
Physical Search Problems Applying Economic Search Models

Yonatan Aumann and Noam Hazon and Sarit Kraus and David Sarne
Department of Computer Science

Bar Ilan University
Ramat Gan, 52900, Israel

{aumann,hazonn,sarit,sarned}@cs.biu.ac.il

Abstract

This paper considers the problem of an agent searching for a
resource or a tangible good in a physical environment, where
at each stage of its search it observes one source where this
good can be found. The cost of acquiring the resource or
good at a given source is uncertain (a-priori), and the agent
can observe its true value only when physically arriving at the
source. Sample applications involving this type of search in-
clude agents in exploration and patrol missions (e.g., an agent
seeking to find the best location to deploy sensing equipment
along its path). The uniqueness of these settings is that the
expense of observing the source on each step of the process
derives from the last source the agent explored. We ana-
lyze three variants of the problem, differing in their objec-
tive: minimizing the total expected cost, maximizing the suc-
cess probability given an initial budget, and minimizing the
budget necessary to obtain a given success probability. For
each variant, we first introduce and analyze the problem with
a single agent, either providing a polynomial solution to the
problem or proving it is NP-Complete. We also introduce an
innovative fully polynomial time approximation scheme al-
gorithm for the minimum budget variant. Finally, the results
for the single agent case are generalized to multi-agent set-
tings.

Introduction
Frequently, in order to successfully complete its task, an
agent may need to explore (i.e., search) its environment and
choose among different available options. For example, an
agent seeking to purchase a product over the internet needs
to query several electronic merchants in order to learn their
posted prices; a robot searching for a resource or a tangi-
ble item needs to travel to possible locations where the re-
source is available and learn the configuration in which it is
available as well as the difficulty of obtaining it there. In
these environments, the benefit associated with an opportu-
nity is revealed only upon observing it. The only knowledge
available to the agent prior to observing the opportunity is
the probability associated with each possible benefit value
of each prospect.

While the exploration in virtual environments can some-
times be considered costless, in physical environments trav-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

eling and observing typically also entails a cost. Further-
more, as the agent travels to a new location the cost associ-
ated with exploring other unexplored locations changes. For
example, consider a Rover robot with the goal of mining a
certain mineral. Potential mining locations may be identi-
fied based on a satellite image, each associated with some
uncertainty regarding the difficulty of mining there. In or-
der to assess the amount of battery power required for min-
ing at a specific location, the robot needs to physically visit
there. The robot’s battery is thus used not only for mining
the mineral but also for traveling from one potential loca-
tion to another. Consequently, an agent’s strategy in an en-
vironment associated with search costs should maximize the
overall benefit resulting from the search process, defined as
the value of the option used eventually minus the costs ac-
cumulated along the process, rather than merely finding the
best valued option.

In this paper we study the problem of finding optimal
strategies for agents acting in such physical environments.
Models that incorporate search costs as part of an eco-
nomic search process have attracted the attention of many
researchers in various areas, prompting several reviews over
the years (Lippman and McCall 1976; McMillan and Roth-
schild 1994). These search models have developed to a point
where their total contribution is referred to as search theory.
Nevertheless, these economic-based search models, as well
as their extensions over the years into multi-agent environ-
ments (Choi and Liu 2000; Sarne and Kraus 2005), assume
that the cost associated with observing a given opportunity
is stationary (i.e., does not change along the search process).
While this permissive assumption facilitates the analysis of
search models, it is frequently impractical in the physical
world. The use of changing search costs suggests an optimal
search strategy structure different from the one used in tradi-
tional economic search models: other than merely deciding
when to terminate its search, the agent also needs to inte-
grate into its decision making process exploration sequence
considerations.

Changing search costs have been previously considered
in the MAS domain in the context of Graph Search Prob-
lems (Koutsoupias, Papadimitriou, and Yannakakis 1996).
Here, the agent is seeking a single item, and a distribu-
tion is defined over all probability of finding it at each
of the graph’s nodes (Ausiello, Leonardi, and Marchetti-

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

9

Spaccamela 2000). Nevertheless, upon arriving at a node
the success factor is binary: either the item is there or
not. Extensions of these applications to scenarios where
the item is mobile are of the same character (Gal 1980;
Koopman 1980).

This paper thus bridges the gap between classical eco-
nomic search theory (which is mostly suitable for virtual or
non-dimensional worlds) and the changing search cost con-
straint imposed by operating in physical MAS environments.
Specifically, we consider physical settings where the oppor-
tunities are aligned along a path (Hazon and Kaminka 2005)
(either closed or a non-closed one) and the cost of observ-
ing the true value of any unexplored source depends on its
distance (along the path) from the agent’s current position.
For exposition purposes we use in the remaining of the pa-
per the classical procurement application where the goal of
the search is purchasing a product and the value of each ob-
served opportunity represents a price.

We consider three variants of the problem, differing in
their objective. The first (Min-Expected-Cost) is the problem
of an agent that aims to minimize the expected total cost of
completing its task. The second (Max-Probability) consid-
ers an agent that is given an initial budget for the task (which
it cannot exceed) and needs to act in a way that maximizes
the probability it will complete its task (e.g., reach at least
one opportunity with a budget large enough to successfully
buy the product). In the last variant (Min-Budget) the agent
is requested to guarantee a pre-defined probability of com-
pleting the task, and needs to minimize the overall budget
that will be required to achieve the said success probability.
While the first variant fits mostly product procurement ap-
plications, the two latter variants fit well into applications
of robots engaged in remote exploration, operating with a
limited amount of battery power (i.e., a budget).

