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Abstract

The practical success of broadcast encryption hinges on the
ability to (1) revoke the access of compromised keys and (2)
determine which keys have been compromised. In this work
we focus on the latter, the so-called traitor tracing problem.
We present an adaptive tracing algorithm that selects forensic
tests according to the information gain criteria. The results of
the tests refine an explicit, Bayesian model of our beliefs that
certain keys are compromised. In choosing tests based on this
criteria, we significantly reduce the number of tests, as com-
pared to the state-of-the-art techniques, required to identify
compromised keys. As part of the work we developed an effi-
cient, distributable inference algorithm that is suitable for our
application and also give an efficient heuristic for choosing
the optimal test.

Introduction

In 1996, the first DVDs were released just in time for the
Christmas season. A relatively weak copy protection sys-
tem, the Content Scrambling System (CSS), was hastily put
in place in order to stave off digital piracy. Under CSS, ev-
ery device manufacturer is assigned a single, confidential
key that is embedded in the devices they produce, allowing
those devices to descramble the contents of a DVD. (Lots-
piech 2005)

In 1999, a 16 year old Norwegian reverse engineered a
software player and exposed the first of 400 manufacturers
keys. The remaining 399 keys were exposed and published
on the internet within weeks. In every sense, the cat was out
of the bag. (Lotspiech 2005)

As bandwidth has increased and file sharing on the in-
ternet has become rampant, the stakes are even higher than
before. Swearing not to make the same mistake twice, the
entertainment industry has invested quite a bit in new broad-
cast encryption frameworks. There are two key features in
broadcast encryption: first, it is possible to revoke access
at the level of an individual player and, second, there is a
method for identifying compromised keys in use in illegiti-
mate players/decoders. Coupled, these features make it im-
possible for someone to produce software or hardware that
is not sanctioned by the licensing agency.
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Of interest here is the second task, identifying compro-
mised keys, which is referred to as traitor tracing. Initially,
there was interest in tracing algorithms that treat the illegiti-
mate player, or clone box, as a stateless black-box, avoiding
the need for any kind of reverse engineering. Traitor tracing
is done by constructing informative tests that are submitted
to the box, of which the output provides some information
about which keys the clone box contains. Existing tracing
algorithms, while efficient in principle, may require many
years of operation for realistic scenarios. In practical terms,
the clone box will have effectively defeated the tracing strat-
egy. We will describe this process in more detail in the next
section.

As we will also see, we can, in some sense, deduce the
best adversarial strategy for the clone box. That is, given a
series of tests, what is the response of the clone box that will
maximize the number of tests required for the tracing algo-
rithm to succeed. Assuming we know the clone box’s strat-
egy, we can leverage this extra bit of information to greatly
accelerate tracing. In this sense, ours is not truly a black-box
tracing algorithm but it represents a significant improvement
over the existing technology.

Underlying our approach is a Bayesian Network used to
explicitly represent our belief that certain keys are compro-
mised. Not only does this allow for accurate diagnosis, we
can also quantify how informative a test is and use this to
guide the tracing process. In this paper we present a scalable
inference algorithm that takes advantage of sufficient statis-
tics in the model as well as an effective heuristic method for
selecting the optimal test.

Finally, we demonstrate, empirically, that our method of-
fers a dramatic reduction in the number of tests needed for
tracing, as compared to the state of the art tracing algo-
rithms.

NNL Traitor Tracing

In this section we present a simplified version of the traitor
tracing procedure given by Naor et. al (Naor, Naor, & Lot-
spiech 2001).

We formalize traitor tracing as follows: let
of valid device keys and the clone box owns a subset C
of these keys. Let and . The set is,
of course, unknown to the tracing algorithm. The task is
to determine, within some specified confidence ¢, at least

be the set



Algorithm 1
1: NNLTrace(
2: if
3:

— then
return
else
— [
if ..
return NNLTrace
else

return NNLTrace
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one key €  that is owned by the clone box. That is,
S — €. We can then invalidate key , i.e.
remove it from , and reiterate the tracing procedure.

Broadcast encryption works by first encoding the media,
e.g. HD movie, with some key , referred to as the media
key. Then, the media key is encrypted separately with each
of the valid device keys in . As long as a device owns a
valid key, it can decrypt the media key and then decrypt the
media.

