sampling (Srinivasan 2002), and
Markov chain Monte Carlo algorithms (Gilks, Richardson,
& Spiegelhalter 1996), each of which has a useful role. This
paper explores the idea of exploiting memoization to im-
prove the performance of rejection sampling algorithms.

The context is a highly expressive language for proba-
bilistic modeling called IBAL (Pfeffer 2007a). By defi n-
ing an inference algorithm for this language, we automati-
cally obtain an algorithm for a wide variety of models. Fur-

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1263

thermore, IBAL provides a natural basis for thinking about
breaking up a complex model into the evaluation of different
expressions. It also allows us to explore the issues that arise
for sampling with memoization in full generality.

Straightforward memoization as applied to deterministic
programs does not work for sampling. In deterministic pro-
grams, we want to get the same value every time an expres-
sion is evaluated. For sampling, we want to get indepen-
dent samples from the distribution defi ned by the expres-
sion; we explicitly don’t want to reuse the value previously
computed. However, there is a natural alternative. Instead
of using the values computed for the same sample, we can
reuse values computed in previous samples. The different
values selected can be made independent of each other, so
that samples are taken from the correct distribution.

This simple idea raises many questions which are ex-
plored in this paper. One important extension is to use the
cache recursively, while we are actually computing values to
be stored in the cache. This allows a great deal more com-
putation to be saved, but it makes the values in the cache
dependent on each other. As a result, samples taken using
the cache will be biased. We show that this bias tends to
zero in the long run. We present experimental results from
a duplicate bridge simulation and from probabilistic gram-
mars that show that sampling with memoization works well.

IBAL

IBAL (Pfeffer 2007a) is a highly expressive and general lan-
guage for representing probabilistic models. It can repre-
sent any generative model over discrete variables that can be
expressed as a program. This includes Bayesian networks,
hidden Markov models, dynamic Bayesian networks, prob-
abilistic relational models, probabilistic context free gram-
mars and many more. The basic idea behind IBAL is that
a program describes the way in which the world is gener-
ated. In an ordinary programming language, an expression
represents a computation that produces a value. In IBAL,
an expression represents a computation that stochastically
produces a value. The meaning of an expression is the prob-
ability distribution over the value that it produces.

IBAL uses the following concepts. A value is a symbol,
integer, Boolean, tuple, or function. A pattern is a template
that matches values. An environment is a mapping from vari-
able names to values. An expression is any of the following:

c // constant
a // variable
(a1 = €1,y = €5) // tuple construction
€.a /I component access

// conditional

/I pattern matching

// stochastic choice
/I variable binding

// function defi nition

if €1 theney elseeg
caseeyof {m :€1,..., Ty €}
dist [p1: €1,y Pt €n)
leta=¢€; iney

let ap(ay,...,a,) = €1 in ey

€1 @ €2 /I operator

€o(€1y s €n) // function application
€1 == €2 // equality test
obsmine // observation

where c denotes a constant (symbol, integer or Boolean),
a denotes a variable name, € denotes an expression, m de-
notes a pattern, p denotes a probability, and ® denotes a pre-
defi ned operator. The intuitive meaning of most of the ex-
pression forms is the same as in ordinary programming lan-
guages. A dist expression defi nes a process that stochas-
tically chooses the value of one of its subexpressions, each
with a given probability. An expression let a = €; in €3
defi nes the process of binding a to the result of evaluating
€1, and evaluating €5 in the environment extended by this
binding. An expression obs 7 in € evaluates to the result
of €, but conditioned on the result matching 7. A program is
simply a top-level expression that we are trying to evaluate.

It is easy to define a rejection sampling algorithm for
IBAL. A sample function is defi ned for each type of ex-
pression, that samples a value for the expression in the
current environment. For example, sample(if e; then
ey else es, V), where v is the environment, first calls
sample(e;, v). If the result is true, sample(es, V) is
called and the result is returned, otherwise sample(es, V)
is called. sample(obs 7 in eq, v) first calls sample(e,
V) to obtain a value z. If m matches z, x is returned, oth-
erwise a Reject exception is thrown. This exception is
caught by the top-level sampling algorithm, and results in
the sample being rejected.

In most discussions of sampling, a sampling run consists
of a number of samples being taken from a distribution.
However, for us the process of taking a sample from the dis-
tribution defi ned by a program may involve sampling many
subexpressions. To avoid overloading the word “sample”,
we will use the following language in this paper. An evalua-
tion is the process of (stochastically) producing a value for a
particular (expression, environment) pair. A sample consists
of one evaluation of the top-level program in the empty envi-
ronment. A sampling run consists of a sequence of samples.
In a sampling run, the algorithm keeps track of the number
of successful samples, the values produced, and the number
of rejections. The estimated probability of the observations
is then the number of successful samples divided by the to-
tal number of samples. The estimated probability of a value
given that the observations are satisfi ed is the fraction of suc-
cessful samples that produced that value.