The contributions of the paper are threefold: First, the
paper is the first to introduce single and multi-agent costly
search with changing costs, a model which we believe is
highly applicable in real-world settings. To the best of our
knowledge this important search model has not been inves-
tigated to date, neither in the rich economic search theory
literature nor in MAS and robotics research. Second, it
thoroughly analyzes three different variants of the problem,
both for the single agent and multi-agent case and identifies
unique characteristics of their optimal strategy. For some of
the variants it proves the existence of a polynomial solution.
For others it proves the hardness of the problem. Finally,
the paper presents an innovative fully polynomial time ap-
proximation scheme algorithm for the budget minimization
problem.

Summary of Results. We first consider the single agent
case. We prove that in general metric spaces all three prob-
lem variants are NP-hard. Thus, as mentioned, we focus on
the path setting. For this case we provide a polynomial al-
gorithm for the Min-Expected-Cost problem. We show the
other two problems (Min-Budget and Max-probability) to
be NP-complete even for the path setting. Thus, we con-
sider further restrictions and also provide an approximation

scheme. We show that both problems are polynomial if the
number of possible prices is constant. For the Min-Budget
problem, we also provide an FPTAS (fully-polynomial-
time-approximation-scheme), such that for any ε > 0, pro-
viding a (1 + ε) approximation in time O(poly(nε−1)),
where n is the size of the input.

For the multi-agent case, we show that if the number of
agents is fixed, then all of the single-agent algorithms extend
to k-agents, with the time bounds growing exponentially in
k. Therefore the computation of the agents’ strategies can be
performed whenever the number of agents is relatively mod-
erate, a scenario characterizing most physical environments
where several agents cooperate in exploration and search. If
the number of agents is part of the input then Min-Budget
and Max-Probability are NP-complete even on the path and
even with a single price. Table 1 presents a summary of the
results. Empty entries represent open problems.

Problem Formulation
We are provided with m points - S = {u1, . . . , um}, which
represent the store locations, together with a distance func-
tion dis : S × S → R+ - determining the travel costs be-
tween any two stores. We are also provided with the agent’s
initial location, us, which is assumed WLOG (without loss
of generality) to be at one of the stores (the product’s price
at this store may be ∞). In addition, we are provided with a
price probability function pi(c) - stating the probability that
the price at store i is c. Let D be the set of distinct prices
with non-zero probability, and d = |D|. We assume that the
actual price at a store is only revealed once the agent reaches
the store. The multi-agent case will be defined in the last
section. Given these inputs, the goal is roughly to obtain the
product at the minimal total cost, including both travel costs
and purchase price. Since we are dealing with probabilities,
this rough goal can be interpreted in three different concrete
formulations:

1. Min-Expected-Cost: minimize the expected cost of pur-
chasing the product.

2. Min-Budget: given a success probability psucc minimize
the initial budget necessary to guarantee purchase with
probability at least psucc.

3. Max-Probability: given a total budget B, maximize the
probability to purchase the product.

In all the above problems, the optimization problem entails
determining the strategy (order) in which to visit the differ-
ent stores, and if and when to terminate the search. For the
Min-Expected-Cost problem we assume that an agent can
purchase the product even after leaving the store (say by
phone).

Unfortunately, for general distance functions (e.g. the
stores are located in a general metric space), all three of
the above problems are NP-hard. To prove this we first
convert the problems into their decision versions. In the
Min-Expected-Cost-Decide problem this translate to: we are
given a set of points S, a distance function dis : S × S →
R+, an agent’s initial location us, a price-probability func-
tion p·(·), and a maximum expected cost M , decide whether

10

Min-Expected-
Cost

Max-Probability Min-Budget

General metric spaces NP-Hard NP-Complete NP-Complete

Path - general case
Single agent O(d2m2)

NP-Complete NP-Completek agents O(d2(m
k)2k)

k is a parameter

Path - single price
Single agent

not defined
O(m) O(m)

k agents O((m
k)2k) O((m

k)2k)
k is a parameter NP-Complete NP-Complete

Path - d prices, k agents O(d2(m
k)2k) O(2−kd(e·m

kd)2kd) O(2−kd(e·m
kd)2kd)

Path -single agent (1 + ε) approximation O(nε−6)
Path - k agents (1 + kε) approximation O(nε−k6)

Table 1: Summary of results: n is the input size, m - the number of points (store locations), d - the number of different possible
prices, k - the number of agents.

there is a policy with an expected cost at most M . In the
Min-Budget-Decide problem, the input is the same, only
that instead of a target expected cost, we are given a min-
imum success probability psucc and maximum budget B,
and we have to decide whether a success probability of at
least psucc can be obtained with budget at most B. The ex-
act same formulation also constitutes the decision version
of the Max-Probability problem. We prove that for general
metric spaces all these problems are NP complete. Thus, we
focus on the case that the stores are all located on a single
path. We denote these problems Min-Budget (path), Max-
Probability (path), and Min-Expected-Cost (path), respec-
tively. In this case we can assume that, WLOG all points
are on the line, and do away with the distance function dis.
Rather, the distance between ui and uj is simply |ui − uj |.
Furthermore, WLOG we may assume that the stores are or-
dered from left-to-right, i.e. u1 < u2 < · · · < um. In the
following, when we refer to Min-Budget, Max-Probability
and Min-Expected-Cost we refer to their path variants, un-
less otherwise specified.

