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Abstract

Since its introduction in the mid-nineties, Dung’s theory of
abstract argumentation frameworks has been influential in ar-
tificial intelligence. Dung viewed arguments as abstract enti-
ties with a binary defeat relation among them. This enabled
extensive analysis of different (semantic) argument accep-
tance criteria. However, little attention was given to com-
paring such criteria in relation to the preferences of self-
interested agents who may have conflicting preferences over
the final status of arguments. In this paper, we define a
number of agent preference relations over argumentation out-
comes. We then analyse different argument evaluation rules
taking into account the preferences of individual agents. Our
framework and results inform the mediator (e.g. judge) to de-
cide which argument evaluation rule (i.e. semantics) to use
given the type of agent population involved.

Introduction
Dung presented one of the most influential computational
models of argument (Dung 1995). Arguments are viewed
as abstract entities, with a binary defeat relation among
them. This view of argumentation enables high-level anal-
ysis while abstracting away from the internal structure of
individual arguments. In Dung’s approach, given a set of ar-
guments and a binary defeat relation, a rule specifies which
arguments should be accepted. A variety of such rules have
been analysed using intuitive objective logical criteria such
as consistency or self-defence (Baroni & Giacomin 2007).

Most research that employs Dung’s approach discounts
the fact that argumentation takes place among self-interested
agents, who may have conflicting preferences over which ar-
guments end up being accepted, rejected, or undecided. As
such, argumentation can (and arguably should) be studied as
an economic mechanism in which determining the accept-
ability status of arguments is akin to allocating resources.

In any allocation mechanism involving multiple agents
(be it resource allocation or argument status assignment),
two complementary issues are usually studied. On one hand,
we may analyse the agents’ incentives in order to predict
the equilibrium outcome of rational strategies. On the other
hand, we may analyse the properties of the outcomes them-
selves in order to compare different allocation mechanisms.
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The above issues are the subject of study of the field of game
theory and welfare economics, respectively.

The study of incentives in abstract argumentation has
commenced recently (Rahwan & Larson 2008). To com-
plement this work, in this paper we initiate the study of pref-
erence and welfare in abstract argumentation mechanisms.
To this end, we define several new classes of agent prefer-
ences over the outcomes of an argumentation process. We
then analyse different existing rules for argument status as-
signment in terms of how they satisfy the preferences of the
agents involved. Our focus in this paper is on the property of
Pareto optimality, which measures whether an outcome can
be improved for one agent without harming other agents. We
also discuss more refined social welfare measures.

The paper makes two distinct contributions to the state-
of-the-art in computational models of argument. First, the
paper extends Rahwan and Larson’s definition of argumen-
tation outcomes (Rahwan & Larson 2008) to account for
complete labellings of arguments (as opposed to accepted
arguments only). This allows us to define a number of novel
preference criteria that arguing agents may have.

The second main contribution of this paper is the com-
parison of different argumentation semantics using a well-
known social welfare measure, namely Pareto optimality. To
our knowledge, this is the first attempt to evaluate Dung se-
mantics in terms of the social desirability of its outcomes.
In particular, we show that in many cases, classical seman-
tics fail to fully characterise Pareto optimal outcomes. Thus,
when classical semantics provides multiple possible argu-
ment status assignments, our analysis presents a new crite-
rion for selecting among those. Our framework and results
inform the mediator (e.g. judge, trusted-third party) to de-
cide which argument evaluation rule (i.e. semantics) to use
given the type of agent population involved.

Background
In this section, we briefly outline key elements of abstract
argumentation frameworks. We begin with Dung’s abstract
characterisation of an argumentation system (Dung 1995):

Definition 1 (Argumentation framework). An argumenta-
tion framework is a pair AF = 〈A,⇀〉 where A is a set
of arguments and ⇀⊆ A × A is a defeat relation. We say
that an argument α defeats an argument β iff (α, β) ∈⇀
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(sometimes written α ⇀ β).1

α3 α2

α4

α1

α5

Figure 1: A simple argument graph

An argumentation framework can be represented as a di-
rected graph in which vertices are arguments and directed
arcs characterise defeat among arguments. An example ar-
gument graph is shown in Figure 1. Argument α1 has two
defeaters (i.e. counter-arguments) α2 and α4, which are
themselves defeated by arguments α3 and α5 respectively.

Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also
let α− = {β ∈ A | β ⇀ α}. We first characterise the
fundamental notions of conflict-free and defence.
Definition 2 (Conflict-free, Defence). Let 〈A,⇀〉 be an ar-
gumentation framework and let S ⊆ A and let α ∈ A.
• S is conflict-free iff S ∩ S+ = ∅.
• S defends argument α iff α− ⊆ S+. We also say that

argument α is acceptable with respect to S.
Intuitively, a set of arguments is conflict free if no argu-

ment in that set defeats another. A set of arguments defends
a given argument if it defeats all its defeaters. In Figure 1,
for example, {α3, α5} defends α1. We now look at different
semantics that characterise the collective acceptability of a
set of arguments.
Definition 3 (Characteristic function). Let AF = 〈A,⇀〉
be an argumentation framework. The characteristic function
of AF is FAF : 2A → 2A such that, given S ⊆ A, we have
FAF (S) = {α ∈ A | S defends α}.

When there is no ambiguity about the argumentation
framework in question, we will use F instead of FAF .
Definition 4 (Acceptability semantics). Let S be a conflict-
free set of arguments in framework 〈A,⇀〉.
• S is admissible iff it is conflict-free and defends every el-

ement in S (i.e. if S ⊆ F(S)).
• S is a complete extension iff S = F(S).
• S is a grounded extension iff it is the minimal (w.r.t. set-

inclusion) complete extension (or, alternatively, if S is the
least fixed-point of F(.)).

• S is a preferred extension iff it is a maximal (w.r.t. set-
inclusion) complete extension (or, alternatively, if S is a
maximal admissible set).

• S is a stable extension iff S+ = A\S.
• S is a semi-stable extension iff S is a complete extension

of which S ∪ S+ is maximal.
Intuitively, a set of arguments is admissible if it is a

conflict-free set that defends itself against any defeater –in
other words, if it is a conflict free set in which each argument
is acceptable with respect to the set itself.

1We restrict ourselves to finite sets of arguments.

An admissible set S is a complete extension if and only
if all arguments defended by S are also in S (that is, if S is
a fixed point of the operator F). There may be more than
one complete extension, each corresponding to a particular
consistent and self-defending viewpoint.

A grounded extension contains all the arguments which
are not defeated, as well as the arguments which are de-
fended directly or indirectly by non-defeated arguments.
This can be seen as a non-committal view (characterised by
the least fixed point of F). As such, there always exists
a unique grounded extension. Dung (Dung 1995) showed
that in finite argumentation systems, the grounded extension
can be obtained by an iterative application of the character-
istic function to the empty set. For example, in Figure 1
the grounded extension is {α1, α3, α5}, which is the only
complete extension.

A preferred extension is a bolder, more committed posi-
tion that cannot be extended –by accepting more arguments–
without causing inconsistency. Thus a preferred extension
can be thought of as a maximal consistent set of hypothe-
ses. There may be multiple preferred extensions, and the
grounded extension is included in all of them.

Finally, a set of arguments is a stable extension if it is a
preferred extension that defeats every argument which does
not belong to it. A semi-stable extension requires the weaker
condition that the set of arguments defeated is maximal.

Crucial to our subsequent analysis is the notion of argu-
ment labelling (Caminada 2006a), which specifies a particu-
lar outcome of argumentation. It specifies which arguments
are accepted (labelled in), which ones are rejected (labelled
out), and which ones whose acceptance or rejection could
not be decided (labelled undec). Labellings must satisfy the
condition that an argument is in if and only if all of its de-
featers are out. An argument is out if and only if at least
one of its defeaters is in.

