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Abstract

We explore the relationship between properties of the
network defined by connected agents and the global sys-
tem performance. This is achieved by means of a novel
class of optimization algorithms. This new class makes
explicit use of an underlying network that structures the
information flow between multiple agents performing
local searches. We show that this new class of algo-
rithms is competitive with respect to other population-
based optimization techniques. Finally, we demonstrate
by numerical simulations that changes in the way the
network is built leads to variations in the system’s per-
formance. In particular, we show how constrained hubs
- highly connected agents - can be beneficial in particu-
lar optimization problems.

Introduction
Investigations on the connections between agents are in-
creasingly gaining attention as networks become a central
issue to understand large scale Multi-agent Systems (MAS).
Such large MAS are of significant interest and are often
used to model social and economic scenarios, including
markets and business organizations (Gilbert & Conte 1995;
Araújo & Lamb 2007; van Heck & Vervest 2007). These
systems are typically composed of agents with very simple
behavior. Due to their descriptive role, several research ef-
forts have been directed towards relating agent’s individual
behavior to network properties that emerge from local inter-
actions (Axtell 2000; Jin & Liu 2003; Shinoda, Matsuo, &
Nakashima 2007).

It is well-known that MAS have been used to execute
tasks, plans and solve problems in addition to modeling ex-
isting systems. However, far fewer studies have analyzed the
relationship between MAS’s network properties and system
performance, e.g. (Dilkina, Gomes, & Sabharwal 2007).
This is, per se, an important issue as such relation allows for
the design of more efficient and effective MAS. One may
then specify agents’ behaviors that induce the desired net-
work property and take advantage of results from graph the-
ory and the so-called “new science of networks” (Newman,
Barabási, & Watts 2006) to improve MAS effectiveness.
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To a certain extant, the paucity of studies following these
lines can be explained for there are few MAS that make an
explicit, controllable use of networks and that have an ob-
jective way of measuring system’s performance. We shall
introduce a new class of optimization algorithms composed
of a population of autonomous agents that exchange infor-
mation by means of an underlying network. We call this
new approach Memetic Networks and we use an instance of
such class to show how network properties can influence the
algorithm’s performance.

Our results contribute to answering the question “to
whom should agents connect to?”. In particular, we shall
show how limiting the existence of hubs in the network can
be beneficial for certain classes of problems (but not for oth-
ers). The results presented here are relevant in the design
of MAS where connections between agents are a central de-
sign issue, such as peer-to-peer networks (Udupi, Yolum,
& Singh 2004), autonomous systems, and sensor networks
(Akyildiz et al. 2002).

The paper is structured as follows. Firstly, we introduce
the basics of Memetic Networks. We then propose an imple-
mentation for a Memetic Network Algorithm that borrows
the “preferential attachment” mechanism (Barabasi 2003) to
construct scale-free networks and compare its performance
to standard optimization techniques. We use this implemen-
tation to show how changes in network properties can have
an impact in system performance. Finally, we conclude and
point out directions for future research.

On Memetic Networks
In order to study the relationship between networks and
MAS performance, we introduce a class of population-based
optimization algorithms in which networks are part of the
problem-solving process. Optimization tasks are suitable for
our purposes since they present a well-defined performance
measure and many problems can be modeled as optimiza-
tion problems (Russell & Norvig 2002). An algorithm in this
class makes use of independent searches (each represented
by an agent) that communicate with each other through con-
nections; the set of all connections and agents compose a
network. We call this class Memetic Networks inspired in the
concept of memes: information that is propagated through
copies in a cultural setting (Dawkins 1976).

A Memetic Network Algorithm (MNA) is a population-
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based stochastic optimization algorithm. It is composed
of an ordered set of N agents (n1, n2, ..., nN ), each en-
coding a complete solution for the optimization problem,
a binary N × N matrix representing possible connections
between individuals and a set of rules specifying how the
matrix is formed and how interaction between agents take
place. Thus an MNA’s structure is a directed unlabeled
graph whose nodes represent solutions to an optimization
problem (agents) and edges represent connections between
these solutions. The rules are described as follows:

• Connection rule. Specifies how agents will connect to and
disconnect from each other. This rule guides the construc-
tion of the network structure. For example, an instance of
such rule could be “a connection between nodes n1 and
n2 exists if and only if n1 is better evaluated than n2” or
“connect randomly to individuals”. The connection rule is
executed at every step of the algorithm, thus the network
is dynamic and connections may change at each step. It
defines the dynamics of the network.