Multi-Agent. In the multi agent case, we assume k agents,
operating in the same underlaying physical setting as in the
single agent case, i.e. a set of stores S, a distance func-
tion dis between the points, and a price probability function
for each store. In this case, however, different agents may
have different initial location, which are provided as a vector
(u(1)

s , . . . , u
(k)
s). We assume full (wireless) communication

between agents. In theory, agents may move in parallel, but
since minimizing time is not an objective, we may assume
WLOG that at any given time only one agents moves. When
an agent reaches a store and finds the price at this location,
it communicates this price to all other agents. Then, a cen-
tral decision is made whether to purchase the product (and
where) and if not what agent should move next and to where.
We assume that all resources and costs are shared among
all the agents. Therefore, in Multi-agent Min-Expected-Cost
problem the agents try to minimize the expected total cost,
which includes the travel costs of all agents plus the final
purchase price (which is one of the prices that the agents

have sampled). In Multi-agent Min-Budget and multi-agent
Max-Probability problems, the initial budget is for the use
of all the agents, and the success probability is for any of the
agents to purchase, at any location.

Minimize-Expected-Cost
Hardness in General Metric Spaces
Theorem 1 For general metric spaces Min-Expected-Cost-
Decide is NP-Hard.

Proof. The proof is by reduction from Hamiltonian path,
defined as follows. Given a graph G = (V, E) with
V = {v1, . . . , vn}, decide whether there is a simple path
(vi1 , vi2 , ..., vin) in G covering all nodes of V . The re-
duction is as follows. Given a graph G = (V, E) with
V = {v1, . . . , vn}, set S (the set of stores) to be S =
{us} ∪ {u1, . . . , un}, where us is the designated start lo-
cation, and {u1, . . . , un} correspond to {v1, . . . , vn}. The
distances are defined as follows. For all i, j = 1, . . . , n,
dis(us, ui) = 2n, and dis(ui, uj) is the length of the short-
est path between vi and vj in G. For all i, pi(0) = 0.5,
and pi(∞) = 0.5, and for us, ps(n!) = 1. Finally, set
M = 2n +

∑n
j=1 2−j(j − 1) + 2−n(n! + n− 1).

Suppose that there is an Hamiltonian path H =
(vi1 , vi2 , ..., vin

) in G. Then, the following policy achieves
an expected cost of exactly M . Starting in us move to ui1
and continue traversing according to the Hamiltonian path.
If at any point ui along the way the price is 0, purchase and
stop. Otherwise continue to the node in the path. If at all
points along the path the price was ∞, purchase from store
us, where the price is n!. The expected cost of this policy is
as follows. The price of the initial step (from us to ui1) is a
fixed 2n. For each j, the probability to obtain price 0 at uij

but not before is 2−j . The cost of reaching uij
from ui1 is

j−1. The probability that no uj has price 0 is 2−n, in which
case the purchase price is n!, plus n − 1 wasted steps. The
total expected cost is thus exactly M .

Conversely, suppose that there is no Hamiltonian path in
G. Clearly, since the price at us is so large, any optimal strat-
egy must check all nodes/stores {u1, . . . , un} before pur-

11

chasing at us. Since there is no Hamiltonian path in G, any
such exploration would be strictly more expensive than one
with a Hamiltonian path. Thus, the expected cost would be
strictly more than M . 2

Solution for the Path
When all stores are located on a path, the Min-Expected-
Cost problem can be modeled as finite-horizon Markov de-
cision process (MDP), as follows. Note that on the path, at
any point in time the points/stores visited by the agent con-
stitute a contiguous interval, which we call the visited inter-
val. Clearly, the algorithm need only make decisions at store
locations. Furthermore, decisions can be limited to times
when the agent is at one of the two stores edges of the visited
interval. At each such location, the agent has only three pos-
sible actions: “go right” - extending the visited-interval one
store to the right, “go left” - extending the visited-interval
one store to the left, or “stop” - stopping the search and buy-
ing the product at the best price so far. Also note that after
the agent has already visited the interval [u`, ur], how ex-
actly it covered this interval does not matter for any future
decision; the costs have already been incurred. Accordingly,
the states of the MDP are quadruplets [`, r, e, c], such that
` ≤ s ≤ r, e ∈ {`, r}, and c ∈ D, representing the situ-
ation that the agents visited stores u` through ur, it is cur-
rently at location ue, and the best price encountered so far is
c. The terminal states are Buy(c) and all states of the form
[1,m, e, c], and the terminal cost is c. For all other states
there are two or three possible actions - “go right” (provided
that r < m), “go left” (provided that 1 < `), or “stop”. The
cost of “go right” on the state [`, r, e, c] is (ur+1−ue), while
the cost of “go-left” is (ue−u`−1). The cost of “stop” is al-
ways 0. Given the state [`, r, e, c] and move “go-right”, there
is probability pr+1(c′) to transition to state [`, r+1, r+1, c′],
for c′ < c. With the remaining probability, the transition is
to state [`, r + 1, r + 1, c]. Transition to all other states has
zero probability. Transitions for the “go left” action are anal-
ogous. Given the state [`, r, e, c] and the action “stop”, there
is probability 1 to transition to state Buy(c). This fully de-
fines the MDP. The optimal strategy for finite-horizon MDPs
can be determined using dynamic programming (see (Put-
erman 1994, Ch.4)). In our case, the complexity can be
brought down to O(d2m2) steps (using O(dm2) space).

