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Abstract

Human visual capability has remained largely beyond the
reach of engineered systems despite intensive study and con-
siderable progress in problem understanding, algorithms and
computing power. We posit that significant progress can be
made by combining existing technologies from computer vi-
sion, ideas from theoretical neuroscience and the availability
of large-scale computing power for experimentation. From
a theoretical standpoint, our primary point of departure from
current practice is our reliance on exploiting time in order to
turn an otherwise intractable unsupervised problem into a lo-
cally semi-supervised, and plausibly tractable, learning prob-
lem. From a pragmatic perspective, our system architecture
follows what we know of cortical neuroanatomy and provides
a solid foundation for scalable hierarchical inference. This
combination of features promises to provide a range of ro-
bust object-recognition capabilities.

In July of 2005, one of us (Dean) presented a paper at
AAALI entitled “A Computational Model of the Cerebral
Cortex” (Dean 2005). The paper described a graphical
model of the visual cortex inspired by David Mumford’s
computational architecture (1991; 1992; 2003). At that same
meeting, Jeff Hawkins gave an invited talk entitled “From
Al Winter to Al Spring: Can a New Theory of Neocortex
Lead to Truly Intelligent Machines?” drawing on the con-
tent of his popular book On Intelligence (2004). A month
later at IJCAI, Geoff Hinton gave his Research Excellence
Award lecture entitled “What kind of a graphical model is
the brain?”

In all three cases, the visual cortex is cast in terms of
a generative model in which ensembles of neurons are
modeled as latent variables. All three of the speakers
were optimistic regarding the prospects for realizing useful,
biologically-inspired systems. In the intervening two years,
we have learned a great deal about both the provenance and
the practical value of those ideas. The history of the most
important of these is both interesting and helpful in under-
standing whether these ideas are likely to yield progress on
some of the most significant challenges facing Al

Are we poised to make a significant leap forward in un-
derstanding computer and biological vision? If so, what are
the main ideas that will fuel this leap forward and are they
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new or recycled? How important is the role of Moore’s law
in our pursuit of human-level perception? The full story
delves into the role of time, hierarchy, abstraction, complex-
ity, symbolic reasoning, and unsupervised learning. It owes
much to insights that have been discovered and forgotten at
least once every other generation for many decades.

Since J.J. Gibson (1950) presented his theory of ecologi-
cal optics, scientists have followed his lead by trying to ex-
plain perception in terms of the invariants that organisms
learn. Peter Foldidk (1991) and more recently Wiskott and
Sejnowski (2002) suggest that we learn invariances from
temporal input sequences by exploiting the fact that sensory
input tends to vary quickly while the environment we wish
to model changes gradually. Gestalt psychologists and psy-
chophysicists have long studied spatial and temporal group-
ing of visual objects and the way in which the two operations
interact (Kubovy & Gepshtein 2003), and there is certainly
ample evidence to suggest concrete algorithms.

The idea of hierarchy plays a central role in so many dis-
ciplines it is fruitless to trace its origins. Even as Hubel and
Weisel unraveled the first layers of the visual cortex, they
couldn’t help but posit a hierarchy of representations of in-
creasing complexity (1968). However, direct evidence for
such hierarchical organization is slim to this day and ma-
chine vision has yet to actually learn hierarchies of more
than a couple layers despite compelling arguments for their
utility (Ullman & Soloviev 1999).

Horace Barlow (1961) pointed out more than forty years
ago that strategies for coding visual information should
take advantage of the statistical regularities in natural im-
ages. This idea is the foundation for work on sparse rep-
resentations in machine learning and computational neuro-
science (Olshausen & Field 1996).

By the time information reaches the primary visual cortex
(V1), it has already gone through several stages of process-
ing in the retina and lateral geniculate. Following the lead
of Hubel and Wiesel, many scientists believe that the out-
put of V1 can be modeled as a tuned band-pass filter bank.
The component features or basis for this representation are
called Gabor filters — mathematically, a Gabor filter is a
two-dimensional Gaussian modulated by a complex sinu-
soid — and are tuned to respond to oriented dark bars against
a light background (or, alternatively, light bars against a dark
background). The story of why scientists came to this con-



clusion is fascinating, but the conclusion may have been pre-
mature; more recent work suggests Gabor filters account for
only about 20% of the variance observed in the output of
V1 (Olshausen & Field 2005).

We’re sure that temporal and spatial invariants, hierarchy,
levels of increasingly abstract features, unsupervised learn-
ing of image statistics and other core ideas that have been
floating around for decades must be part of the answer, but
machine vision still falls far short of human capability in
most respects. Are we on the threshold of a breakthrough
and if so what will push us through the final barriers?

Temporal and Hierarchical Structure

The primate cortex serves many functions and most scien-
tists would agree that we’ve discovered only a small fraction
of its secrets. Let’s suppose that our goal is to build a com-
putational model of the ventral visual pathway, the neural
circuitry that appears to be largely responsible for recogniz-
ing what objects are present in our visual field. A successful
model would, among other things, allow us to create a video
search platform with the same quality and scope that Google
and Yahoo! provide for web pages. Do we have the pieces
in place to succeed in the next two to five years?