• Aggregation rule. Given a connection, this rule specifies
how information is to flow through it. It guides how the
solution contained in each node is to be modified as a
function of the connected nodes. For example, if each
agent encodes a real number, the average of all numbers
could be used to aggregate information. It defines the dy-
namics on the network.

• Appropriation rule. After information has been transmit-
ted, this rule specifies any local changes to the informa-
tion contained in a node. This could be the application of
a hill-climbing search, for instance.

Therefore, the proposed algorithm makes use of a network
during the optimization process to explicitly represent the
exchange of information between several parallel searches.
By defining these rules, several types of networks can be cre-
ated. For example, by setting the connection rule to connect
to random individuals, a random graph emerges. It is inter-
esting to observe that this setup allows for a single node to
be connected to several other nodes, thus a possible solution
can influence and be influenced by several other solutions
during a search. In an MNA, an unspecified and dynamic
number of solutions may contribute to create a new solu-
tion, as defined by the number of connections (out-degree)
of a node. By doing so, a more explicit and wider use of the
multiple parallel searches is carried out.

Population-based parallel optimization techniques are
commonly used to avoid being trapped in local optima
during a search (Torn & Zilinskas 1989). When multi-
ple searches interact, this process often improves the global
performance by allowing efforts to focus on promising ar-
eas of the search space (Torn & Zilinskas 1989; Russell
& Norvig 2002). Genetic Algorithms, for instance, use
genetic crossovers to combine independent solutions from
pairs of individuals and although a network is implicit (Oner,
Garibay, & Wu 2006), it is not easily modifiable. Memetic
Networks generalize this concept by allowing multiple com-
binations between multiple individuals within a network that
is explicit and controllable. The key idea of such general

concept is to allow solutions (nodes) to receive information
from several other solutions being evaluated in parallel in a
structured way, so that the information flow is made explicit
within a network. In this way, one can adjust the diverse
rules to control how information is distributed through nodes
in a general way, allowing for relating specific network prop-
erties and dynamics to specific problems to be solved. An in-
stance of an MNA is specified by an algorithm implementing
each of the above described rules.

In a certain way, Memetic Networks can be seen as a
model of “cultural evolution”, in contrast to genetic evolu-
tion, the underlying inspiration of Evolutionary Computa-
tion. Dawkins (1976) has argued that cultural evolution pro-
ceeds at a much faster pace than genetic evolution: technol-
ogy, social trends and habits all seem to develop very quickly
and are guided by a very similar process to that of genetic
evolution. To account for this similarity, Dawkins has coined
the term meme, taken to be the cultural equivalent of a gene.
A meme can be anything that can be passed from one human
mind to another: business ideas, catch-phrases, ideologies,
algorithms. Whenever an individual acquires a meme, he
or she can pass the meme on to other individuals. Errors
in transmission and deliberate changes made to a meme by
any individual account for the possibility of new memes to
emerge, in a similar fashion as mutations in genes allow for
new variations to emerge (Dawkins 1976).

Despite these similarities, meme evolution differs in im-
portant ways from gene evolution and such differences could
be accounted for the observed faster evolution rate. One
such difference is that memes can pass from one individ-
ual to several others without having to “hop” from individ-
ual to individual. A teacher can pass a meme on to many
students at once; a TV channel transmits memes to millions
of viewers. The converse is also true and a single meme
can be the result of the contribution of several individuals:
a researcher, for example, reads several papers containing
diverse ideas, each (partly) contributing to her ongoing re-
search. These same aspects are present in an MNA. Note
that the term Memetic Algorithm is commonly used to de-
scribe a type of genetic algorithms, in which individuals are
able to make local optimizations (Moscato 1999). However,
these algorithms have little relation to our proposal.

