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Abstract

We consider a multiagent extension of single-agent graph col-
oring. Multiple agents hold disjoint autonomous subgraphs of
a global graph, and every color used by the agents in coloring
the graph has associated cost. In this multiagent graph color-
ing scenario, we seek a minimum legal coloring of the global
graph’s vertices, such that the coloring is also Pareto efficient,
socially fair, and individual rational. We analyze complexity
of individual-rational solutions in special graph classes where
classical coloring algorithms are known. Multiagent graph
coloring has application to a wide variety of multiagent coor-
dination problems, including multiagent scheduling.

Introduction
Analysis of resource allocation scenarios is an important
concern in multiagent systems (MAS). Some of these in-
teractions can be modeled using graph theory, which studies
the properties of connections between objects and offers a
generic theoretical framework for analyzing agent relation-
ships. In this paper, we investigate graph theoretic issues
from an economics perspective, considering multiple ratio-
nal agents autonomously coloring the vertices of a graph.

We choose to focus on the computationally hard problem
of graph coloring primarily due to the inherent trade-offs
that lie at the heart of the problem, trade-offs that serve as
effective representatives of inter-agent constraints. In addi-
tion, the nature of the coloring problem captures the strong
effect that local changes, made in relatively small subgraphs,
might have in significantly altering global constraints—thus
requiring coordination mechanisms to maintain legality of
the coloring. Finally, the vast literature on graph coloring
provides a good foundation for our analysis.

The overall problem is to find a way of coloring vertices
of a graph, using a minimal number of colors, such that no
two adjacent vertices share the same color. In this paper, we
are mainly interested in the economic behavior arising from
input graphs, when more than one agent is coloring them.

In a single-agent graph coloring problem, colors are noth-
ing more than markers for keeping track of adjacency or in-
cidence; for the multiagent case, however, every agent will
hold a preference relation over the color set. We will need
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to find conditions that ensure value efficiency of the algo-
rithm’s assignment solutions. Also, we would like to know
which structures lead cost-minimizing agents to cooperate in
coloring. In which cases would agents be forced to compete
for color resources, as players in a zero-sum game?

The objective properties that might be of interest in
our solution, as they are in general negotiation mecha-
nisms (Rosenschein and Zlotkin 1994), include Individual
Rationality, Pareto Optimality, Symmetry and Fairness, and
Simplicity. We investigate the characteristics of combined
graph structures, assembled under every agent’s individual
constraints, that can be optimally colored both globally and
locally, so that each agent may remain at its original level
of resource investment. This superimposes on the problem
an economic criterion for agreements that are mutually ben-
eficial; every assignment should take into account the color
preferences of agents, and strive to fulfill them to their joint
possible limit. In the following sections, we will prove the
existence of graph classes that make low computational de-
mands on coloring agents, and describe an algorithm to work
with these graph classes.

Throughout this paper, we assume a certain benevo-
lence among the agents. Specifically, agents report their
preferences and subgraph structure to some central deci-
sion maker, and they do not employ manipulative/untruthful
strategies. Additionally, we will assume no utility transfer
among the agents.

As a specific example, consider the following multi-agent
extension to a timetabling scenario (Roberts and Tesman
2004). The civil administration of Lilliput is considering ef-
ficient timetabling mechanisms in order to schedule regular
weekly committee meetings of three state offices: Housing,
Treasury, and Environment. Each office had chosen to di-
vide its work into four regional districts according to cardi-
nal directions, which we denote respectively as H{n,w,s,e},
T{n,w,s,e}, E{n,w,s,e}. Despite this separation, there are
weeks when agenda topics lie at a jurisdictional border, and
according to Lilliputian law, must include at least 1 member
from each related group. For example, when environmen-
tal issues concerning the southwest territories are discussed
at the weekly Es meeting, one member from the western
district must attend this event, in addition to his regular Ew

session. Thus environment committee meetings for southern
and western districts cannot take place simultaneously—on
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that particular week. On other occasions, certain subjects
may call for members of different offices.