1264

The Basic Idea

We now explore the possibility of improving this sampling
algorithm through memoization. As a motivating example
we will use the following problem: What is the probability
that if two numbers are drawn from the same geometric dis-
tribution with parameter A, the second will be greater than

the first by the amount d. In this case we can express the

e A2(1-0)¢
probability in closed form, as ==z But suppose we

wish to compute this probability by sampling. We can ex-
press it as the following IBAL program:

let g() = dist [A : O,
11— 1 +g() 1 in
let x = g() in
let v = g() in
vy - x ==d

where A\, 1 — X and d are fi lled in with appropriate values.
If this was an ordinary program, we could observe that g ()
is evaluated twice, so we could store the result of the first
evaluation in the cache, and reuse it for the second evalua-
tion. A naive idea is to do the same thing for sampling. But
this is a bad idea. It results in an extremely biased sampler.
In our case, the value of y would become the same as the
value of x,s0y - x == d will always be false, so the
probability of y - x == d will be underestimated.

A much better idea is to maintain a cache of all values
previously produced for g () . When a new value of x needs
to be produced, we simply draw an item uniformly from the
cache. Since all the elements of the cache are drawn from
the correct geometric distribution, and are independent of
the value currently produced for x, we expect the value pro-
duced for the program in the current sample to be drawn
from the correct distribution. (To make this work, we must
delay storing the value produced for x until after the sample
has been completed.) This is an ex ante argument. Before
we know what is in the cache, we expect that the value of the
program will be drawn from the correct distribution. After
we know what is in the cache, however, we will believe the
distribution to be biased. For example, before we start sam-
pling, we will expect the value x; of x in the fi rst run to be
drawn from the geometric distribution, and the value x5 of
x in the second run to be independent of it. Since y will be
assigned to be x1, and compared to x5, the result of the test
will be true with the correct probability. However, once
we know that 1 = 100, then the test will be true with the
probability that x5 = 98, which is different from the correct
probability. The hope is that this will be made up for by the
fact that ex ante the sampler is unbiased, and we will be able
to take many more samples.

In a general program it may be hard to determine au-
tomatically when to store items in the cache and when to
reuse them. For this reason we introduce explicit store
and reuse directives. The program above becomes

A
1-A

in

= dist

let g/() [0,

1+ g() 1 in

let x

store g()

let y = reuse g() in
y—X::

The key to the cache is an (expression, environment) pair,
because that is what uniquely determines the evaluation.
However, it does not use the complete environment in which
the expression is evaluated. Rather, the environment is re-
duced so that it only contains variables used by the expres-
sion, since those are the only variables that affect the eval-
uation of this expression. Reducing the environment in this
way can greatly increase the number of cache hits.

This simple memoization works quite well. The table be-
low compares the performance of the program with mem-
oization to the program without. The first two rows show
performance when A = 0.05. Each program was given
0.05 seconds of sampling time. All results in this paper are
averaged over 10000 tests, except where otherwise stated,
and all errors are relative error. We see that with memoiza-
tion, the method was able to take more samples, and thus
achieve signifi cantly lower error. The number of samples
was not quite double, because there is some overhead to us-
ing the cache. The next two rows shows performance when
A = 0.01, which is a much more diffi cult task for two rea-
sons. It takes much longer, on average, to take a sample,
and the correct probability of true is much smaller. We
see similar performance benefi ts for memoization. The last
two rows show performance when the samplers were given
10 times as much time. We see that the benefi ts of memo-
ization are just as strong in this case.

Method A | Time | Samples | Error
Nomemo | 0.05 | 0.05 782 0.1876
Memo 0.05 | 0.05 1386 0.1425
No memo | 0.01 | 0.05 158 0.9100
Memo 0.01 | 0.05 307 0.6561
No memo | 0.01 0.5 1520 0.2930
Memo 0.01 0.5 2943 0.2096

Multiple reuses

We said earlier that in order for the reused value for y to
be independent of the value produced for x, we should de-
lay storing the value of x in the cache until after the sample
has completed. Unfortunately this is not a general solution.
In a program with multiple reuses, the different reused val-
ues may be dependent on each other, even when we do not
store values produced in the current sample. For example,
consider the following program.

let g() = dist [A : 0,
1-X: 1 + g() 1 in

let x = store g() in
let y = reuse g() in
let z = reuse g() in
z -y ==d

There is a possibility that y and z will reuse the value
from the same evaluation. When that happens, the test will
definitely be false. Therefore the memoized sampler will
underestimate the true probability. This effect is small but

1265

noticeable. When the sampler is given 0.05 seconds and an
average of 1312 samples are taken, the algorithm underesti-
mates the true probability by a factor of 0.008 on average.