Definition 5 (Argument Labelling). Let 〈A,⇀〉 be an ar-
gumentation framework. An argument labelling is a total
function L : A → {in, out, undec} such that:

• ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀
α and L(β) = in)); and

• ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : ( if β ⇀
α then L(β) = out))

We will make use of the following notation.

Definition 6. Let AF = 〈A,⇀〉 be an argumentation
framework, and L a labelling over AF . We define:

• in(L) = {α ∈ A | L(α) = in}
• out(L) = {α ∈ A | L(α) = out}
• undec(L) = {α ∈ A | L(α) = undec}

In the rest of the paper, by slight abuse of notation, when
we refer to a labelling L as an extension, we will be referring
to the set of accepted arguments in(L).

Caminada (Caminada 2006a) established a correspon-
dence between properties of labellings and the different ex-
tensions. These are summarised in Table 1.
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Semantics Restriction on
Labelling

Extension-based Description

complete all labellings conflict-free fixpoint of F
grounded minimal in minimal fixpoint of F

minimal out minimal complete extension
maximal undec

preferred maximal in maximal admissible set
maximal out maximal complete extension

semi-
stable

minimal undec admissible set with max. S ∪
S+

complete ext. with max S ∪S+

stable empty undec S defeating exactly A\S
conflict-free S defeating A\S
admissible set S defeatingA\S
complete ext. S defeating A\S
preferred ext. S defeating A\S
semi-stable ext. S defeating
A\S

Table 1: An overview of admissibility based semantics

Agent Preferences
Abstract argumentation frameworks have typically been
analysed without taking into account the agents involved.
This is because the focus has mostly been on studying the
logically intuitive properties of argument acceptance crite-
ria (Baroni & Giacomin 2007). Recently research has com-
menced on evaluating argument acceptance criteria taking
into account agent preferences and strategies (Rahwan &
Larson 2008). In this work, however, only one preference
criteria was presented: maximising the number of one’s own
accepted arguments. In this paper, we study other prefer-
ence criteria and illustrate the importance of understanding
the underlying preferences of the agents when determining
what are desirable outcomes of the argumentation process.

In this paper we view an outcome as an argument la-
belling, specifying not only which arguments are accepted,
but also which ones are rejected or undecided. Thus the set
L of possible outcomes is exactly the set of all possible le-
gal labellings of all arguments put forward by participating
agents.

We let θi ∈ Θi denote the type of agent i ∈ I which is
drawn from some set of possible types Θi. The type repre-
sents the private information and preferences of the agent.
More precisely, θi determines the set of arguments available
to agent i, Ai, as well as the preference criterion used to
evaluate outcomes.2 An agent’s preferences are over out-
comes L ∈ L. By L1 �i L2 we denote that agent i weakly
prefers (or simply prefers) outcome L1 to L2. We say that
agent i strictly prefers outcome L1 to L2, written L1 �i L2,
if and only if L1 �i L2 but not L2 �i L1. Finally, we say
that agent i is indifferent between outcomes L1 and L2, writ-
ten L1 ∼i L2, if and only if both L1 �i L2 and L2 �i L1.

While many types of preferences are possible, in this pa-
per we focus on self-interested preferences. By this we mean
that we are interested in preference structures where each

2Note that this extends (Rahwan & Larson 2008), where θi =
Ai and only one preference criterion is used across all agents.

agent i is only interested in the status (i.e. labelling) of
its own arguments and not on the particular status of other
agents’ arguments.

We start with individual acceptability maximising prefer-
ences (Rahwan & Larson 2008). Under these preferences,
each agent wants to maximise the number of arguments in
Ai that end up being accepted.

Definition 7 (Acceptability maximising preferences). An
agent i has individual acceptability maximising preferences
iff ∀L1, L2 ∈ L such that |in(L1) ∩ Ai| ≥ |in(L2) ∩ Ai|,
we have L1 �i L2.

An agent may, instead, aim to minimise the number of
arguments in Ai that end up rejected.