The graph in Figure 1 represents constraints that the Lil-
liputian administration faces on a typical week, where a ver-
tex is drawn for every weekly meeting, and two vertices are
adjacent via an undirected edge if and only if the two meet-
ings have a common member (for example, the conflict de-
scribed above is represented by the Ew–Es edge).

Figure 1: Lilliput administration constraints; a Moebius
Ladder, painted with inefficient colors.

A coloring of the graph is equivalent to a schedule. All
meetings colored ‘Red’ can occur at the same time (say, on
day 1); meetings colored ‘Blue’ will occur on day 2, etc.
Each office maintains an agent in the global graph, repre-
senting their particular constraints. Assuming, for this ex-
ample, that all committees prefer to finish their work as early
in the week as possible, the allocation described in Figure 1
is not Pareto optimal. By switching to color 1 for Hn,Hs,
we can obtain a legal globally-optimal coloring, which pro-
vides better utility for the Housing agent without harming
the Treasury and Environment agents’ values. Moreover,
each agent wants an individual-rational coloring, where the
number of allocated resources does not exceed its inherent
constraint level. Yet the structure described does not allow
for this property to hold for all agents, since in every legal 3-
coloring of the global graph, there will be an office assigned
more than its necessary 2 colors.

The paper is organized as follows. We first describe rele-
vant work in the areas of multiagent systems and graph col-
oring. We then provide formal definitions for the informal
goals stated above. Afterward, we describe conditions for
a coloring to be Pareto Optimal, followed by guidelines for
allocating fair cost value. We describe the computational
hardness of deciding individual rational partitions by inves-
tigating global cycle graphs and split graphs. We then con-
clude and suggest directions for future work.

Related Work
The minimum coloring problem is known to be NP -hard.
The decision version asking whether a given graph is k-
colorable (k ≥ 3), was among the first NP-Complete prob-
lems identified (Karp 1972). The best-known approximation
algorithm for the coloring problem is given in (Halldórsson
1993), and guarantees an exponential approximation ratio.
Furthermore, a strong inapproximability result is provided
in (Lund and Yannakakis 1994), where it was proved that

there is a constant ε > 0 such that no polynomial-time ap-
proximation algorithm for graph coloring can achieve a ratio
nε unless P = NP . With these hardness and inapproxima-
bility results, it is reasonable to expect intractability aspects
in the multiagent scenario as well.

In the precoloring extension problem, a subset of vertices
W ⊂ V is preassigned colors and the goal is to extend the
coloring of these vertices to the whole graph, using a mini-
mal number of colors (Biró, Hujter, and Tuza 1992). This
coloring variant is NP-Complete for interval graphs. Al-
though we may apply a precoloring algorithm, by first as-
signing optimal colors to one agent and extending this col-
oring to the other agents, this context is too restrictive for
our purposes, since it does not take into account the differ-
ent possible colorings that agents’ subgraphs permit.

The list coloring problem relates to preference in color-
ing the vertices of a graph. In this variant, a graph color-
ing should be found such that the color assigned to a vertex
is chosen from a prescribed list of acceptable colors. One
can devise lists in a way that cannot be satisfied. In such a
case, one may allow some vertices to accept colors not on
their original list. A simple way to think of this is to allow
some vertices x to expand their list L(x) by adding an addi-
tional color (from the available colors). The result (Mahadev
and Roberts 2003) can be interpreted as saying that there are
G, L such that almost every vertex has to accept a color not
on its original list. In light of this evidence, instead of giving
every agent the freedom to dictate its acceptable colors, we
choose to outfit every agent with a preference relation, and
design the system to optimize according to this ordering.

Multiagent graph coloring was studied as a heuristic ap-
proach to the classical graph coloring problem, in the con-
text of swarm intelligence. In (Costa and Hertz 1997) each
ant’s role is to color the graph in some constructive way,
choosing the lowest possible color according to an ordering
of the vertices built from a degree-of-saturation parameter.