Min-Budget and Max-Probability
NP Completeness
Unlike the Min-Expected-Cost problem, the other two prob-
lems are NP-complete even on a path.

Theorem 2 Min-Budget-Decide problem is NP-Complete
even on a path.

Proof. Given an optimal policy it is easy to compute its total
cost and success probability in O(n) steps, therefore Min-
Budget-Decide is in NP. The proof of NP-Hardness is by
reduction from the knapsack problem, defined as follows.
Given a knapsack of capacity C > 0 and N items, where
each item has value vi ∈ Z+ and size si ∈ Z+, determine
whether there is a selection of items (δi = 1 if selected, 0 if

not) that fits into the knapsack, i.e.
∑N

i=1 δisi ≤ C, and the
total value,

∑N
i=1 δivi, is at least V .

Given an instance of the knapsack problem we build an
instance for Min-Budget-Decide problem as follows. We as-
sume WLOG that all the points are on the line. Our line con-
sists of 2N +2 stores. N stores corresponds to the knapsack
items, denoted by uk1 , ..., ukN

. The other N + 2 stores are
denoted ug0 , ug1 , ..., ugN+1 , where ug0 is the agent’s initial
location. Let T = 2·∑N

i=1 si and maxV = N ·maxi vi. For
each odd i, ugi is to the right of ug0 and ugi+2 is to the right
of ugi . For each even i (i 6= 0), ugi is to the left of ug0 and
ugi+2 is to the left of ugi . We set |u0−u1| = |u0−u2| = T
and for each i > 0 also, |ugi−ugi+2 | = T . If N is odd (even)
ukN is on the right (left) side of ugi and it is the rightmost
(leftmost) point. As for the other uki points, uki is located
between ugi and ugi+2 , if i is odd, and between ugi+2 and
ugi otherwise. For both cases, |ugi − uki | = si. See figure
1 for an illustration.

s3

Ug0=Ps Ug1 Ug4 Ug3 Ug2 Uk2 Uk1 Uk3

T T

s2 s1

T T

Figure 1: Reduction of knapsack to Min-Budget-Decide
problem used in proof of Theorem 2, for N=3.

We set B = T · ∑N+1
j=1 j + 2C + 1 and for each i set

Xi = T · ∑i
j=1 j + 2 · ∑i−1

j=1 sj . At store ugN+1 either
the product is available at the price of 1 with probability
1−2−maxV , or not available at any price. On any other store
ugi , either the product is available at the price of B−Xi with
the same probability, or not available at all. At any store uki ,
either the product is available at the price of B − Xi − si,
with probability 1 − 2−maxV , or not available at any price.
Finally, we set psucc = 1− 2−maxV ·(N+1) · 2−V .

Suppose there is a selection of items that fit the knap-
sack with a total value of at least V , and consider the fol-
lowing policy: go right from ug0 to ug1 . Then for each
i = 1, 2, .., N , if δi = 0 (item i was not selected) change di-
rection and go to the other side to ugi+1 . Otherwise, continue
in the current direction to uki

and only then change direction
to ugi+1 . This policy’s total travel cost is

∑N
i=1(i · T + δi ·

2si)+(N+1)·T = T ·∑N+1
i=1 i+2C = B−1, thus the agent

has enough budget to reach all ugi , and uki with δi = 1.
When the agent reaches ugi

, i < N + 1 it has already spent
on traveling cost exactly T ·∑i

j=1 j+2·∑i−1
j=1(δj ·sj) ≤ Xi

so the agent has a probability of 1−2−maxV to purchase the
product at this store. When it reaches ugN+1 its on the end
of its tour and since the agent’s total traveling cost is B − 1,
here it also has a probability of 1− 2−maxV to purchase the
product. When it reaches uki it has already spent exactly
T ·∑i

j=1 j + 2 ·∑i−1
j=1(δj · sj) + si ≤ Xi + si so the agent

has a probability of 1− 2−vi to purchase the product in this
store. In total, the success probability is 1−(2−maxV ·(N+1) ·