To construct a test, we disable a subset of the valid device
keys. We do this by encrypting a random bit string instead of

. The remaining device keys are said to be enabled. Now,
if all of the device keys owned by a device are disabled, there
is no way for it to recover the media. However, built in to
the protocol is a method for the device to validate the media
key, meaning that it can recognize when it is under test if it
contains a disabled key. Therefore, if a device owns disabled
and enabled keys, it can respond strategically; it has a choice
whether or not to play/decrypt the media and it can respond
non-deterministically. We will say more about this shortly.

From here on, a test can be thought of as simply a set

C  ofkeys. The keys in  are enabled and the keys in

are disabled. Let  be the probability that the clone
box plays test . If the probability of playing two tests,
and '/, are not equal then it must be case that the clone
box owns a device key in the exclusive-or of the two sets.
This motivates NNLTrace (Algorithm 1), a binary-search-
like method for identifying a compromised key. We ini-
tially call the procedure with the arguments
The algorlthm proceeds by progressively reducing the 1nter-
val in which we know there must be a compromised
device-key. It does this by determining the probability that
the midpoint test  plays and recursing on the the side with
the larger difference in the endpoint probabilities.

The challenge in this style of tracing algorithm is that we
must estimate  _ by repeatedly submitting  to the clone
box. The smaller , » the more tests that are needed
to confidently decide which is the larger subinterval. This is
advantageous to the clone box. However, the subset tracing
procedure always recurses on the larger subinterval and so
at every step the gap is reduced by, at most, a factor of 2.
This gives us the following lower bound on the gap on the
last iteration:

>
1= Tog,
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This lower bound is achieved by the uniform choice strategy:
the clone box tries to decode the media key with one of its
device keys chosen uniformly at random. If the key chosen
is enabled then the clone box successfully plays the test. If
it disabled then it does not. Formally,

N

plays

Previous empirical work also substantiates the claim that this
is the best clone box strategy (Zigoris 2006) and it will re-
main our focus in subsequent sections.

Naor et. al show that, regardless of the strategy, the num-
ber of tests required for NNLTrace to succeed with probabil-
ity atleast —e is upperbounded by 2 log 3
However, a clone box can take measures to delay its re-
sponse to each test and for realistic scenarios, which include
details beyond the description given here, we can expect this
tracing algorithm to take upwards of 15 years to “defeat” a
clone box. One would hardly call this a success.

Traitor Tracing with a Known Strategy

One shortcoming of the algorithm from the previous section
is that it cannot take advantage of any prior knowledge about
the clone box’s strategy. It is by leveraging this information,
using the machinery of Bayesian networks and the insights
of information theory, that we will be able to demonstrate
significant gains over NNLTrace.

First, we introduce some additional notation. Denote by
the random variable associated with the outcome of a test or
the set of enabled keys comprising a test. The intent should
be clear from the context. Let  be the set of possible re-
sponses to a test. In previous sections the set of responses

was limited to the set ; it either plays or it does not.
Our approach can accommodate a richer set of responses, a
possibility we will study more closely in the experimental
section. Associated with each key €  is a binary ran-
dom variable is meant to imply that € . We
refer to these random variables, collectively, as . In many
contexts it is useful to treat  as the set of keys for which

. Thatis, represents our belief about which keys
are in the clone box.

The question we would like to answer is: provided with a
set of test-response pairs , where  are independent
(the clone box is stateless) but not identical, what is the pos-
terior probability that the clone box contains a particular set
of keys . Applying Bayes rule we have:

I1

where the second equality derives from the fact that the re-
sults of tests are independent conditioned on . The term
is specified by the uniform choice strategy.

The term specifies our belief, prior to any obser-
vations, that the clone box contains a set of keys . Without
any background knowledge we choose the uniform distribu-
tion. It is possible to embed domain specific knowledge in



the prior to give the process a “head start”. For example, if
we knew that a particular subset of devices were more likely
to have their keys compromised then we could increase the
prior probability that the clone box contained one of those
keys.

The denominator ~ is the marginal probability
of observing the responses to the set of tests and is defined

as: Z

-

The sum is taken over a set of size  , making this a difficult
quantity to calculate. We will address this issue later. For
now, we will assume that it can be calculated efficiently and
exactly.