This problem can be solved by ensuring that the same
value is not reused multiple times in one sample. Each value
in the cache has a reused flag. When a value is reused,
its flag is set, and the value is added to a list of values that
have been reused. If a subsequent call to the cache results in
a value that has already been reused, the value is discarded
and a new evaluation is performed instead. At the end of the
sample the flag is cleared for all values in the list.

Driving forward

To this point, we have ensured that at least one evaluation
of an (expression, environment) pair is performed and its re-
sult stored in the cache before the cache is reused. In fact
this is not necessary. All that is needed is that there should
be some momentum driving forward to produce new evalu-
ations. These do not necessarily need to be of the same pair.
For example, consider the program

let gl() = dist [Ay : O,
1-—X 1 + gl()] in
let g2() = dist [XAy : O,

1— X 1+ gl() 1 in
let x = dist [p reuse gl(),
1—p : store gl()] in
let v = dist [p reuse g2(),
1—p : store g2() 1 in
y - x ==

where p is a probability. In this program, there is a proba-
bility that one or two stores will occur on every iteration, so
there is always forward driving momentum. In fact, mem-
oization works in this example. Without memoization, 690
samples are taken and a error of 0.2054 is achieved (given
0.05 seconds of computation time). With memoization, with
p = 0.5, 1192 samples are taken for a error of 0.1629. Look-
ing more closely, we can see what happens as p is varied.
The results are shown in Figure 1. Somewhat surprisingly,
performance improves as p is increased even up to 0.9. This
shows that the key operation in this program is comparing
values from the two distributions, even when new values are
not produced. Nevertheless, some degree of forward mo-
mentum is needed for this to be a correct sampler.

0.32
03 r
0.28 -
0.26
0.24
0.22 -
02 F
0.18
0.16
0.14
012

Error

0.1
01 02 03 04 05 06 07 08 09 1
Probability of reuse

Figure 1: Forward driving performance with different prob-
abilities of reuse

Recursive Memoization

If memoization is a good idea, maybe we can be more ag-
gressive about it. An idea is to memoize recursive calls of
an expression. This goes beyond memoization in determin-
istic programs. There, the fi rst computation of an expression
must fi nish before its value can be used. But here, we are
reusing the items in the cache even to compute the result that
gets placed in the cache. Our example program becomes

let g() = dist [A 0,
1—A 1 + reuse g() 1 in
let x = store g() in
let y = reuse g() in
vy - x == d

A quick test shows that this is a very bad idea. Even
though many more samples are taken (6168), the average
error is 1.2322, which is much worse. It is easy to see why:
the entries in the cache are not independent of each other.
When we store a value in the cache, it is based on a reused
value already in the cache. Since we expect the cache to be
biased, the new values put in it will not be drawn from the
correct distribution, but will instead be drawn from a distri-
bution related to the distribution in the cache.

Perhaps, however, if we prime the cache with a reason-
able number of values, its distribution will be a good enough
approximation to the true distribution that the advantage of
being able to take more samples dominates. This turns out
to work. For example, with 400 priming values the error is
0.0930 (A = 0.05), which is much better than the 0.1425
achieved with non-recursive memoization. Figure 2 shows
the performance of recursive memoization, as a function of
the proportion of the running time used to prime the cache,
under different circumstances. The dashed line shows per-
formance when A = 0.05. There is a trade-off to using more
priming values. More primers allows the cache distribution
to be closer to the true distribution, but allows fewer total
samples to be taken. We see that for much of the curve,
performance is signifi cantly better than for simple memo-
ization. The solid line shows results for the case where
A = 0.01. The shape of the curve is similar, but more time
should be devoted to priming for optimal performance. A
reasonable explanation for this is that since it takes longer
to produce a sample, more time is needed to ensure that the
cache is reasonable. This is confi rmed by the dotted line,
which shows performance for A = 0.01 when the algorithm
was given 10 times as long. Here the cache becomes a rea-
sonable size in a smaller fraction of the total time.