12

∏N
i=1 2−vi·δi) ≥ 1− (2−maxV ·(N+1) · 2−V) = psucc as re-

quired.
Suppose there is a policy, plc with a total travel cost that

is less than or equal B, and its success probability is at least
psucc. Hence, plc’s failure probability is at most 1−psucc =
2−maxV ·(N+1) ·2−V . Since maxV = N ·maxi vi, plc must
reach all the N + 1 stores ugi with enough budget. Hence,
plc must go right from ug0 to ug1 and then to each other
ugi before ugi+1 . Therefore plc goes in a zigzag movement
from one side of us to the other side and so on repeatedly.
plc also has to select some uki to reach with enough budget.
Thus, plc has to reach these uki right after the corresponding
store ugi . We use γi = 1 to indicate the event in which plc
selects to reach uki right after ugi , and γi = 0 to denote the
complementary event. plc’s total traveling cost is less than
or equal B − 1 to be able to purchase the product also at the
last store, ugN+1 , so T ·∑N+1

j=1 j + 2 ·∑N
j=1 γj · sj ≤ T ·∑N+1

j=1 j +2C. Thus,
∑N

j=1 γj · sj ≤ C. Also, psucc = 1−
2−maxV ·(N+1) ·2−V ≤ 1−2−maxV ·(N+1) ·∏N

i=1 2−vi·γi ⇒
2−V ≤ ∏N

i=1 2−vi·γi ⇒ V ≥ ∑N
i=1 vi · γi. Setting δi = γi

gives a selection of items that fit the knapsack. 2

Thus, we either need to consider restricted instances or
consider approximations. We do both.

Restricted Case: Bounded Number of Prices
We consider the restricted case when the number of pos-
sible prices, d, is bounded. For brevity, we focus on the
Min-Budget problem. The same algorithm and similar anal-
ysis work also for the Max-Probability problem. Consider
first the case where there is only one possible price c0. At
any store i, either the product is available at this price, with
probability pi = pi(c0), or not available at any price. In this
setting we show that the problem can be solved in O(m)
steps. This is based on the following lemma, stating that in
this case, at most one direction change is necessary.
Lemma 1 Consider a price c0 and suppose that in the opti-
mal strategy starting at point us the area covered while the
remaining budget is at least c0 is the interval [u`, ur]. Then,
WLOG we may assume that the optimal strategy is either
(us ½ ur ½ u`) or (us ½ u` ½ ur).

Proof. Any other route would take more cost to cover the
same interval. 2

Using this observation, we immediately obtain an O(m3)
algorithm for the single price case: consider both possible
options for each interval [u`, ur], and for each compute the
total cost and the resulting probability. Choose the option
which requires the lowest budget but still has a success prob-
ability of at least psucc. With a little more care, the com-
plexity can be reduced to O(m). First note that since there is
only a single price c0, we can add c0 to the budget at the end,
and assume that the product will be provided at stores for
free, provided that it is available. Now, consider the strategy
of first moving right and then switching to the left. In this
case, we need only consider the minimal intervals that pro-
vide the desired success probability, and for each compute
the necessary budget. This can be performed incrementally,

in a total of O(m) work for all such minimal intervals, since
at most one point can be added and one deleted at any given
time. Similarly for the strategy of first moving left and then
switching to the right. The details are provided in Algorithm
1.

Algorithm 1 OptimalPolicyForSinglePrice(Success proba-
bility psucc, single price c0)
1: ur ← leftmost point on right of us s.t. 1−∏r

i=s 1−pi ≥ psucc

2: ` ← s
3: BRL

min ←∞
4: while ` ≥ 0 and r ≥ s do
5: B ← 2|ur − us|+ |us − u`|
6: if B < BRL

min then
7: BRL

min ← B
8: r ← r − 1
9: while 1−∏r

i=` 1− pi < psucc do
10: ` ← `− 1
11: u` ← rightmost point to left of us s.t. 1−∏s

i=` 1−pi ≥ psucc

12: r ← s
13: BLR

min ←∞
14: while r ≤ m and ` ≤ s do
15: B ← 2|us − u`|+ |ur − us|
16: if B < BLR

min then
17: BLR

min ← B
18: ` ← ` + 1
19: while 1−∏r

i=` 1− pi < psucc do
20: r ← r + 1
21: return min{BRL

min, BLR
min}+ c0

Next, consider the case that there may be several different
available prices, but their number, d, is fixed. We provide
a polynomial algorithm for this case (though exponential
in d). First note that in the Min-Budget problem, we seek
to minimize the initial budget B necessary so as to guar-
antee a success probability of at least psucc given this ini-
tial budget. Once the budget has been allocated, however,
there is no requirement to minimize the actual expenditure.
Thus, at any store, if the product is available for a price no
greater than the remaining budget, it is purchased immedi-
ately and the search is over. If the product has a price be-
yond the current available budget, the product will not be
purchased at this store under any circumstances. Denote
D = {c1, c2, . . . , cd}, with c1 > c2 > · · · > cd. For each
ci there is an interval Ii = [u`, ur] of points covered while
the remaining budget was at least ci. Furthermore, for all i,
Ii ⊆ Ii+1. Thus, consider the incremental area covered with
remaining budget ci, ∆i = Ii − Ii−1 (with ∆1 = I1). Each
∆i is a union of an interval at left of us and an interval at the
right of us (both possibly empty). The next lemma, which
is the multi-price analogue of Lemma 1, states that there are
only two possible optimal strategies to cover each ∆i:
Lemma 2 Consider the optimal strategy and the incremen-
tal areas ∆i (i = 1, . . . , d) defined by this strategy. For
ci ∈ D, let u`i

be the leftmost point in ∆i and uri
the right-

most point. Suppose that in the optimal strategy the cover-
ing of ∆i starts at point usi . Then, WLOG we may assume
that the optimal strategy is either (usi ½ uri ½ u`i) or
(usi ½ u`i ½ uri). Furthermore, the starting point for
covering ∆i+1 is the ending point of covering ∆i.