In many areas of science and engineering, time is so in-
tegral to the description of the central problem that it can’t
be ignored. Certainly this is the case in speech understand-
ing, automated control, and most areas of signal process-
ing. By contrast, in most areas of machine vision time has
been considered a distraction, a complicating factor that we
can safely ignore until we’ve figured out how to interpret
static images. The prevailing wisdom is that time will only
make the problem of recognizing objects and understand-
ing scenes more difficult. A similar assumption has influ-
enced much of the work in computational neuroscience, but
now that assumption is being challenged. There are a num-
ber of proposals that suggest time is an essential ingredient
in explaining human perception (Foldidk 1991; Dean 2006;
Hawkins & George 2006; Wiskott & Sejnowski 2002). The
common theme uniting these proposals is that the percep-
tual sequences we experience provide essential cues that we
exploit to make critical discriminations. Consecutive sam-
ples in an audio recording or frames in a video sequence
are likely to be examples of the same pattern undergoing
changes in illumination, position, orientation, etc. The ex-
amples provide exactly the variation required to train mod-
els able to recognize patterns invariant with respect to the
observed transformations.

There is an even more compelling explanation when it
comes to learning hierarchies of spatial and temporal fea-
tures. Everyone agrees, despite a lack of direct evidence,
that the power of the primate cortex to learn useful represen-
tations owes a great deal to its facility in organizing concepts
in hierarchies. Hierarchy is used to explain the richness of
language and our extraordinary ability to quickly learn new
concepts from only a few training examples.

It seems likely that learning such a hierarchical repre-
sentation from examples (input and and output pairs) is at
least as hard as learning polynomial-size circuits in which
the subconcepts are represented as bounded-input boolean
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functions. Kearns and Valiant showed that the problem of
learning polynomial-size circuits (in Valiant’s probably ap-
proximately correct learning model) is infeasible given plau-
sible cryptographic limitations (1989).

However, if we are provided access to the inputs and out-
puts of the circuit’s internal subconcepts, then the problem
becomes tractable (Rivest & Sloan 1994). This implies that
if we had the “circuit diagram” for the visual cortex and
could obtain labeled data, inputs and outputs, for each com-
ponent feature, robust machine vision might become feasi-
ble. Instead of labels, we have knowledge — based on mil-
lennia of experience summarized in our genes — enabling
us to transform an otherwise intractable unsupervised learn-
ing problem (one in which the training data is unlabeled)
into a tractable semi-supervised problem (one in which we
can assume that consecutive samples in time series are more
likely than not to have the same label).

This property called temporal coherence is the basis for
the optimism of several researchers that they can succeed
where others have failed.! If we’re going to make progress,
temporal coherence has to provide some significant lever-
age. It is important to realize, however, that exploiting tem-
poral coherence does not completely eliminate complexity
in learning hierarchical representations. Knowing that con-
secutive samples are likely to have the same label is help-
ful, but we are still left with the task of segmenting the time
series into subsequences having the same label, a problem
related to learning HMMs (Freund & Ron 1995).

Learning Invariant Features

It’s hard to come up with a trick that nature hasn’t already
discovered. And, while nature is reluctant to reveal its tricks,
decades of machine vision researchers have come up with
their own. Whether or not we have found neural analogs
for the most powerful of these, a pragmatic attitude dic-
tates adapting and adopting them, where possible. David
Lowe (Lowe 2004) has developed an effective algorithm
for extracting image features called SIFT (for scale invari-
ant feature transform). The algorithm involves searching in
scale space for features in the form of small image patches
that can be reliably recovered in novel images. These fea-
tures are used like words in a dictionary to categorize im-
ages, and each image is summarized as an unordered collec-
tion of such picture words.

The basic idea of using an unordered collection of fea-
tures to support invariance has been around for some time. It
even has a fairly convincing story in support of its biological
plausibility (Riesenhuber & Poggio 1999).> However, bal-
ancing invariance (which encourages false positives) against

'0r, at least, it is one half of the basis for betting on the success
of this approach, and the half on which we have concentrated. The
other half relies on the fact that machines, like humans, can inter-
vene in the world to resolve ambiguity and distinguish cause from
correlation. Intervention can be as simple as exploiting parallax to
resolve accidental alignments between distinct but parallel lines.

2Serre et al (Serre ef al. 2007) describe a system achieving
state-of-the-art performance in object recognition by combining bi-
ological clues and techniques from machine vision.



selectivity (which encourages false negatives) requires con-
siderable care to get right. For instance, one approach argues
that overlapping features which correspond to the receptive
fields of cortical neurons avoid false positives (Ullman &
Soloviev 1999); another approach provides greater selectiv-
ity by taking into account geometric relationships among the
picture words (Sudderth et al. 2005).