Why does this work? After all, if the new item being
stored in the cache is dependent on the cache distribution,
wouldn’t we expect the cache to get worse and worse? In
fact we can show that, ex ante, we can expect the cache to
get better on each evaluation. Let P be the true geometric
distribution, let () be the distribution over items in the cache,
and let R be the distribution over the new item stored in the
cache. We claim that || R, P||; = (1 — \)||Q, P||;. This is
an instance of a general theorem we will prove later, but the
argument here is particularly simple. To see this, let N; be
the number of times 7 is in the cache, and let N be the total

1266

0.6

lambda =0.01 ——
lambda = 0.05
lambda = 0.01, long run

05

0.4

0.3

Error

02

01

0

0.2 03 04 0.5 06 07
Fraction of running time used for priming

0 0.1 0.8

Figure 2: Performance of recursive memoization

number of items. Then Q(i) = jjvv Meanwhile R(0) = A,
and R(i) = (1 — A\) M2, while P(i) = A(1 — \)’. Then
IR, P|x Dico |R(i) — P(3)]
= 0+ 3272, (1= N A1 -]
= (1=N32 [T =A='
= (1-NQ,Pl:

In this case, a similar result can be shown for the KL-
distance. As we will show later, this implies that the cache
gets better and better, and eventually the bias in the cache
will tend to zero at a rate of O(M ~*), where M is the num-
ber of values produced after the cache has been primed.

Variations
Recursive stores

Recursive memoization means aggressively reusing values
for subexpressions when storing a higher-level expression.
Since it seems to be a good idea, maybe we can be similarly
aggressive about recursively storing values. That is, while
we are evaluating an expression to be stored, we evaluate a
recursively called expression and store it. For example, the
program

let g() = dist [A 0,
1—X: 1 + dist [
p : store g(),
1—p reuse g() 1 1 in
let x = store g() in
let y = reuse g() in
v - x == d

Recursive stores have the advantage that the cache is fi lled
up more quickly, and if a given number of primers are
needed they are produced more quickly. However, they are
dangerous. With recursive stores, not only are values stored
in the cache dependent on previously stored values, the dif-
ferent values stored within a single sample are dependent
on each other. The previous result that the new sample is
guaranteed to be drawn from a better distribution than the
cache distribution cannot be shown in this case. When we
test this idea, we fi nd that it performs poorly. The best er-
ror is 0.0982, which is somewhat worse than the 0.0930 for
recursive memoization without recursive stores.

A related idea is as follows. When we try to reuse an ex-
pression, if we do not find the expression in the cache or
cannot use the sample in the cache for some reason (perhaps
because we don’t have enough primers), we do the work of
evaluating the expression from scratch. Intuitively it makes
sense that we should store the resulting sample — after all,
we have gone to the work of generating it. This will re-
sult in the cache being filled up more quickly. This can be
achieved without any explicit store directives; a reuse
directive is taken to be an implicit store if the reuse does
not actually happen. This in our example we could use the
standard recursive memoization program from earlier. Un-
fortunately, this idea runs into the same problem as recur-
sive stores. This happens because in recursive memoization
we may have calls to a reuse expression nested recursively
within other calls to the reuse expression. If we store sam-
ples whenever a reuse expression is seen and we fail to ac-
tually reuse a sample from the cache, we will end up storing
values recursively, and the stored values will be dependent
on each other. A quick check shows that this method also
works poorly, as its best performance is 0.0997.

Handling observations

A different idea comes into play when values within a pro-
gram are constrained to match observations. When different
subexpressions have the same constraint, we can reuse val-
ues from the cache in the same way we have been doing so
far. For example, consider the program

let £() = dist [.05 : O,

.95 1 + £() 1 in
dist [.01 : O,

.99 ¢ 1 4+ g() 1 in

let g()

let x = £() in

let vy = store (obs > x in g()) in
let z = reuse (obs > x in g()) in
z -y == 2

In this program, a value x is first generated from a geo-
metric with parameter 0.95. The expression obs > x in
g () means the result of evaluating g (), conditioned on
the fact that it is greater than x. The program stores and
reuses the result of obs > x in g (). However, recall
that when sampling this expression, the algorithm fi rst sam-
ples g () and then throws a Reject exception if the result
is not greater than x. When the sampling algorithm samples
a store expression, it handles Reject exceptions. If such
an exception is caught, the sampler stores the special result
R in the cache, and then it re-throws the exception. If, later,
when reusing a sample from the cache, a R result is found, a
Reject exception is immediately raised and sampling fails.