The Scale-free Memetic Network Algorithm
One central issue in MNAs is the connection rule, since it
will ultimately define the network topology. The definition
of such rule answers the question “with whom should an
agent interact with”. Since we are concerned with optimiza-
tion tasks, it is interesting to allow for agents to interact with
peers that possess useful information that will allow for them
to reach a better solution. However, in general the utility of
any piece of information is not obvious or directly measur-
able and one may choose an indirect measure of such utility.
We assume that it is possible to evaluate the solution en-
coded in any agent and a total order can be applied to such
evaluations (they may be real numbers, for instance). A rea-
sonable general rule could then be “connect to agents that
are better than you”, since well-evaluated agents are likely
to have good information that may be useful.
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It is not difficult to observe that an algorithm based on
this rule will often induce hubs - agents that have a higher
than average number of connections. This is likely to hap-
pen because all agents will connect to a few best evaluated
agents, while many badly evaluated ones will have a few
(if any) incoming connections, but many outgoing connec-
tions. Indeed, this rule is a form of preferential attach-
ment that characterize scale-free networks (Barabasi 2003;
Newman, Barabási, & Watts 2006). A scale-free network is
characterized by a fat-tailed power law distribution of node
degrees, which means that there is a higher probability of
having nodes with many connections than a normal distribu-
tion would predict. Hubs, being highly connected, are part
of many paths in the network and act as distribution centers.
For instance, the infection of hubs (by some disease) in a so-
ciety is associated with the emergence of epidemics (Moore
& Newman 2000).

In what follows we propose the “Scale-Free Memetic Net-
work Algorithm” by defining the algorithm’s three rules,
as well as a representation for the solutions. We borrow
the binary representation usually used in genetic algorithms
(Goldberg 1989; Fogel 2000), encoding each solution as a
binary string of size k. We define eval(x) as the evaluation
of a solution x and we want to find an x∗ such as eval(x∗)
is minimized (i.e. we want to minimize the function eval).
We define the rules as follows:
• Connection Rule: node n1 connects to node n2 if and

only if eval(n2) < eval(n1); the connection is unidirec-
tional and flows from n2 to n1.

• Aggregation Rule: given the set C(n1) containing all
nodes that n1 connects to, the node n1 is modified to rep-
resent the majority vote for each bit of the solutions in
C(n1);

• Appropriation Rule: each bit of the encoded solution is
flipped with probability pn.
It is useful to detail the aggregation rule. For each bit of

the solution encoded in n1, we take a majority vote among
all nodes in C(n1), that is, all nodes that n1 is connected to.
Thus, each bit is taken to be the most common bit among
all connected nodes (ties are decided by coin toss). By the
connection rule, nodes connect to other nodes that are bet-
ter than them, thus voting takes place among nodes that are
better evaluated than the node in question.

The connection rule chosen induces a preferential attach-
ment to network connections. Nodes with good performance
will have many incoming connections and will have more
influence over the network (i.e. they are able to reach and
communicate with more nodes). On the other hand, bad per-
forming nodes will have a higher number of outcome con-
nections, since they will connect to every node that is better
than them, thus making them susceptible to the influence of
many (better) nodes. The appropriation rule is needed in or-
der to guarantee that the whole search space is available to
the algorithm, since random initializations could cause an
early stagnation of the search. This plays the role of muta-
tion in evolutionary algorithms.

The algorithm is depicted in Algorithm 1 where: N is the
number of nodes in the underlying graph and it defines the

maximum number of solutions being evaluated at one time;
pn is the probability of noise; k is the size in bits of the
binary strings that encode solutions. The function coin()
returns 0 or 1 with equal probability.

The complexity of this algorithm depends on how dense
the network is. For fully connected networks, it is O(kN2)
if the evaluation of the function can be considered an ele-
mentary operation. Thus, the algorithm can add a consid-
erable overhead to the search. However, for complex real-
world problems the function evaluation can easily become
the most dominant part of the algorithm, greatly reducing
the relative overhead.

Algorithm 1 Scale-Free Memetic Network Algorithm
Initialize N random binary strings of size k
while termination condition not met do

evaluate solutions in nodes
for i = 1 to N do

for j = 1 to N do
if eval(node(j)) < eval(node(i)) then

connect(node(i), node(j))
else

disconnect(node(i), node(j))
end if

end for
end for
for i = 1 to N do

C = set of nodes node(i) is connected to
for each bit b ∈ node(i) do

zeros = elements in C with bit k = 0
ones = elements in C with bit k = 1
if |zeros| < |ones| then