13

Proof. The areas ∆i fully determine the success probability
of the strategy. Any strategy other than the ones specified
in the lemma would require more travel budget, without en-
larging any ∆i. 2

Thus, the optimal strategy is fully determined by the left-
most and rightmost points of each ∆i, together with the
choice for the ending points of covering each area. We can
thus consider all possible cases and choose the one with the
lowest budget which provides the necessary success proba-
bility. There are m2d

(2d)! ≤ (em
2d)2d ways for choosing the ex-

ternal points of the ∆i’s, and there are a total of 2d options to
consider for the covering of each. For each option, comput-
ing the budget and probability takes O(m) steps. Thus, the
total time is O(m2d(em

2d)2d). Similar algorithms can also be
applied for the Max-Probability problem. In all, we obtain:
Theorem 3 Min-Budget (path) and Max-Probability (path)
can be solved in O(m) steps for a single price and
O(m2d(em

2d)2d) for d prices.

Min-Budget Approximation
Next, we provide a FPTAS (fully-polynomial-time-
approximation-scheme) for the Min-Budget problem. The
idea is to force the agent move in quantum steps of some
fixed size δ. In this case the tour taken by the agent can
be divided into segments, each of size δ. Furthermore, the
agent’s decision points are restricted to the ends of these seg-
ments, except for the case where along the way the agent has
sufficient budget to purchase the product at a store, in which
case it does so and stops. We call such a movement of the
agent a δ-resolution tour. Note that the larger δ the less deci-
sion points there are, and the complexity of the problem de-
creases. Given 0 < ε < 1, we show that with a proper choice
of δ we can guarantee a (1 + ε) approximation to the op-
timum, while maintaining a complexity of O(npoly(1/ε)),
where n is the size of the input.

Our algorithm is based on computing for (essentially)
each initial possible budget B, the maximal achievable suc-
cess probability, and then pick the minimum budget with
probability at least psucc. Note that once the interval [`, r]
has been covered without purchasing the product, the only
information that matters for any future decision is (i) the
remaining budget, and (ii) the current location. The ex-
act (fruitless) way in which this interval was covered is,
at this point, immaterial. This, “memoryless” nature calls,
again, for a dynamic programming algorithm for determin-
ing . We now provide a dynamic programming algorithm to
compute the optimal δ-resolution tour. WLOG assume that
us = 0 (the initial location is at the origin). For integral i,
let wi = iδ. The points wi, which we call the resolution
points, are the only decision points for the algorithm. Set L
and R to be such that wL is the rightmost wi to the left of all
the stores and wR the leftmost wi to the right of all stores.
We define two tables, fail[·, ·, ·, ·] and act[·, ·, ·, ·], such that
for all `, r, L ≤ ` ≤ 0 ≤ r ≤ R, e ∈ {`, r} (one of the end
points), and budget B, fail[`, r, e, B] is the minimal failure
probability1 achievable for purchasing at the stores outside

1Technically, it is easy to work with the failure probability in-

[w`, wr], assuming a remaining budget of B, and starting at
location we. Similarly, act[`, r, e, B] is the best act to per-
form in this situation (“left”, ”right”, or “stop”). Given an
initial budget B, the best achievable success probability is
(1−fail[0, 0, 0, B]) and the first move is act[0, 0, 0, B]. It re-
mains to show how to compute the tables. The computation
of the tables is performed from the outside in, by induction
on the number of remaining points. For ` = L and r = R,
there are no more stores to search and fail[L,R, e, B] = 1
for any e and B. Assume that the values are known for i re-
maining points, we show how to compute for i+1 remaining
points. Consider cost[`, r, e, B] with i+1 remaining points.
Then, the least failure probability obtainable by a decision
to move right (to wr+1) is:

FR =

1−

∑

c≤B−δ

pr+1(c)

 fail[`, r + 1, r + 1, B − δ]

Similarly, the least failure probability obtainable by a deci-
sion to move left (to w`−1) is:

FL =

1−

∑

c≤B−δ

p`−1(c)

 fail[`− 1, r, `− 1, B − δ]

Thus, we can choose the act providing the least failure prob-
ability, determining both act[`, r, e, B] and fail[`, r, e, B]. In
practice, we compute the table only for B’s in integral mul-
tiples of δ. This can add at most δ to the optimum. Also,
we may place a bound Bδ

max on the maximal B we con-
sider in the table. In this case, we start filling the table with
wL = −Bδ

max/δ and wR = Bδ
max/δ, the furthest point

reachable with budget Bδ
max.

Next, we show how to choose δ and prove the approxima-
tion ratio. Set λ = ε/9. Let α = min{|us − us+1|, |us −
us−1|} - the minimum budget necessary to move away from
the starting point, and β = m2|um − u1| + max{c :
∃i, pi(c) > 0} - an upper bound on the total usable budget.
We start by setting δ = λ2α and double it until δ > λ2β,
performing the computation for all such values of δ. For
such value of δ, we fill the tables (from scratch) for all val-
ues of B’s in integral multiples of δ up to Bδ

max = 2λ−2δ.
We now prove that for at least one of the choices of δ we
obtain a (1 + ε) approximation.