This is correct, but potentially wasteful. If most of the
samples of g () are rejected, most values stored in the cache
will be Reject, and most reuses will result in immediate
rejection. It would be better to focus attention on the suc-
cessful items in the cache. This leads to an importance sam-
pling idea. In importance sampling, the sampler produces
weighted samples. The probability of the evidence is esti-
mated to be the average weight of the samples produced, and
the probability distribution of a result value is the weighted

1267

fraction of successful samples that have that value. A sample
that is rejected is interpreted as having weight 0. The idea
behind the importance sampling algorithm is this. Instead
of storing Reject results in the cache, we simply keep
track of the number of rejections R and successes .S for each
(expression, environment) pair, and store only the success-
ful samples together with their weights. When reusing, we
choose one of the successful samples « with weight w, and
return z with weight }f—f’s. Combining weights for higher-
level expressions in terms of subexpressions is straightfor-
ward. For example, sample(if e; then ey else eg,
v), works as follows. First sample(eq, v) is called to pro-
duce (1, wy). If the 1 is true, sample(es, v) is called
to produce (z2,ws), and (z2,w; * wy) is returned. Oth-
erwise sample(es, v) is called to produce (z3,ws), and
(23, w1 * w3) is returned.

When tried on the above program, this idea is mildly
successful. Without importance sampling 0.1896 error is
achieved, while the importance sampler achieves 0.1831. It
remains to be seen whether the gains of the method might be
larger in other examples. This is a rudimentary form of im-
portance sampling. The only thing that generates interesting
weights is the store/reuse mechanism. A better importance
sampling algorithm would actually try to use the observa-
tions themselves to guide the production of values. For ex-
ample, in the above program, we could use the observation
that the result of g () is greater than x to guide the sampler
to force that property, weighting the sample appropriately.
This is quite diffi cult to do in a general way. We have devel-
oped a general-purpose importance sampling algorithm that
uses this idea (Pfeffer 2007b).

General Programs

Thus far we have considered some simple special cases of
geometric distributions. The ideas above also apply to gen-
eral IBAL programs. In general, with recursive memoization
the distribution over instances stored in the cache gets better
over time, and as a result the error in the cache tends towards
zero. We focus initially on the case where there is only one
(e, v) pair that is being stored and reused.

Theorem 1: Let (¢, v) be the only (expression, environment)
pair being stored and reused. Let 0 be the expected total
number of evaluations (the topmost evaluation plus all the
recursive evaluations) of (e,v) when (e,v) is evaluated, if
caching is not used. Assume that 0 is finite. Let \ = 1— %=1
Let P(x) be the correct probability that evaluating (e,v)
will produce x without caching. Let Q(x) be the probability
that x will be produced from the cache for (e,v). Let R(x)
be the probability that evaluating (e, v) will produce x with
caching. Then |R, P||1 < (1 —\)||Q, P|1.

Proof sketch: Let n? be the number of reuses in an eval-
uation o of (e,v). We first show that E[7f] = 1 — A
Each reuse of (¢,v) when caching is used would lead to a
recursive evaluation (e,) when caching is not used. The
recursive evaluation involves in expectation 6 evaluations of
(e,v). Thus 6, the expected number of evaluations, is equal
to 1 (for the topmost evaluation) +FE[n?]6. It follows that

En? =%t =1-\

We construct a Bayesian network to represent the possible
evaluations of (¢,r). A node in the network represents an
(expression, environment) pair that may possibly be evalu-
ated in the course of evaluating (¢, v).! The parents of a node
are the subexpressions appearing in the expression with their
possible environments. For example, the parents of the node
(if €; then e; else ez, V') are the nodes (e1,1), (e2, 1)
and (e3,7’). Note that a node (let X = €1 in €, 7') may
have countably many parents, corresponding to the different
possible environments in which e, may be evaluated. The
conditional probability distribution of a node implements
the semantics of the expression. This Bayesian network is
an inverted tree, with the sole leaf being (¢,). The roots
of the network are constants, variables and reuses of (e, v/).
Although the network may be infi nite, we can defi ne its se-
mantics using the techniques of (Pfeffer & Koller 2000). Be-
cause 6 is fi nite, the program is guaranteed to terminate with
probability 1, and the network defi nes a unique distribution.