Graph coloring was used as a benchmark in (Yokoo et
al. 1998), where a general framework for solving dis-
tributed constraint satisfaction problems is offered. Vari-
ables and constraints are distributed among automated co-
operative communicating agents. Every node corresponds
to an agent, and each agent tries to determine its color so
that neighbors do not have the same color.

The current paper looks at graph coloring from an eco-
nomic perspective; agents may hold more than one variable
(node), and coordination is maintained centrally under the
assumption of self-motivated, but truthful, agents.

Definitions
A vertex coloring of a graph G is a function c : V (G) → L
such that c(v) 6= c(w) whenever v and w are adjacent. The
elements of L ⊆ {l1, . . . , ln} are the available colors. The
smallest integer k such that G can be colored using k colors
is the chromatic number of G and is denoted by χ(G).

In multiagent graph coloring, we will use the follow-
ing notations and definitions. A set of agents Ag :=
{A1, . . . , Ar} induce a partition of a joint global graph Ĝ
into disjoint agent subgraphs Gi, where cross-agent edges
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are allowed. We mark the vertex set of agent Ai as Vi :=
V (Gi), and by χi := χ(Gi) , α(Gi) her subgraph’s chro-
matic number and size of a maximal independent set, re-
spectively. The entire set of vertices is V̂ := V (Ĝ), and
χ̂ := χ(Ĝ) marks the chromatic number of the global graph.
For X ⊆ V̂ , we denote c(X) = {c(x) | x ∈ X}. Thus a
globally optimal coloring is a legal coloring c of Ĝ such that
|c(V̂ )| = χ̂.

Definition. A globally optimal coloring c is individual ra-
tional if:

∀Ai ∈ Ag |c(Vi)| = χi

In some global graphs, such as completely connected
graphs (denoted as Kn in graph theory), a chromatic sum
equality χ(Ĝ) = χ1 + . . . + χr guarantees an individual-
rational coloring. However, inequality may hold, and con-
sequently a combination of the individual assignments need
not be globally optimal. Moreover, there are structures, such
as Figure 1, where no legal mapping exists exhibiting these
two properties together.

Definition. Given a partition G = {G1, . . . , Gr} of a global
graph Ĝ, we say that G is an individual rational parti-
tion if there is an individual rational coloring c such that
|c(V̂ )| = χ(Ĝ). If no such coloring exists, then G is called
an irrational partition.

Thus, individual rational partitions enable separate agents
to behave in an individual rational way, such that global per-
formance does not decrease. In contrast, in irrational par-
titions (as in Figure 1), if global efficiency is the decisive
measure, there will be an agent forced to pursue a wasteful
strategy at its own expense.

Definition. We say an irrational partition G lacks individu-
ality of degree d when,

d := min
c:|c(bV )|=bχ max

Ai∈Ag
{|c(Vi)| − χi}

Some agents prefer Blues while others like Reds, so in
order to describe efficient value allocations we will need
additional terminology. Every agent has a linear ordering
≺i on the set of colors L. More formally, ≺i is a bijection
≺i: {1, . . . , |L|} → L, and we refer to the j-th favorite
color of Ai using ≺i (j). Since the coloring problem is of
a minimization nature, we discuss loss (instead of utility)
functions. Accordingly, the cost for agent i using a single
color s is Li(s) :=≺−1

i (s), while its total cost according
to c is Lc

i :=
∑

s∈c(Vi)

Li(s). Notice that the loss function is

indifferent to multiple uses of the same color. This is jus-
tified from a scheduling perspective, where all jobs painted
using the same color are processed in parallel. We refer to
the above valuation form as a private preference model, in
contrast to a public preference model where all agents have
the same color preference. In the latter context, it would be
convenient to denote L simply as {1, . . . , n}.