b = 1
end if
if |zeros| > |ones| then

b = 0
end if
if |zeros| == |ones| then

b = coin()
end if
if random(0,1)< pn then

b = coin()
end if

end for
end for

end while

Performance Tests and Analysis
In order to validate the algorithm, we have implemented, an-
alyzed and tested it over some functions commonly used as
benchmarks, taken from (De Jong 1975; Gordon & Whit-
ley 1993). These functions have well-known properties that
can be used to better understand under which circumstances
the algorithm is able to perform adequately. Figure 1 enu-
merates the testbed functions, which cover combinations of
features regarding modality and separability. A function is
unimodal if it has only one minimum and multimodal other-
wise. When it is possible to find a global minimum by op-
timizing the input variables separately, then the function is
said to be separable. Function f1 is known as the sphere and
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is a simple unimodal and separable function. Function f2 is
know as the Rosenbrock’ Valley and, while still unimodal, it
is not separable. Function f3 (Rastrigin) is multimodal but
separable and function f4 (Ackley) is both multimodal and
non-separable.

For all cases, we use the same parameters for our algo-
rithm: N = 49, pn = 0.06, k = 24. The parameter pn
was adjusted manually and the chosen value was observed
to show good performance across the test set. Variables are
represented by binary fixed-point representation.

f1(x1, x2) = x2
1 + x2

2

f2(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

f3(x1, x2) = 20 + x2
1 + x2

2 − 10cos(2πx1)− 10cos(2πx2)

f4(x1, x2) = 20 + e − 20e−0.2
√

0.5(x2
1+x

2
2) −

e0.5(cos(2πx1)+cos(2πx2))

Figure 1: Test set

We compare the proposed algorithm to three other algo-
rithms over the same test set: random sampling, genetic
algorithm (Goldberg 1989) and simulated annealing (Kirk-
patrick, Gelatt, & Vecchi 1983). Random sampling works by
randomly sampling solutions and keeping the best one and
it is used only as a “straw man”, providing a lower bound
in performance analysis. In order to allow for a fair com-
parison, we let the algorithm sample 50 solutions at each
round. The genetic algorithm uses a single-point crossover,
tournament elitist selection and commonly used parameters
(probability of crossover of 0.7 and probability of mutation
of 0.05) with 50 individuals. Simulated Annealing is also al-
lowed to sample 50 independent solutions at each round and
uses a proportional cooling schedule with α = 0.9. The ini-
tial temperature was set ad hoc according to each function.

Figure 2 depicts convergence results for each algorithm.
Each plot is the result of an average over 100 independent
runs. The first result to be noticed in these figures is that our
algorithm is able to optimize fairly well, being competitive
with all tested algorithms in all but one test function (f2)
where Simulated Annealing performed better.

Our algorithm presents a slower convergence rate when
compared to the Genetic Algorithm, but more often it finds
better solutions after a full run. It must be noted, however,
that none of the algorithms were fully optimized and such re-
sults are used to show that our proposed approach is indeed
able to optimize and be competitive with general optimiza-
tion methods. It is also important to notice that while we
have used a binary string representation in our implemented
algorithm, this is not mandatory. For instance, one can use
real numbers to (directly) represent the variables and use an
aggregation rule that would calculate the average over the
information contained in all connected nodes.

Hubs and Network Performance
We have argued that our implementation of a memetic net-
work algorithm induces hubs by allowing nodes to connect

(a) f1

(b) f2

(c) f3

(d) f4

Figure 2: Convergence results for Memetic Network Al-
gorithm (MNA), Simulated Annealing (SA), Genetic Algo-
rithm (GA) and Random Sampling (RS).
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to other better evaluated nodes. There are actually two types
of hubs that emerge in such network. The first one, which we
call sources, are the best evaluated nodes in the network and
thus have many other nodes connecting to it. Sources play
an important role in the network, since they distribute the
same information to several nodes. The second one, named
sinks, are the worst evaluated nodes that connect to many
other better nodes. Sinks receive information from many
other nodes and are more likely to explore the search space
by combining parts that can lead to better solutions. Only if
a better solution is found they will be able to provide infor-
mation to other nodes. Sources, on one hand, are desirable
- we want to have good information available to all nodes
in the network, so they can exploit it. On the other hand,
having the same information being distributed to too many
nodes may cause all nodes to explore the same area of the
search space, possibly trapping the algorithm in a local op-
tima. The existence of sources in our algorithm represents
the common exploration-exploitation problem (Fogel 2000)
in a network context.