Next we assign a weight to each node in the network,
representing the probability that the node will be evaluated
during the course of evaluating (e,). These weights are
assigned from the leaf upward. For example, if the node
(1f € then ey else e3,') has weight w, then (e1,v')
has weight w, (e, ') has weight pw where p is the prob-
ability (e7,v’) evaluates to true, and (e3,r’) has weight
(1 — p)w. For any node X, let R¥ denote the probabil-
ity distribution over the node in the network, and let PX
denote its true distribution without caching. Let X be a
node in the network with weight w, and let its parents be
Uy, U,, ... with weights wy,ws,.... It can be shown that
[RX, Py < &3, w;||RY:, PYi||. This can be verifi ed
by considering each expression form in turn. For example,
foranode X = (if €; then ey else €3, ') with parents
U1, Us and U3, we have

HRX7PX||1
= XL |[R¥(2) - P¥(2)]
RYi(true)RY2(z)
_ +RY1(false)RY:(z)
= 2 —PY(true)PY2(z)
—PUi(false)Pl(z)
(RY1(true) — PV (true))RY2(2)
. +(RY2(2) — PY2(2))PY (true)
2| —(RYi(false) — PY'(false))RY3(2)
—(RY3(2) — PYs(2))PYs(false)
|(RY:(true) — PVs(true))RYz(2)|
o5 HR%() - PR) P erue)
- = +|(RY1(false) — PY'(false))RY3(2)|
+|(RY(2) — PY(2))P" (false)|
|RY (true) — PYi(true)|
< +|RU1(false2[—PU1(f51se)\
: 1 [RU2(z) — PUa)
F e | RU) — PO)

w
= SRY P+ 22RY P I + 2 RY. PY Iy

!The same (expression, environment) pair may appear at dif-
ferent points during the evaluation. Each appearance is a separate
node in the network.

1268

It follows that the error at the leaf, || R, P|| is at most the
weighted sum of the errors at the roots. Roots representing
constants and variables have zero error. Roots representing
reuses have error ||@, P||. Now, the weight of a reuse root
is the expected number of times that particular reuse will
occur. Thus the total weight of the reuse roots is the expected
number of reuses, i.e. E[n?], which we have shown to be
equal to 1 — A. Therefore | R, P|| < (1 — A)||Q, P|- }

It follows from this result that the new cache after a sam-
ple will be better than the old cache. In particular, let Q' be
the new cache distribution after one new sample. Then, by
convexity of the 1-norm,

1R, Pl ||#Q+ﬁ3alplll

NH221Q, Py

Inductively, if Q° is the cache distribution after i new sam-
ples, we get

QM. Pl <

IVANI

N+1=X)-(N+ M-\
10
+1
rvaioran 19, Pl
where I' is the Gamma function. According to Stirling’s
formula (Artin 1964),

I(z) =V 2t Rt

where « is a constant between 0 and 1. This implies that

D(M—)) (M—-M\""*? 1 L
~ e)\6 T3M (M —X)
(M) M (M — 2>

The first term is O(1), the second is O(M~*) and the last
is O(1). Therefore the error in the cache after M samples is
O(M—H).

We would expect from this that the performance of recur-
sive memoization would be worse when A is small. On the
other hand, when) is small more computation is saved, and
therefore relatively more samples can be taken. For the ge-
ometric distribution example, we have seen that the savings
are just as great when A = 0.01 as when \ = 0.05.2

Similar ideas carry over to the general case in which there
may be many (e, /) pairs being stored and reused. However
the situation is more complex. It may be possible for R to
be worse than) for a particular (e, v) pair in a particular
evaluation. This can happen when one function calls another
recursive function many times. However, in this situation,
the second recursive function cannot call the fi rst one many
times, or else the computation would diverge. Therefore,
intuitively, things get better overall. In fact, one can prove
the following theorem:

Theorem 2: Let P, ,, denote the true distribution for (€, v),
e, denote the original cache distribution, and RF denote
the distribution over the value produced in the k- th lteranon
starting with the original cache. Define the metric ||Q, P|| =
maxe |Qe,vy Peyll1. Then, if the number of (e,v) pairs
that gets stored and reused is finite, there exists a finite K
such that |R¥, P| < ||Q, P||.

2For the geometric distribution, \ as defined in this section and
) as defined earlier are equal.

Proof sketch: Let 1 and jJ denote (expres-
sion,environment) pairs. Let n” denote the number of

recursive calls to j at depth k£ when ¢ is evaluated. Note that
k—
ngj] = ZE[n}j]E[njjll]
J

Let Q¥ denote the cache distribution after k iterations. Q¥
is a mixture of N—Jrk parts of (), and parts of each of
Rifort=1,..k—1.