A coloring function c will be called Pareto optimal if there
does not exist another coloring f that benefits one of the
agents without raising the costs of others. More formally:

Definition. A coloring c of a global graph Ĝ will be called
Pareto optimal if every other coloring f of Ĝ satisfies the
following condition:

∃Ax Lf
x < Lc

x ⇒ ∃Ay Lf
y > Lc

y

Furthermore, we would like our allocation to be dis-
tributed fairly among the agents. Of course, we need to
take into account the conflict level each agent contributed
to the joint structure. Denote the minimum loss for agent
Ai over all possible optimal colorings of Ĝ as L∗i . The cost
of coordination for agent Ai using a global coloring c is de-
noted Dc

i and signifies the difference Dc
i = Lc

i − L∗i . Cor-
respondingly, by setting the average agent coordination cost
µc = 1

|Ag|
∑

Ai∈Ag

Dc
i , a socially fair division would mini-

mize the loss variance among participating agents.

Definition. A coloring f of a global graph Ĝ will be called
Socially Fair if it satisfies the following equation:1

f = arg min
c:|c(bV )|=bχ

 1
|Ag|

∑
Ai∈Ag

(Dc
i − µc)2


As a simple example, consider a global graph composed

only of 2 adjacent vertices, each of which belongs to a dif-
ferent agent. There will always be a difference of 1 in the
coordination cost between the agents under the public pref-
erence model, leading to an average coordination cost of 1

2 .

Pareto Efficient Colorings
In this section we will present general techniques for decid-
ing whether a given assignment is Pareto optimal, and offer
the means to find such an assignment. We will concentrate
mainly on two-agent partitions; conditions for Pareto opti-
mality in general graph partitions of arbitrary size are left
for future work.

A first observation is that in the public preference model,
any proper coloring of a global graph Ĝ = Kn is Pareto op-
timal. In such scenarios, every color one agent gains is a loss
for another, and thus the game is strictly competitive.Other
global constructions are described in Lemma 1.

Lemma 1. For a public value model, let c be a two-agent,
individual rational χ̂-coloring of Ĝ. The mapping c is
Pareto optimal if and only if:

1. c(V1) ∩ c(V2) = {1, 2, . . . , p}
2. c(V1) ∆ c(V2) = {p + 1, . . . , χ̂}
where p := |c(V1) ∩ c(V2)| denotes the number of colors
used in both agents’ graphs and ∆ is the symmetric differ-
ence set operator.2

From an algorithmic perspective, the Lemma 1 instructs
us how to construct a Pareto optimal coloring from an
individual-rational, globally optimal one; examine the joint

1Other social welfare functions may be specified.
2Proofs are omitted due to lack of space.
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set of colors and, if necessary, switch them to the first p num-
bers. Then spread the rest of the colors arbitrarily between
the agents. This can be accomplished in O(|V̂ |) time.

In the private preference model we need to take into ac-
count different valuations that agents have for colors. Ac-
cordingly, it is not true that every coloring of the complete
graph is Pareto optimal. As a simple example, consider K2

where each node belongs to a different agent with the pref-
erence profiles ‘Red’ ≺1 ‘Yellow’ and ‘Yellow’ ≺2 ‘Red’.
Only the coloring that maps A1’s vertex to ‘Red’, and A2’s
vertex to ‘Yellow’ is Pareto optimal.

To this end we define a minimum set for agents Ax and
Ay . For a set of colors A and a subset S ⊆ A, we say that S
is a minimum with respect to A, and denote S = M(A), if
for every subset T ⊆ A such that |T | = |A|, we have:∑

t∈T

Lx(t) <
∑
s∈S

Lx(s) ⇒
∑
t∈T

Ly(t) >
∑
s∈S

Ly(s)

Lemma 2 describes necessary and sufficient conditions
for Pareto optimality in the private preference model.
Lemma 2. Let c be a two-agent, individual rational χ̂-
coloring of Ĝ. The mapping c is Pareto optimal if and only
if the following conditions hold:

1. J = M(L)
2. li ∈ c(Vx) \ J and lj ∈ L \ c(V̂ ) ⇒ li ≺x lj
3. li ∈ J and lj ∈ c(Vx) \ J ⇒ (li ≺y lj)
4. li ∈ c(V1)\J and lj ∈ c(V2)\J ⇒ (li ≺1 lj)∨(lj ≺2 li)
where J := c(V1) ∩ c(V2) denotes the set of joint colors.