To better understand the role of sources in the algorithm
performance, we establish a control mechanism to limit how
large hubs can become. We do so by setting a maximum in-
degree number to nodes - i.e. a maximum number of input
connections. By varying this number, we can limit the in-
fluence sources have on the network. We have modified our
algorithm in the following way. Let A be the set of nodes that
wish to connect to node v; from this set, randomly select M
nodes and allow them to connect to v; all other nodes are not
allowed to connect. Previously connected nodes are allowed
to keep the connection for as long as they want and when-
ever a connection becomes available (if the connected node
becomes better than the source), a new random selection is
performed. The value of M varies from 1 (nodes commu-
nicating with at most one other node) to N − 1 (the total
number of other nodes in the network). We have run exper-
iments in which this number varies along this range for all
four test functions. Figure 3 shows the results.

We can observe that for the functions with only a single
optimum value (f1 and f2), small hubs are detrimental to
the system’s performance. By increasing the size of the
hubs we improve performance but such gains are limited -
after some value of M the curve damps and no further gains
are observed. On the other hand, for multimodal functions
there is an optimum range for M itself - as for unimodal
functions, very small hubs correlate with poor performance,
but now having excessively large hubs is also detrimental to
the system’s performance. The best performance is found
in between these extreme values. It must be noted that it is
not clear that there is an optimal value for M , but rather a
range of values perform equally well. In other words, the
algorithm is reasonably robust to changes inM , but extreme
cases cause a decrease in performance.

One possible explanation for such behavior is that, for
unimodal functions, good local information is globally good
and nodes always benefit from having access to them. Ex-
ploitation is more important than exploration in these cases,
since exploiting good information provides guidance about
where to further explore. For multimodal functions, how-

(a) f1

(b) f2

(c) f3

(d) f4

Figure 3: Average best solution after 30 rounds and different
values of M .
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ever, locally good information may not translate into glob-
ally good information. Exploiting information about local
optima may take attention away from the global optimum.
In these cases, having hubs that are near local optima will
stagnate the algorithm by having most nodes exploring such
local optima. Thus having bigger hubs end up reducing the
algorithm’s performance. A trade-off between exploitation
and exploration is necessary and this is reflected in the size
of the hubs.

The precise value range for M is very likely to be
problem-dependent and also dependent on other parame-
ter of the algorithm. For instance, higher noise rates may
allow for higher values of M to be acceptable. Nonethe-
less, our experiments clearly show how a network property
(the number of in-degree connections) can influence the al-
gorithm performance and how such properties may reflect
characteristics of the problem being solved. We have also
experimented with changing the out-degree limit of nodes,
thus limiting how large sinks can become. By changing this
limit, we are limiting the number of nodes sinks can connect
to. For our four test functions, no differences could be ob-
served in performance for all values of M . This is evidence
that the way worst performing nodes combine information
from other nodes plays a small role in the way how good
solutions are constructed.

Conclusions and Future Work
We have investigated how a system of communicating
agents that make use of a network to structure information
flow is able to perform optimization. A class of optimiza-
tion algorithms was introduced which models communicat-
ing agents searching for a single solution, namely Memetic
Networks. Memetic Networks encode an underlying net-
work that can be explicitly controlled or that is the result of
an emergent decision-making process of multiple agents.

For a proposed instance of this class, based on scale-free
networks, we have shown how it can be competitive with
other commonly used optimization techniques. This encour-
ages further research on the model as a general-purpose op-
timization tool. Nonetheless, we have focused our study
on discovering some properties of one simple instance of a
Memetic Network. It has become clear from the results pre-
sented that network properties can have an impact on system
performance - we showed how the presence of hubs can be
beneficial for certain problems, but not for others. Not all
network properties have such an impact. For instance, we
have recently experimented with small-world properties and
initial findings show that the algorithm performance is in-
sensitive to changes in how many “shortcuts” are created in
a regular grid connecting agents. We conclude that agents
in network-oriented MAS may require attention during the
design stage in order to induce networks that can improve
overall system’s performance.

Several paths for future research can be identified and
are currently being pursued. While we have focused on
scale-free networks, as they have become an important and
almost ubiquitous network topology, other topologies are
worth studying in depth such as small-worlds, hierarchical
and sparsely-connected topologies. The application of the

algorithms to benchmark scenarios and real-world problems
is also required in order to better understand how the algo-
rithm scales up to more complex problems.
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