We will show that we can write

N+k

IR, P < Z ZE Q. Pl 1)
where
¢ N
ay N+e 1 ,
afn = N+F 12@/—m 1 m ; form>1

This is proved by induction. The base case follows from
the Bayesian network construction in the proof of Theo-
rem 1. For the induction step, it follows from the same
Bayesian network construction that

IR, Pilla
E E[z]]HQjapnl
Z E[z]]HNJrk Ze 1R€+N+kQ3’PH1

> Blnil(ws Ze 1HR’3,PII1+ iz llQs Fyll)
N+k ZE 1Zm 12
>, Eln]

Eln7 1@y, Pyl
+N+k”Q]vPH1
N+k Zm 122 m mz E[’LJ}ZJ/
EngQ;, Pyl
+N+k2 Eln ZJ}HQWPHl

29
N+k Somet St U 5 Bl 1Qs, Pyl
+N+kz E[l]}HQ]?‘P”l

The following two claims can be proved by induction:

LYt el =1
2. Vevm,IKE s.t.al, < e, V0 > K¢,

Now, let 6; denote the total expected number of func-
tion calls (including the topmost call) when i is evaluated.
Because the total expected number of calls is the sum of
the expected number of calls at all depths, it is clear that
Yoy 2o Elni] = 6; — 1. Tt follows that there is a H such

IA A IA

that), E[]<7f0rallm>H
Lete = m, and let K = maxfi 1 K¢, from claim
2. Then Y, ~1ak 3. B[] < (H— De(0; — 1) < .

By claim 1, Zm u mz E[nj}] < 5. Therefore, from
Equation 1, || R*, P|| < ||Q, P||, as des1red.
1

1269

Larger Experiments

To test memoization on larger models, we used the game of
duplicate bridge. Bridge is a card game for four players in
two pairs, one of which sits North-South and the other East-
West. The cards are dealt to the players, and the game then
consists of two phases. In the bidding phase, players hold an
auction. The pair with the winning bid undertakes a contract
to take a certain number of “tricks” in the second phase. The
second phase, known as the play, consists of a sequence of
thirteen tricks. In a trick each player plays a card, and the
pair with the winning card takes the trick. At the end of
the play, the two pairs receive a score depending primarily
on whether the contract was achieved. There is a bonus for
achieving contracts of specifi c levels.

In duplicate bridge, there are a certain number of tables,
each involving a N-S pair playing an E-W pair. All of the
tables involve the same deal of cards. At each table, the two
phases of the game are played, and a score is received. The
scores of all the N-S pairs are then compared, and each pair
obtains a score depending on how many other N-S pairs it
beat. A similar procedure is applied to the E-W pairs. Thus
the true opponents of a N-S pair are not the E-W pair at the
same table, but the other N-S pairs. Playing well involves
not only choosing actions that lead to a good score at one’s
own table, but also envisioning what pairs at other tables
might be doing.

Excellent bridge programs have been developed in
GIB (Ginsberg 1999) and Bridge Baron (S.J. Smith &
Throop 1998). We have implemented a bridge simulator
in IBAL. A simulator along these lines might be used in a
bridge playing program to try to predict what other players
might do. The simulator works from the point of view of a
particular player at a particular table, (whom we shall call
the owner), who is considering what bid to make after a cer-
tain bidding sequence. The owner’s cards and previous bids
are given, and do not vary from sample to sample. First, the
simulator randomly deals the remaining cards to the other
players. Then, it proceeds to process the bidding at the table
of the owner. For previous bids of other players at the table,
it observes that the bid generated by the simulator matches
the bid they actually made. If not, the sample is rejected.
Once all previous bids have been checked, the owner makes
a decision, and the rest of the bidding and play at that table
are simulated. Then the bidding and play for all the other
tables are simulated, using the same cards. Finally a score is
obtained, and recorded along with the decision of the owner
of the simulation.

We tried our simulator on a deal with a moderately likely
bidding sequence, using both an unmemoized sampler, and
a sampler that memoized the play phase. We measured the
accuracy of the estimate, its variance, and the percentage of
time that the algorithm made the correct bidding decision.
We also show the number of samples agreeing with the ob-
servations obtained. 10 seconds were allocated to the sam-
pling time, and 1000 tests were taken. The results, shown
in the following table, show that memoized sampling does
signifi cantly better according to all three measures.

Strategy || Samples | Error | Variance | % correct
No memo 22.4 1.28 2.59 93.1
Memo 86.7 0.761 0.926 99.0

This is a good example for illustrating the role of different
sampling algorithms. The problem can be decomposed into
two parts: sampling likely hands for the other players given
their bids, and sampling possible plays of the cards. Rejec-
tion sampling works well for the former problem when bid-
ding sequences are reasonably likely, but runs into trouble
with unlikely bidding sequences. In a real bridge applica-
tion, we would probably use MCMC for the fi rst problem.
Much progress has been made on MCMC algorithms for
general probabilistic models (Milch & Russell 2006). How-
ever, rejection sampling (which is just forward sampling in
this case) is an excellent algorithm for the second problem,
which requires simply generating values from the simulator.