Definition 8 (Rejection minimising preferences). An agent
i has individual rejection minimising preferences iff
∀L1, L2 ∈ L such that |out(L1) ∩ Ai| ≤ |out(L2) ∩ Ai|,
we have L1 �i L2.

An agent may prefer outcomes which minimise uncer-
tainty by having as few undecided arguments as possible.

Definition 9 (Decisive preferences). An agent i has deci-
sive preferences iff ∀L1, L2 ∈ L if |undec(L1) ∩ Ai| ≤
|undec(L2) ∩ Ai| then L1 �i L2.

An agent may only be interested in getting all of its argu-
ments collectively accepted.

Definition 10 (All-or-nothing preferences). An agent i has
all-or-nothing preferences if and only if ∀L1, L2 ∈ L, if
Ai ⊆ in(L1) and Ai * in(L2), then L1 �i L2, other-
wise L1 ∼i L2.

Finally, we analyse a preference structure which is not
strictly self-interested. In aggressive preferences an agent is
interested in defeating as many arguments of other agents’ as
possible, and thus does care about the labelling of arguments
of others.

Definition 11 (Aggressive preferences). An agent i has ag-
gressive preferences iff ∀L1, L2 ∈ L, if |out(L1) \ Ai| ≥
|out(L2) \ Ai| then L1 �i L2.

Pareto Optimality
Welfare economics provides a formal tool for assessing out-
comes in terms of how they affect the well-being of society
as a whole (Arrow, Sen, & Suzumura 2002). Often these
outcomes are allocations of goods or resources. In the con-
text of argumentation, however, an outcome specifies a par-
ticular labelling. In this section, we analyse the Pareto opti-
mality of the different argumentation outcomes. Since legal
labellings coincide exactly with all complete extensions, in
the subsequent analysis, all in arguments in our outcomes
are conflict-free, self-defending, and contain all arguments
they defend.

A key property of an outcome is whether it is Pareto op-
timal. This relies on the notion of Pareto dominance.

Definition 12 (Pareto Dominance). An outcome o1 ∈ O
Pareto dominates outcome o2 6= o1 iff ∀i ∈ I , o2 �i o1
and ∃j ∈ I , o2 �j o1.
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An outcome is Pareto optimal if it is not Pareto dominated
by any other outcome – or, equivalently, if it cannot be im-
proved upon from one agent’s perspective without making
another agent worse off. Formally:
Definition 13 (Pareto Optimality). An outcome o1 ∈ O is
Pareto optimal (or Pareto efficient) if there is no other out-
come o2 6= o1 such that ∀i ∈ I , o2 �i o1 and ∃j ∈ I ,
o2 �j o1.

It is interesting to see that the grounded extension is not
Pareto optimal for a population of individual acceptability
maximising agents. Consider the following example.
Example 1. Consider the graph below with three outcomes.

α2 α1

α3

in out

L1

α2 α1

α3L2

α2 α1

α3LG

undec

Suppose we have two agents with types A1 = {α1, α3} and
A2 = {α2}. The grounded extension is the labelling LG,
which is not Pareto optimal. Agent 1 strictly prefers L1

and is indifferent between LG and L2, while agent 2 strictly
prefers outcome L2 and is indifferent between LG and L1.

The above observation is caused by the fact that the
grounded extension is the minimal complete extension with
respect to set inclusion. Thus, it is possible to accept more
arguments without violating the fundamental requirement
that the outcome is a complete extension (i.e. conflict-free,
admissible, and includes everything it defends).

One might expect that all preferred extensions are Pareto
optimal outcomes, since they are maximal with respect to set
inclusion. However, as the following example demonstrates,
this is not necessarily the case.
Example 2. Consider the graph below, in which the graph
has two preferred extensions.

in

out

α1 α2

L1α4

α3

α5

α1 α2

L2α4

α3

α5

Suppose we have three individual acceptability maximis-
ing agents with types A1 = {α3, α4}, A2 = {α1} and
A3 = {α2, α5}. Agents A1 and A3 are ambivalent between
the two extensions (they get a single argument accepted in
either) but agent A2 strictly prefers outcome L1. Thus L1 is
not Pareto optimal.