Consider a success probability psucc and suppose that op-
timally this success probability can be obtained with budget
Bopt using the tour Topt. By tour we mean a list of actions
(“right”, “left” or “stop”) at each decision point (which, in
this case, are all store locations). We convert Topt to a δ-
resolution tour, Tδ

opt, as follows. For any i ≥ 0, when Topt

moves for the first time to the right of wi then Tδ
opt moves all

the way to wi+1. Similarly, for i ≤ 0, when Topt moves for
the first time to the left of wi then Tδ

opt moves all the way to
wi−1.

Note that Tδ
opt requires additional travel costs only when

it “overshoots”, i.e. when it goes all the way to the resolution

stead of the success probability.

14

point while Toptwould not. This can either happen (i) in the
last step, or (ii) when Topt makes a direction change. Type
(i) can happen only once and costs at most δ. Type (ii) can
happen at most once for each resolution point, and costs at
most 2δ. Suppose that Tδ

opt makes t turns (i.e. t directions
changes). Then, the total additional travel cost of the tour
Tδ

opt over Topt is at most (2t + 1)δ. Furthermore, if we use

Topt with budget Bopt and Tδ
opt with budget Bopt+(2t+1)δ

then at any store, the available budget under Tδ
opt is at least

that available with Topt. Thus, Tδ
opt is a δ-resolution tour that

with budget at most Bopt+(2t+1)δ succeeds with probabil-
ity ≥ psucc. Hence, our dynamic algorithm, which finds the
optimal such δ-resolution tour will find a tour with budget
Bδ

opt ≤ Bopt +(2t+2)δ obtaining at least the same success
probability (one additional δ for the integral multiples of δ
in the tables).

Since Tδ
opt has t-turns, Topt must also have t-turns, with

targets at t distinct resolution segments. For any i, the i-
th such turn (of Topt) necessarily means that Toptmoves to a
point at least (i−1) segments away, i.e. a distance of at least
(i − 1)δ. Thus, for Bopt, which is at least the travel cost of
Topt, we have:2

Bopt ≥
t∑

i=1

(i− 1)δ =
(t− 1)(t)

2
δ ≥ t2

4
δ (1)

On the other hand, since we consider all options for δ in
multiples of 2, there must be a δ̂ such that:

λ−2δ̂ ≥ Bopt ≥ λ−2

2
δ̂ (2)

Combining (1) and (2) we get that t ≤ 2λ−1. Thus, the
approximation ratio is:

B
ˆδ
opt

Bopt
≤ Bopt+2(t+1)

ˆδ
Bopt

≤ 1 + 2(t+1)
ˆδ

λ−2ˆδ/2
(3)

≤ 1 + (8λ + 4λ2) ≤ 1 + ε (4)

Also, combining (2) and (4) we get that

B
ˆδ
opt ≤ Bopt(1 + ε) ≤ 2λ−2δ̂ = B

ˆδ
max

Hence, the tables with resolution δ̂ consider this budget, and

B
ˆδ
opt will be found.
It remains to analyze the complexity of the algorithm. For

any given δ there are Bδ
max/δ = 2λ−2 budgets we consider

and at most this number of resolution points at each side of
us, for each, there are two entries in the table. Thus, the size
of the table is ≤ 8λ−6 = O(ε−6). The computation of each
entry takes O(1) steps. We consider δ in powers of 2 up to
β ≤ 2n, where n is the size of the input. Thus, the total
computation time is O(nε−6). We obtain:
Theorem 4 For any ε > 0, the Min-Budget problem can be
approximated with a (1 + ε) factor in O(nε−6) steps.

2Assuming that t > 1. If t = 0, 1 the additional cost is easily
small by (2).

Multi-Agent
The algorithms for the single-agent case can be extended to
the multi-agent case as follows.

Theorem 5 With k agents:

• Multi-agent Min-Expected-Cost (path) can be solved in
O(d2(m

k)2k).
• Multi-agent Min-Budget (path) and multi-agent Max-

Probability (path) with d possible prices can be solved
in O(m2−kd(em

kd)2kd).
• For any ε > 0, multi-agent Min-Budget (path) can be ap-

proximated to within a factor of (1 + kε) in O(nε−6k)
steps (for arbitrary number of prices).

The algorithms are analogous to the ones for the single
agent case, with the additional complexity of coordinating
between the agents. The details are omitted.

While the complexity in the multi-agent case grows ex-
ponentially in the number of agents, in most physical envi-
ronments where several agents cooperate in exploration and
search, the number of agents is relatively moderate. In these
cases the computation of the agents’ strategies is efficiently
facilitated by the principles of the algorithmic approach pre-
sented in this paper.

If the number of agents is not fixed (i.e. part of the input)
then, the complexity of all three variants grows exponen-
tially. Most striking perhaps is that Multi-agent Min-Budget
and Max-Probability problems are NP-complete even on
the path with a single price. To prove this we again for-
mulate the problems into a decision version- Multi-Min-
Budget-Decide - Given a set of points S, a distance func-
tion dis : S × S → R+, initial locations for all agents
(u(1)

s , . . . , u
(k)
s), a price-probability function p·(·), a mini-

mum success probability psucc and maximum budget B, de-
cide if success probability of at least psucc can be achieved
with a maximum budget B.