The basic procedure is specified in Algorithm 2. We it-
eratively choose tests to submit to the clone box and update
our beliefs about the contents of the clone box. If at any
point we can diagnose a compromised key (line 6) we re-
turn the key as well as our current set of beliefs.

Algorithm 2 Strategy based traitor tracing procedure

IGTrace( )
if response of clone-box to is O then
return ( //in this case, 0
loop
forall € do
if — € then
return

select a test

submit test to clone-box and get response
o :

Test Selection with Information Gain

We can imagine the testing process as a decision tree where
every node specifies the next test to submit to the clone box.
The response of the clone box dictates the subtree on which
to recurse. Every leaf in the decision tree will have a key
associated with it and reaching it in the recursion implies
the associated key has been compromised. Ideally, we could
minimized the expected number of tests needed by mapping
out an entire testing strategy. However, this task was shown
to be NP-Complete (Hyafil & Rivest 1976).

Instead of devising such a decision tree at once, we take
a greedy approach to test selection. First, we quantify the
uncertainty about  as the entropy:

We measure the quality of a new test  as the mutual infor-
mation ' between the and . This is equal to the expected
reduction in entropy by seeing the result of test . This ex-
pectation is taken with respect to the marginal probabilities
of each of the possible responses € Note that it is

'Sometimes referred to in the machine learning literature as the
information gain
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possible that the marginal probability
is very different than the true probability of response |,
. For more background on information
theory see, e.g., (MacKay 2003).
Now we can view test selection as the following optimiza-
tion problem:

argmax -

The maximum is taken over ~ possible tests and we know
of no algorithm for efficiently solving this problem. It is
necessary to approximate this by only considering a small
subset of the possible tests. To do this, we maintain a set

of tests called the refention set. At every iteration we try
adding a new key to each testin , creating a new set of tests

’. We then update  to be the top testsin ’. If after an it-
eration the retention set does not change, then we return the
top testin . The total number of tests evaluated by this pro-
cedureis 2 2 (Zigoris 2006). Technically, evaluating
the gain of each test is exponential in the number of device
keys , but we will introduce a method for approximating
this quantity.

Related Work

Information gain is a popular criteria for selecting tests in
adaptive diagnosis tasks. Rish, et. al (Rish er al. 2005)
apply a method similar to ours to the task of diagnosing
faults in distributed system. There are a few key differences.
First, they choose tests from a small pool whereas we are
faced with an exponential number of tests. Secondly, they
assume there is only a single fault in the system whereas
in our work there can be multiple faults, i.e. compromised
device keys. They also use an approximate inference algo-
rithm, mini-buckets, whereas we will devise an efficient and
exact inference algorithm for our model.

Bayesian networks and information gain have also been
applied to a probabilistic version of the game of Mastermind
with reasonable results (J. 2004). Mastermind is a popular
board game created in the 70’s where two players engage
in a query-response loop. In the original formulation, game
play is completely deterministic. The goal is for one player,
the code-breaker, to identify the code put down by the code-
maker. In many ways, it is similar to the task we are face
with. We can imagine the clone box as a secret code that
we are trying to reveal. In our game, though, we are only
required to find one bit in the ‘code’.

Representation and Inference with Bayesian
Networks

So far we have avoided any discussion of how to compute
the necessary probabilities for our algorithm. There are two
points to keep in mind. The first is that an erroneous diagno-
sis, which results in the disabling of a device, is very costly.
This imposes the constraint that the marginal probability that

must be calculated exactly. Therefore, we can-
not rely on approximate inference algorithms such as loopy
belief propagation (Pearl 1988) or mini-bucket (Dechter
1997). However, test selection, which depends on the full



joint distribution of , is already approximate so its reason-
able to approximate the joint distribution. In this section we
present an efficient (polynomial time) inference algorithm
that does exactly these two things.

It helps to visualize our statistical model as a Bayesian
Network. For our application, the nodes in our network cor-
respond to the tests  and the keys  in the frontier. As a
first approach, consider complete bipartite network in Figure
1. The conditional probability distribution (CPD) for each
test is specified by the clone box strategy. For every key
we must specify the prior probability that . Without
any background information, we set this to 0.5. However,
in practice we may have reason to believe that some keys
are more likely to be compromised. Or, if we expect that

, then we set

Figure 1: A simple bipartite network for our task. Every
variable in the test layer is conditioned on every variable in
the frontier.