However, it is possible to prove that every Pareto optimal
outcome is a preferred extension (i.e. all non-preferred ex-
tensions are Pareto dominated by some preferred extension).
Theorem 1. If agents have acceptability-maximising pref-
erences and if an outcome is Pareto optimal then it is a pre-
ferred extension.

Proof. Let L ∈ L be a Pareto optimal outcome. Assume
that L is not a preferred extension. Since L is not a preferred
extension, then there must exist a preferred extension LP ∈
L such that in(L) ⊂ in(LP ). Thus, for all i, in(L) ∩
Ai ⊆ in(LP ) ∩ Ai and |in(L) ∩ Ai| ≤ |in(LP ) ∩ Ai|
which implies that LP �i L. Additionally, there exists an
argument α′ ∈ Aj for some agent j such that α′ /∈ L and
α′ ∈ LP . Therefore, |in(L)∩Aj | < |in(LP )∩Aj | and so
LP �j L. That is, LP Pareto dominates L. Contradiction.

The grounded extension turns out to be Pareto optimal for
a different population of agents.

Theorem 2. If agents have rejection-minimising prefer-
ences then the grounded extension is Pareto optimal.

Proof. This follows from the fact that the grounded ex-
tension coincides with labellings with minimal out la-
bellings (Caminada 2006a). Thus any other outcome would
have strictly more out labels, resulting in at least one agent
being made worse-off.

It is also possible to prove the following.

Theorem 3. If agents have rejection-minimising prefer-
ences, then for any outcome L ∈ L, either L is the grounded
extension, or L is Pareto dominated by the grounded exten-
sion.

Proof. Let LG denote the grounded extension, and let L ∈
L be any outcome. If L = LG then we are done. As-
sume that L 6= LG. Since LG has minimal out among
all outcomes in L, then out(LG) ⊂ out(L). Thus, for
each agent i, if argument α ∈ Ai and α ∈ out(LG) then
α ∈ out(L). Therefore, out(LG) ∩ Ai ⊂ out(L) ∩ Ai,
and so |out(LG) ∩ Ai| ≤ |out(L) ∩ Ai| which implies
that LG �i L. In addition, there also exists some agent j
and argument α′ such that α′ ∈ Aj , α′ 6∈ out(LG) and
α′ ∈ out(L). Therefore, |out(LG) ∩ Ai| < |out(L) ∩ Ai|
which implies that LG �j L. That is, LG Pareto dominates
L.

The two previous theorems lead to a corollary.

Corollary 1. The grounded extension characterise exactly
the Pareto optimal outcome among a rejection minimising
population.

The following result relates to decisive agents.

Theorem 4. If agents have decisive preferences, then all
Pareto optimal outcomes are semi-stable extensions.

Proof. This follows from the fact that any semi-stable exten-
sion coincides with a labelling in which undec is minimal
with respect to set inclusion (Caminada 2006a). The actual
proof is similar in style to Theorem 1 and so due to space
constraints we do not include the details.

Note that any finite argumentation framework must have
at least one semi-stable extension (Caminada 2006b). More-
over, when at least one stable extension exists, the semi-
stable extensions are equal to the stable extensions, which
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themselves coincide with an empty undec (Caminada
2006b), which is ideal for decisive agents.

Corollary 2. For agents with decisive preferences, if there
exists a stable extension, then the stable extensions fully
characterise the Pareto optimal outcomes for agents with
decisive preferences.

If a population of agents have all-or-nothing preferences
then we can provide a partial characterisation of the Pareto
optimal outcomes.

Theorem 5. If agents have all-or-nothing preferences, then
there exists a Pareto optimal preferred extension.