Theorem 6 Multi-Min-Budget-Decide is NP-complete
even on the path with a single price.

Proof. An optimal policy defines for each time step which
agent should move and in which direction. Since there are at
most 2m time steps, it is easy to compute the success proba-
bility and the total cost in O(m) steps, therefore the problem
is in NP. The NP-Hard reduction is from the knapsack prob-
lem.

We assume WLOG that all the points are on the line.
We use N agents and our line consists of 2N stores. N
stores corresponds to the knapsack items, denote them by
uk1 , ..., ukN

. The other N points are the starting point of the
agents, {u(i)

s }i=1,..,N . We set the left most point to u
(1)
s and

the right most point to ukN
. For all 1 ≤ i ≤ N − 1 set uki

right after u
(i)
s and u

(i+1)
s right after uki

. Set |u(i)
s − uki | =

si and |uki−u
(i+1)
s | = B+1. See figure 2 for an illustration.

The price at all the nodes is c0 = 1 and pki(1) = 1−2−vi .
Finally, set B = C + 1 and psucc = 1− 2−V .

For every agent i, the only possible movement is to node
pki

, denote by γi = 1 if agent i moves to pki
, and 0 if

not. Therefore, there is a selection of items that fit, i.e,

15

2ku

1ku

 (1)
su (2)

su

B+1

s1 B+1 s3

(3)
su

3ku

s2

Figure 2: Reduction of knapsack to Multi-Min-Budget-
Decide problem used in proof of Theorem 6, for N=3.

∑N
i=1 δisi ≤ C, and the total value,

∑N
i=1 δivi, is at least

V iff there is a selection of agents that move such that∑N
i=1 γisi ≤ B, and the total probability 1−∏N

i=1 γi2−vi ,
is at least psucc = 1− 2−V . 2

This is in contrast to the single agent case where the single
price case can be solved in O(n) steps.

Discussion, Conclusions and Future Work
The integration of a changing search cost into economic
search models is important as it improves the realism and
applicability of the modeled problem. At the same time, it
also dramatically increases the complexity of determining
the agents’ optimal strategies, precluding simple solutions
such as easily computable reservation values (see for exam-
ple “Pandora’s problem” (Weitzman 1979)).

This paper, which is the first to consider economic search
problems with non-stationary costs, considers physical en-
vironments where the search is being conducted in a metric
space, with a focus on the the case of a path (i.e., a line).
It presents a polynomial solution for the Min-Expected-Cost
problem and an innovative approximation algorithm for the
Min-Budget problem, which is proven to be NP-Complete.

The richness of the analysis given in the paper, covering
three different variants of the problem both for a single-agent
and multi-agent scenarios, lays the foundations for further
analysis as part of future research. In particular, we see
a great importance in extending the multi-agent models to
scenarios where each agent is operating with a private bud-
get (e.g. multiple Rovers, each equipped with a battery of
its own), and finding efficient approximations for the Min-
Expected-Cost problem where the number of agents is part
of the input.

Acknowledgments. We are grateful to the reviewers for
many important comments and suggestions, and especially
for calling to our attention the relationship between the Min-
Expected-Cost problem and MDPs. The research reported
in this paper was supported in part by NSF IIS0705587 and
ISF. Sarit Kraus is also affiliated with UMIACS.

References
Ausiello, G.; Leonardi, S.; and Marchetti-Spaccamela, A.
2000. Algorithms and Complexity. Springer Berlin / Hei-
delberg. chapter On Salesmen, Repairmen, Spiders, and
Other Traveling Agents, 1–16.

Choi, S., and Liu, J. 2000. Optimal time-constrained
trading strategies for autonomous agents. In Proc. of
MAMA’2000.
Gal, S. 1980. Search Games. New York: Academic Press.
Hazon, N., and Kaminka, G. A. 2005. Redundancy, ef-
ficiency, and robustness in multi-robot coverage. In IEEE
Int. Conference on Robotics and Automation, (ICRA-05).
Koopman, B. O. 1980. Search and Screening: General
Principles with Historical Applications. New York: Perga-
mon Press.
Koutsoupias, E.; Papadimitriou, C. H.; and Yannakakis, M.
1996. Searching a fixed graph. In ICALP ’96: Proceed-
ings of the 23rd International Colloquium on Automata,
Languages and Programming, 280–289. London, UK:
Springer-Verlag.
Lippman, S., and McCall, J. 1976. The economics of job
search: A survey. Economic Inquiry 14:155–189.
McMillan, J., and Rothschild, M. 1994. Search. In Au-
mann, R., and Amsterdam, S., eds., Handbook of Game
Theory with Economic Applications. Elsevier. chapter 27,
905–927.
Puterman, M. L. 1994. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley-
Interscience.
Sarne, D., and Kraus, S. 2005. Cooperative exploration
in the electronic marketplace. In Proceedings of AAAI’05,
158–163.
Weitzman, M. L. 1979. Optimal search for the best alter-
native. Econometrica 47(3):641–54.

16