The problem with using this representation is adding a
test result as evidence creates a dependency between the
key nodes. Thus, in order to find the marginal probabil-
ity for one key in the frontier, standard
inference algorithms, such as variable elimination (Dechter
1999) and junction tree (Huang & Darwiche 1996), must
create intermediate factors whose table sizes are exponen-
tial in

For arbitrary clone-box strategies, we can not expect to do
better than this. However, the uniform choice strategy had
a very concise expression; it depended only on the ratio of
enabled to disabled compromised keys. It does not depend
on the specific keys that are compromised but only on how
many are enabled and disabled.

We can exploit these sufficient statistics to gain efficiency
in our model. The modified network is illustrated in Figure
2. Let € be the set of keys enabled in

; similarly, let ¢ be the set of disabled
keys. Form two binary trees with and as the leaves
of each and with edges pointing towards the root. Denote,
respectively, the roots of these trees as and ; connect an
edge from both and to . Each of the internal nodes is
simply the sum of its parents: A

c() - The CPD of

—— Note that in tabular form the CPDs are
size.
We now present a specific method for storing and updat-

is now

2 in
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Figure 2: An alternative network structure for the fixed-
strategy. The internal nodes act as an interface between the
frontier and the test layer, calculating the sufficient statistics

and . Reducing the frontier in this way makes efficient
inference possible.

ing beliefs that is particularly well-suited to our application.

In order to approximate the joint distribution of ~ we first
partition the frontier into disjoint sets such that
is a reasonable size for all , allowing us to store as

a table in memory. We approximate our belief as

which is equivalent to assuming the partitions are indepen-
dent. If and are independent random variables then

where is the entropy function introduced in the section on
test selection. Whereas before, calculating information gain,
and implicitly entropy, required us to sum over terms,
we can now decompose the calculation into a sum of sums

over  terms. Note, too, that since is in memory,
calculating € forsomekey €  canbe donein

time. With a simple caching strategy, this can also
be reduced to constant time.

Algorithm 3 gives the procedure for finding the poste-
rior distribution of a partition given test result . The
procedure getCountDistribution finds the probability distri-
bution over the number of enabled and disabled keys in a set
of partitions. Also, , which appears in the infor-
mation gain, is calculated as a side effect of the procedure.
The terms N and N in line 13 correspond to
the number of enabled and disabled keys in  , respectively.
The bottleneck in this procedure is calculating ,
which would comprise an 2 size table. One nice fea-
ture of this approach is that the posterior distribution for each
partition can be calculated independently making it easy to
distribute across multiple servers.

Experiments

In this section we present empirical work comparing the
number of tests needed by the described methods. All exper-



Algorithm 3 finds and
1: getPosterior( )
2: «— getCountDistribution /
/
3: —>

4: —> .

5: —

6: return and

7:

8:

9: getCountDistribution( )

10: —

11: —

12: for all do

13: — > — N —

N
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Figure 3: Results of watermarking experiment

iments were repeated 20 times for random choices of com-
promised keys. In all experiments, we use € and

Preliminary experiments showed that the num-
ber of tests is not particularly sensitive to , the retention set
size, so in all experiments . We only report results for
the uniform choice strategy since it is, theoretically, the most
challenging strategy to defeat. Preliminary experiments also
confirmed this was the case.

All experiments were run using Matlab running under
Linux, with 3GB of memory and a 2Ghz Pentium 4 proces-
sor. The code was optimized to take advantage of Matlab’s
efficient matrix operations and with , exact inference
and test selection takes around 45 seconds.

Watermarking,

In this experiment we assume there is some watermarking
mechanism built into the encryption scheme. That is, every
key has a watermark associated with it. If the clone

box decrypts the test  with then the responseto s
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This puts the clone box at a disadvantage since it may reveal

much more information about its contents. For instance, if

each of the keys in the frontier has a different watermark,

then we can immediately identify a compromised key when

the clone box plays. To clarify, we restate the CPD for test
,for / ,as:

€

For every trial, both the set of compromised keys and the
watermark assignment are chosen randomly. The frontier
size is fixed at 16, the number of compromised keys is varied
from 1 to 8 and is varied from 1 to 16. The results are
plotted in Figure 3. For clarity we omit the standard error
bars. Note that the -axis is on a logarithmic scale. The
number of tests, therefore, decreases extremely fast. In the
limit, the number of tests, for any number of compromised
keys, will converge to 1 with since we expect each key
to have a unique watermark.