Lowe’s trick of searching in scale space has an analog
in finding spatiotemporal features in video (Laptev & Lin-
deberg 2003). Finding corresponding points in consecutive
frames of a video is relatively easy for points associated with
patches that stand out from their surrounding context. We
can exploit this fact to track patches across multiple frames.
This method identifies features that are persistent in time. In
addition, it learns to account for natural variation in other-
wise distinctive features. There are cells in the retina, lat-
eral geniculate and primary visual cortex whose receptive
fields span space and time and are capable, in theory, of per-
forming this sort of tracking (Dayan & Abbott 2001). Ex-
actly how these spatiotemporal receptors are used to extract
shape, distinguish figure from ground and infer movement,
is unknown, but clearly here is another place where time
plays a key role in human perception.

Why the ventral visual pathway?

Our focus is on V1 and the ventral visual pathway, that part
of V2 responsible for identifying what is in the visual field.
The motivation is that this seems to be the sweet spot for
relatively uncontested knowledge concerning brain function
and understanding of what is being represented and how it
is being computed. By way of contrast, the dorsal visual
pathway — responsible for tracking the location and motion
of objects in our visual field (Goodale & Westwood 2004)
— is less well-studied and presents a more complicated pic-
ture. As an example, Positional information appears to be af-
fected by motion (Whitney ef al. 2003) and determined rela-
tive to a primary object (Chafee, Averbeck, & Crowe 2007).
Saccades and head movements tend to change the point of
view and must somehow be integrated with the retinotopi-
cally mapped information flowing through the lateral genic-
ulate nuclei. Both of these present us with problems in how
to integrate disparate information sources, including mixing
retinotopic with non-retinotopic information, a challenging
problem for which we presently lack any clear solution (see
Rolls and Stringer (2007) for an interesting start).

While we believe V1 and the ventral pathway provide
useful clues for developing artificial perceptual systems, we
are neither so naive nor so ignorant as to be unaware that
the brain still holds many secrets, and our model does not
even account for all the currently extant data. As mentioned
above, Olshausen and Field (Olshausen & Field 2005) give
the somewhat pessimistic estimate that we presently under-
stand only about 20% of V1’s functional behavior. We sim-
ply don’t know what the other 80% of the computation is,
whether it is important, or what it might be useful for. On
the other side of the coin, we know that attention plays a
significant role in visual perception (Reynolds & Chelazzi
2004), but we are assuming we can make progress without
detailed understanding of human attentional mechanisms. A
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similar situation pertains at the level of neuroanatomy. Our
model incorporates a version of feedforward and feedback
connections, but does not presently include lateral connec-
tions (Lund, Angelucci, & Bressloff 2006). Again, we be-
lieve we can achieve some modicum of success without lat-
eral connections, but we await experimental results before
venturing a definitive answer. The take away on this is that
we expect to adapt our model in response to shortcomings
exposed by experimentation, but we are aware both of the
gaps in our knowledge of the brain and the discrepancies
between our model and what is presently known about the
visual cortex.

Will big ideas or big iron win the race?

Compared with previous approaches, there is one other ad-
vantage we have allowing us to consider models of realistic
scale: increased computing power and the where withal to
take advantage of it. The human primary visual cortex (V1)
consists of approximately 10° neurons and 6 x 10° connec-
tions (Colonnier & O’Kusky 1981). Whereas we have rel-
atively poor data for modeling individual neurons, despite
the press for the IBM / EPFL Blue Brain Project, we are
better positioned with respect to the aggregate behavior of
thousands of neurons. Most of the serious computational
brain models aim at the level of a cortical hyper-column, a
structural unit consisting of 10*~10° neurons (Mountcastle
1998). If we assign one processor per hyper-column, a com-
puting cluster with 103 processor cores and accompanying
communications capacity can simulate on the order of 103
neurons. This would be about 10% of V1, and somewhat
beyond the reach of most academic labs, but Google and sev-
eral other industrial labs can field resources at this scale and
beyond. Working at a smaller scale would risk confounding
effects introduced by the scale with effects of the model it-
self. Working at a realistic scale allows us to focus on the
model. Moreover, deploying resources at scale allows us to
turn around experiments in minutes or hours, as opposed to
days or weeks. This means we can iterate over alternatives,
which will surely be necessary, and explore the space of so-
lutions in a way not practical for an under-resourced system.
Simulating the brain to achieve human-level sensory and
cognitive abilities is just starting to make the transition from
tantalizing possibility to practical, engineered reality. Mak-
ing that transition will take both good ideas — including
venerable old ideas and some new ones — and heavy-duty
computing power. While we believe the inclusion of time
is an essential element of a solution, and our model offers
promise of success, we are aware that more may be neces-
sary. The extant data on brain function is notably sparse,
and our model makes no attempt to take all known brain
function into account, e.g., attentional mechanisms. What
we do have is a plausible model — biologically inspired
though certainly not biologically accurate — and the tools
to evaluate and improve it. While many of the ideas have
been around for some time, the infrastructure to quickly and
convincingly evaluate them has been lacking. Robust, high-
performance distributed computing hardware and software
doesn’t make you smarter, but it does allow you to reach a
little further and that could make the crucial difference.
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