Implementations of conditions 2-4 requires comparisons
of agents preference which can accomplished in O(|V̂ |2)
time. To decide whether J = M(L) we apply dynamic
programing.

Define a function φ(i, j) as agent A1’s minimal cost for
a subset of labels S ⊆ {l1, . . . , li} such that |S| = |J |
and

∑
s∈S

L2(s) ≤ j. Denoting w :=
∑

s∈J
L1(s) we shall

compute φ(|L|, w). If φ(|L|, w) <
∑

s∈J
L2(s) then J 6=

M(L). Symmetricaly we can check wether A2’s cost can be
lowered without raising the cost of A1, and if both routines
return false, we know that J is a minmum set, as required.

To evaluate φ(i, j) we maintain a table of dimensions
O(|L| · w) and update values accoridng to the following
rules. Let p := |J |. For 0 ≤ i < p , set φ(i, j) = ∞
and also φ(i, 0) = ∞. In case j < [≺−1

2 (li)] then φ(i, j) =
φ(i − 1, j) since the label li is too expensive. For i = p

we have φ(p, j) = p(p + 1)/2 in case j ≥ [
p∑

i=1

≺−1
2 (i)]

and otherwise φ(p, j) = ∞. Finally, for i > p we have
φ(i, j) = min{φ(i−1, j) , φ(i, j− ≺−1

2 (li)+ i)}. Because
our input is a graph on |V̂ | nodes, and since w = O(|V̂ |2)
then the complexity of computing φ is bounded by O(|V̂ |3).

Socially Fair Colorings
We now consider the variance of color value among the
agents, while preserving Pareto optimality and assuming a
given individual-rational allocation.

As a first observation, notice that if G is an individual
rational partition of Ĝ, then for every agent Ai we have
L∗i = χi(χi+1)

2 . Next, we describe two-agent, socially fair
colorings of the complete graph.

Lemma 3. For a public preference model, the following is
a socially-fair two-agent coloring of Ĝ = Kn, for χ1 ≥ χ2.

C(V1) =
[
{2i− 1}b

χ2
2 c

i=1 ∪{χ1 + 2i}d
χ2
2 e

i=1 ∪{χ2 + i}χ1−χ2
i=1

]
\{R}

C(V2) =
[
{2i}b

χ2
2 c

i=1 ∪ {χ1 + 2i− 1}b
χ2
2 c

i=1

]
∪ {R}

Where R :=
[

χ1+2·χ2
2 + Z · (χ1 mod 2)

]
·
[
χ2 mod 2

]
is a remainder term and Z is a random variable such that
Prob[Z = 0] = Prob[Z = 1] = 1

2 .

To interpret the equation above, first consider the situation
in which χ2 is even. Then the remainder term is cancelled,
and calculation shows that Dc

1 = Dc
2 = χ1·χ2

2 . Otherwise,
the addition and removal of R is designed to equalize the
coordination cost between the 2 agents. If both χ1, χ2 are
odd, there must be an agent incurring an additional unit cost.
To satisfy the symmetry property, we use Z to select the
latter agent randomly. For example, consider K8 divided
into two equal agents; to achieve a total difference of zero,
allocate odds to A1 and evens to A2 up to 4, and vice versa
for greater values (which amounts to 18 each).

For general graphs, applying the Pareto condition of
Lemma 2 we can verify that µc = 1

2 [χ1 · χ2 − χ̂(χ1 + χ2)].
Thus, in the minimization problem defining socially fair col-
orings, we need only consider the terms Dc

i . Consequently,
in order to construct a socially-fair, Pareto optimal, two-
agent coloring from a given individual-rational allocation,
we just need to color the graph Kbχ−p and add the number p
to each of the colors specified by the formulas of Lemma 3.

Solutions for the private preference case are left for future
work.

Individual Rational Partitions of Cycles
We now begin our study of individual rational partitions.
Our concern here is the number of colors used by each agent,
and thus we can assume a public preference model.