We also performed experiments on a small probabilistic
context free grammar (PCFG), using the example in Chap-
ter 5 of (Charniak 1993). The task was to predict a miss-
ing word given the presence of other words. A PCFG can
be easily encoded in IBAL. Each non-terminal symbol is
represented by a recursive function. A production such as

S 2 AB involves calling the function for A, calling the
function for B, and concatenating the results. This exam-
ple involves recursive memoization, with several mutually
recursive functions calling each other. Two types of memo-
ization strategies were used. In the fi rst, some of the calls to
non-terminal functions were always stores, and some were
always reuses. We see from the table below that the gains
from this strategy were modest, even though twice as many
examples were taken. The second strategy uses driving for-
ward momentum. The idea is that every time a production
is encountered, it is guaranteed that one of the non-terminals
on the right hand side will be evaluated, so new values for the
cache are always produced. However, the choice of which
non-terminal to evaluate is stochastic. So for example the

. 0.6 . . .
production S = AB is turned into the expression

dist [0.3:append(store A(), reuse B())
0.3:append(reuse A(), store B())]

As the table shows, the gains are quite signifi cant.

Strategy | Samples | Error | Variance
No memo 6037 0.1157 | 0.005108
Memo 1 11425 | 0.1004 | 0.003852
Memo 2 11627 | 0.0663 | 0.001641

Conclusion

This paper has explored the idea of memoization in sam-
pling. It has shown that the idea of reusing past samples
is benefi cial, and leads to signifi cantly lower error. Further-
more, being aggressive about using memoization recursively
produces additional signifi cant improvements. While recur-
sive memoization leads to elements of the cache being de-
pendent on each other, we have shown that over time the
error of the cache decreases to zero, so we can expect the

1270

sampler to be unbiased in the long run. We have demon-
strated the effi cacy of memoized sampling with a duplicate
bridge simulation and with stochastic grammars.

Further work is needed to determine when exactly the
method is likely to be effective. Clearly, if it is very cheap to
draw from a distribution, there is no point in caching it and
reusing samples from the cache. Using the cache needs to
be signifi cantly cheaper than drawing from the distribution
to be worthwhile, but how much cheaper does it have to be?
Another issue is the space cost of the algorithm. As more
and more samples are taken, the cache could become very
large. One idea is to cycle values out of the cache as it be-
comes full, but whether or not the cache will get better over
time needs to be explored.

Rejection sampling is only one family of algorithms.
While it has a useful role to play, other algorithms may be
more appropriate in many circumstances. As mentioned ear-
lier, we have developed a general importance sampling algo-
rithm for IBAL, and we hope that many of the ideas in this
paper will carry over there. Extending the ideas to MCMC
is an important direction for future work.

References

Artin, E. 1964. The Gamma Function. Holt, Rinehart and
Wilson, New York. Translated by Michael Butler.
Charniak, E. 1993. Statistical Language Learning. MIT
Press.

Gilks, W.; Richardson, S.; and Spiegelhalter, D. 1996.
Markov Chain Monte Carlo in Practice. Chapman &
Hall/CRC.

Ginsberg, M. 1999. GIB: Steps toward an expert-level
bridge-playing program. In International Joint Conference
on Artificial Intelligence.

Milch, B., and Russell, S. 2006. General-purpose MCMC
inference over relational structures. In Uncertainty in Arti-
ficial Intelligence (UAI).

Pfeffer, A., and Koller, D. 2000. Semantics and inference
for recursive probability models. In National Conference
on Artificial Intelligence (AAAI).

Pfeffer, A. 2007a. The design and implementation
of IBAL: A general purpose probabilistic language. In
Getoor, L., and Taskar, B., eds., Statistical Relational
Learning. MIT Press. In press.

Pfeffer, A. 2007b. A general importance sampling algo-
rithm for probabilistic programs. In submission.

Robert, C., and Casella, G. 2004. Monte Carlo Statistical
Methods. Springer-Verlag, New York, 2nd edition.

S.J. Smith, D. N., and Throop, T. 1998. Success in spades:
Using Al planning techniques to win the world champi-
onship of computer bridge. Al Magazine June.

Srinivasan, R. 2002. Importance Sampling. Springer-
Verlag, New York.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