Something to note, but that is difficult to read off of the
plot, is that as increases, having more compromised keys
becomes beneficial. The reason for this is that the clone box
is more likely to contain a key with a unique watermark.
Also, we gain more information when a clone box gives a
non-zero response. If there only a few compromised keys
then many of the responses will be 0 since the test is more
likely, at least in the early stages, to disable a large fraction
of the clone box keys.

Partition size

This experiment is designed to study the effect of the par-
titioning size on the number of tests. Again, we vary the
number of compromised keys from 1 to 8 and leave the
frontier size fixed at 16. The size of the frontier partitions is
varied from 2 to 16, corresponding to exact inference. The
results are plotted in Figure 4.
Intuition tells us that the number of tests should decrease
as the partition size increases. What is surprising is that for
the number of tests increases with the partition size.
And note that the slope of the other lines seems to increase
with . It seems that smaller partitions actually benefit the
tracing process when there are a large number of compro-
mised keys. Why this is the case is an intriguing question,
one for which we don’t have a complete answer. Our hy-
pothesis is that information gain is not always the best op-
timization criterion for selecting a test. Selection based on
information gain represents a greedy step towards minimiz-
ing the entropy of . The true aim of our procedure is to
diagnosing a compromised key, not minimizing the entropy.
Information gain seeks to minimize our uncertainty about all
keys, but in actuality we only need to minimize our uncer-
tainty about one key. By finely partitioning the frontier we
seem to deemphasize the global nature of information gain
and instead focus on diagnosing particular keys.

Overall comparison

Finally, in Table 1 we present a comparison of IGTrace to
NNLTrace. It is immediately clear that IGTrace outperforms
NNLTrace in all cases. Note, too, that there is substantially
less variance in the number of tests needed by IGTrace.
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Figure 4: Results of experiment varying partition size.

\ 2 | 4 [ 8
1G 19+8.0 41+£12.6 424+16.1
NNL 605+181.5 919+423.8 14244£160.6
1G 24+8.4 52+11.1 86+£38.7
NNL 9484299.2 | 1408+601.2 | 2632+607.4
1G 32494 57+18.6 113+36.5
NNL || 1263£415.1 | 1686£949.3 | 356241223.1
1G 38+9.5 64+14.7 129+26.1
NNL || 13664+399.4 | 2326+1221.7 | 4506115474
1G 47+9.0 68+14.0 159+41.6
NNL || 1493£478.0 | 3660+1239.4 | 4278+1588.7
I1G 57473 86£15.9 150+30.3
NNL || 1845£488.9 | 4525+1457.6 | 6229+3199.4

Table 1: Comparative performance of the two tracing meth-
ods for a variety of frontier sizes and clone box sizes. Each
entry lists the mean and standard deviation of the number of
tests. Column headers indicate the number of compromised
keys.

Conclusion

This work introduced a new method for traitor tracing when
the strategy of the clone box is known and demonstrated,
empirically, a significant improvement over existing black-
box tracing methods. We took advantage of the specific
functional form of the uniform choice strategy to devise an
efficient, and distributable, inference algorithm. This algo-
rithm does not sacrifice any accuracy in diagnosis and only
approximates the test selection step.

A surprising observation was that the number of tests does
not necessarily decrease as the partition sizes increase. This
seems to suggest that information gain is not the best criteria
for test selection and it may be worth exploring other criteria
for test selection. Nevertheless, it seems to work very well
and offers a dramatic improvement over the other methods.

Our work does beg the question: how does one obtain in-
formation about the clone box strategy? In the future, it is
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worth investigating methods for learning this strategy along
the way, perhaps by representing the clone box strategy as
a latent variable. Similarly, it would also be interesting to
investigate the sensitivity of IGTrace to errors in the clone
box strategy. We would like it to be such that if the actual
strategy deviates from the modeled strategy we are still guar-
anteed to make accurate diagnoses.
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