We denote the simple chordless cycle on n vertices by
Cn, and recall that χ(Cn) = 2 if the number of vertices is
even and χ(Cn) = 3 if n is odd. In addition, to formulate
the following lemmas, we will use the term floating agent to
characterize Ai if |Vi| = α(Gi), i.e., it is an agent whose
entire vertex set constitutes a stable set.

Even cycles have exactly two globally optimal legal color-
ings: assigning ‘1’ to even nodes and ‘2’ to odd nodes, and
vice versa. To preserve the number of colors used in uni-
colored agent subgraphs, we must not allow agents to cross
these two stable sets.

Lemma 4. A partition G of cycle C2k is individual rational
iff G does not include floating agents with vertices of oppo-
site parity.

We remark that a similar result holds for trees; a partition
of a tree is individual rational if and only if no floating agent
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exists whose vertex set includes vertices at even and odd lev-
els of the tree. Both of these examples belong to the class of
uniquely colorable graphs, which are graphs that have only
one possible optimal coloring up to permutations of colors,
and as such are extremely sensitive to distortions.

For odd chordless cycles, we have an extra color, which
makes individual rational partitions more complicated. For
example, consider the pentagon C5; one can validate that
no matter which partition we choose to apply, an individ-
ual rational 3-coloring will be available. More generally, if
we restrict our discussion to two agents, then the following
lemma holds.
Lemma 5. A two-agent partition of an odd cycle is individ-
ual rational.

In contrast, when considering three agents, Figure 2 illus-
trates a partition (of an odd cycle) that lacks individuality.
Here, the principal idea suggests that, if a floating agent Ai

has starting and terminating vertices in an even path whose
internal vertices are composed only from Aj’s vertices, then
Ai and Aj do not share a common color. This is because, if
we have a path of the form P = v0, v1, . . . , v2s, v2s+1 such
that v0, v2s+1 ∈ Vi while v1, . . . , v2s ∈ Vj , then v1, v2s

must have different colors, and both of them are connected
to Ai. In such a scenario we would say that Ai is blocking
Aj . Arguments along these lines lead to Lemma 6.

Figure 2: An irrational partition of C9. A1 = {a, c, d, g, h},
A2 = {b, e}, A3 = {f, i}. A2 and A3 are floating agents.

Lemma 6. A three-agent partition G of the odd cycle C2k+1

is individual rational if and only if G does not contain two
connected floating agents, each one blocking the third agent.

Theorem 7 states that if we continue increasing the setAg
by choosing finer partitions, we may introduce a high level
of distortion to the global graph, and consequently make op-
timal individual-rational colorings hard to find.

Theorem 7. For O(|V̂ |) agents, determining whether a par-
tition of C2k+1 is individual rational is NP -Complete.

Surely the problem is in NP—a certificate is a coloring of
C2k−1. We can verify such a certificate (in polynomial time)
by checking legality, making sure floating agents are unicol-
ored while agents with edges are painted with exactly 2 col-
ors, and confirm that a total of 3 colors were used. For com-
pleteness, we reduce the problem 3-COL to finding such
individual rational colorings. Given input graph 〈G〉, we
construct a suitable global odd-cycle and partition G. Let n

denote the number of vertices in G and assume w.l.o.g. that
G is connected. Expand every vertex vi ∈ V (G) to a path
Pi of length 2×d(vi). Connect paths Pi, Pi+1 with the addi-
tion of an intermediate auxiliary vertex si. Finally, construct
another path Pn+1 of 1 or 2 vertices depending on the par-
ity of n, and connect Pn+1 to P1, Pn in order to form an
odd-cycle. Define G = {G1, . . . , G2n}; for an odd i, set Gi

as the subgraph including the even nodes of P(i+1)/2, along
with an odd vertex in every path Pj corresponding to a ver-
tex vj such that vivj ∈ E. For even indexes i ≤ (2n − 2)
set V (Gi) = {si/2} while G2n = Pn+1 (see Figure 3).

(a) (b)

Figure 3: (a) an input to 3-COL; (b) the corresponding
global cycle. Identically marked vertices belong to the same
agent.