Proof. We can prove this theorem by studying the possible
cases. Let L be the set of all labellings.
Case 1: If for all L ∈ L, it is the case that for all i ∈ I ,
Ai 6⊆ in(L), then all agents are indifferent between all la-
bellings, and thus all are Pareto optimal, including all pre-
ferred extensions.
Case 2: Assume there exists labelling L such that there ex-
ists an agent i with Ai ⊆ in(L) and which is Pareto opti-
mal. If L is also a preferred extension then we are done. If
L is not a preferred extension, then there must exist a pre-
ferred extension L′ such that in(L) ⊆ in(L′). Since L was
Pareto optimal, then for all agents j, it must be the case that
L ∼j L

′ and so L′ is Pareto optimal.
Case 3: Assume there exists a labelling L such that there
exists an agent i with Ai ⊆ in(L) and which is not Pareto
optimal. Thus, L is Pareto dominated by some labelling L∗
and so there must exist an agent j such that Aj 6⊆ in(L)
andAi,Aj ⊆ in(L∗). If L∗ is not Pareto optimal then there
must exist an agent k and a labelling L∗∗ such thatAk 6⊆ L∗
and Ai,Aj ,Ak ⊆ L∗∗. Continue this process until the final
labelling is Pareto optimal. This is guaranteed to terminate
since we have a finite set of agents and labellings. Apply
Case 2.

If agents have all-or-nothing preferences, then it is possi-
ble that a preferred extension can Pareto dominate another
preferred extension.

Example 3. Consider the graph below, in which there are
two preferred extensions.

α2 α1

α3α4

α2 α1

α3α4

L1 L2

in out

Suppose we have two agents with all-or-nothing preferences
and with A1 = {α2, α3} and A2 = {α1, α4}. Outcome L2

Pareto dominates outcome L1.

Theorem 6 says that if the population of agents have ag-
gressive preferences, then every Pareto optimal outcome is a
preferred extension.

Theorem 6. If agents have aggressive preferences then all
Pareto optimal outcomes are preferred extensions.

Proof. Let L be a Pareto optimal outcome. Assume that L is
not a preferred extension. Since L is not a preferred exten-
sion, then there must exist a preferred extension L′ such that
out(L) ⊂ out(L′). Thus, there must exist an agent i with
Ai and |out(L′) ∩ Ai| > |out(L) ∩ Ai|, and for all agents
j such that Aj ∈ out(L), |out(L′) ∩Aj | ≥ |out(L) ∩Aj |
and so L′ Pareto dominates L. Contradiction.

However, not all preferred extensions are Pareto optimal,
as is demonstrated in the following example.
Example 4. Consider the graph below, in which there are
two preferred extensions.

α1 α2

L1 L2

α5 α3

α4

α1 α2

α5 α3

α4

in out undec

Suppose we have three agents with aggressive preferences
such that A1 = {α2, α4}, A2 = {α1, α3} and A3 = {α5}.
Then L1 �1 L2, L1 �3 L2 and L1 ∼2 L2. That is, L1

Pareto dominates L2.
We summarise the results from this section in Table 2.

These results are important since they highlight a limitation
in the definitions of extensions in classical argumentation. In
some cases, Pareto optimal outcomes are fully characterised
by a classical extension (e.g. grounded extension and rejec-
tion minimising agents). In other cases, however, classical
extensions do not provide a full characterisation (e.g. for ac-
ceptance maximising agents, every Pareto optimal outcome
is a preferred extension but not vice versa). In such cases, we
need to explicitly refine the set of extensions in order to se-
lect the Pareto optimal outcomes (e.g. generate all preferred
extensions, then iteratively eliminate dominated ones).