Although recognizing individual rational partitions is a
computationally hard problem, notice that for the odd cycle,
by definition, 2 provides an upper bound to the partition’s
lack of individuality. In fact, from an approximation point of
view, we can further lower this bound, independently from
the number of participating agents.

Lemma 8. If G is a partition of the odd cycle, then G lacks
individuality of degree at most 1.

From the discussion above, it may appear that the more
agents we add, the more complicated our decision for ratio-
nality would be. However, bear in mind that for |Ag| = |V̂ |,
the partition G is always individual rational (in fact, by it-
eratively unifying consecutive agent segments, we can sym-
metrically show that every partition of a global odd cycle to
|V̂ | − 1 agents is individual rational). In other words, the
complexity of recognizing individual rational partitions can
be high, even in the restricted case of a global chordless cy-
cle, and is not monotonic with respect to the parameter |Ag|.

Split Graphs & Individual Rational Partitions
An undirected graph G = (V,E) is defined to be split
if there is a partition V = I ∪ K of its vertex set
into an independent set I and a completely connected
graph K (Golumbic 2004). There is no restriction on the
edges between vertices of I and K. Given only the degree
sequence of a graph, it is possible to recognize in O(|V |)

28



time whether it is split (Hammer and Simeone 1977). In
general, the partition V = I ∪K will not be unique; neither
will I (resp. K) necessarily be a maximal independent set
(resp. clique). Yet from the work in (Hammer and Simeone
1977), we can always arrange, in O(|V |) time, a canonical
partition of a split graph, by ensuring that for every v ∈ I the
degree of v is smaller than |K|. Henceforth, we will assume
an input given with this canonical partition.

Split graphs are perfect graphs, and thus their chromatic
number χ(G) equals the size of the maximal clique in the
graph denoted ω(G). Unlike cycles, split graphs can have
a non-constant chromatic number and therefore may lack
individuality of an unbounded degree. Figure 4 provides
an extreme example for a partition of a split graph, which
fully lacks individuality. The number of additional colors
A1 would incur, as a result of coordinating with A2, equals
|V1| − 1, which is the highest possible extent.

Figure 4: The Lilium, a split with an irrational partition,
fully lacking individuality. A1 = {A–D}, A2 = {W–Z}.

We denote the set of vertices of the maximal independent
set in Ĝ, that are also members of agent Aj’s subgraph, as
I(j) := Vj ∩ I . Similarly K(j) := Vj ∩ K denotes Aj’s
part in the clique (not to be confused with a completely con-
nected graph on j vertices).

A border vertex lies both in an agent’s subclique and a
sub-independent set. Thus, the set of border vertices is the
boundary of agent Aj , which we denote as:

Bj =
{

v ∈ I(j) | K(j) ⊆ N [{v}]
}

where N(H) denotes H’s set of neighbors and N [H] =
N(H) ∪ H . A vertex z ∈ K is a cooperative vertex
w.r.t. agent Aj if z /∈ N(Bj). The main idea behind The-
orem 9 is that Aj’s boundary can be painted using the same
color as Aj’s cooperative vertex.
Theorem 9. A partition of a global split graph is individual
rational if and only if every agent has a cooperative vertex.

As a corollary, we can find in O(|V |+ |E|) time an indi-
vidual rational coloring of a split graph, if one exists.

Conclusions and Future Work
We have presented a framework for economically-oriented
multiagent graph coloring, and investigated the dynam-
ics arising from such definitions. Assuming an available

individual-rational coloring, sufficient conditions were pre-
sented that ensure Pareto optimality, and a procedure was
devised to allocate colors fairly among agents. Through the
use of limited graph classes, we have seen that individual-
rational colorings can be hard to find. However, we are able
to quickly recognize individual rational partitions in split
graphs. We plan to further investigate the notion of indi-
vidual rational partitions in other graph classes. Although
we have formulated our goals in the context of graph col-
oring, it possible to study individual-rational partitions in
more general optimization problems, such as boolean max-
imum satisfiability. In parallel, we are working on classical
graph coloring heuristics, based upon such decompositions.
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