Population Type Pareto Optimality
Individual acceptance
maximisers

Pareto optimal outcomes ⊆ preferred extensions
(Theorem 1)

Individual rejection
minimisers

Pareto optimal outcome = grounded extension
(Theorem 2, 3, and Corollary 3)

Decisive Pareto optimal outcomes ⊆ semi-stable extensions
(Theorem 4); if a stable extension exists, then Pareto
optimal outcomes = stable extensions (Corollary 2)

All-or-nothing Some preferred extension (Theorem 5) and possibly
other complete extensions

Aggressive Pareto optimal outcomes ⊆ preferred extensions
(Theorem 6)

Table 2: Classical extensions & Pareto optimality
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Further Refinement using Social Welfare
While Pareto optimality is an important way of evaluating
outcomes, it does have some limitations. First, as high-
lighted above, there may be many Pareto optimal outcomes,
and it can be unclear why one should be chosen over an-
other. Second, sometimes Pareto optimal outcomes may be
undesirable for some agents. For example, in a population
of individual acceptability maximising agents, a preferred
extension which accepts all arguments of one agent while
rejecting all other arguments is Pareto optimal.

Social welfare functions provide a way of combining
agents’ preferences in a systematic way in which to com-
pare different outcomes, and in particular, allow us to com-
pare Pareto optimal extensions. We assume that an agent’s
preferences can be expressed by a utility function in the stan-
dard way. A social welfare function is an increasing func-
tion of individual agents’ utilties and is related to the no-
tion of Pareto optimality in that any outcome that maximises
social welfare is also Pareto optimal. Thus by searching
for social-welfare maximising outcomes we select outcomes
from among the set of Pareto optimal ones.

While there are many types of social welfare functions,
two important ones are the utilitarian and egalitarian social
welfare functions.3 Example 5 illustrates how these func-
tions can be used to compare different Pareto optimal out-
comes.
Example 5. Consider the graph below with four preferred
extensions.

α1 α2 α3 α4L2

in out

α5

α1 α2 α3 α4L3 α5

α1 α2 α3 α4L4 α5

α1 α2 α3 α4L1 α5

Assume that there are two agents with A1 = {α1, α3, α5}
and A2 = {α2, α4}, and that these agents have ac-
ceptability maximising preferences with utility functions
ui(L,Ai) = |in(L) ∩ Ai|. All four preferred extensions
are Pareto optimal, however outcomes L1 and L2 maximise
the utilitarian social welfare function, while outcomes L2

and L3 maximise the egalitarian social welfare function.
The above analysis shows that by taking into account wel-

fare properties, it is possible to provide more fine grained
criteria for selecting among classical extensions (or la-
bellings) in argumentation frameworks. Such refined criteria
can be seen as a sort of welfare semantics for argumentation.

3Given some outcome o, the utilitarian social welfare function
returns the sum of the agents’ utilities for o, while the egalitarian
social welfare function returns mini ui(o, θi).

Discussion and Conclusion
Until recently, argumentation-based semantics have been
compared mainly on the basis of how they deal with spe-
cific benchmark problems (argument graph structures with
odd-cycles etc.). Recently, it has been argued that argumen-
tation semantics must be evaluated based on more general
intuitive principles (Baroni & Giacomin 2007). Our work
can be seen to be a contribution in this direction. We intro-
duced a new perspective on analysing and designing argu-
ment acceptability criteria in abstract argumentation frame-
works. Acceptability criteria can now be evaluated not only
based on their logically intuitive properties, but also based
on their welfare properties in relation to a society of agents.

Our framework and results inform the mediator (e.g.
judge, trusted-third party) to decide which argument evalua-
tion rule (i.e. semantics) to use given the type of agent popu-
lation involved. The results are also of key importance to ar-
gumentation mechanism design (ArgMD) (Rahwan & Lar-
son 2008) where agents may argue strategically –e.g. pos-
sibly hiding arguments. ArgMD aims to design rules of in-
teraction such that self-interested agents produce, in equilib-
rium, a particular desirable social outcome (i.e. the rules im-
plement a particular social choice function). Understanding
what social outcomes are desirable (in this case, Pareto opti-
mal) for different kinds of agents is an important step in the
ArgMD process. Indeed, a major future research direction,
opened by this paper, is the design of argumentation mecha-
nisms that implement Pareto optimal social choice functions
under different agent populations.
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