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Abstract

In this paper, we combine for the first time the methods of dy-
namic mechanism design with techniques from decentralized
decision making under uncertainty. Consider a multi-agent
system with self-interested agents acting in an uncertain envi-
ronment, each with private actions, states and rewards. There
is also a social planner with its own actions, rewards, and
states, acting as a coordinator and able to influence the agents
via actions (e.g., resource allocations). Agents can only com-
municate with the center, but may become inaccessible, e.g.,
when their communication device fails. When accessible to
the center, agents can report their local state (and models) and
receive recommendations from the center about local poli-
cies to follow for the present period and also, should they
become inaccessible, until becoming accessible again. With-
out self-interest, this poses a new problem class which we
call partially-synchronized DEC-MDPs, and for which we
establish some positive complexity results under reasonable
assumptions. Allowing forself-interestedagents, we are able
to bridge to methods of dynamic mechanism design, align-
ing incentives so that agents truthfully report local state when
accessible and choose to follow the prescribed “emergency
policies” of the center.

Introduction
Imagine a scenario in which there is a taxi company with
taxis that have private state information (e.g., their location
in the city) which they can report to central dispatch who
cannot observe their state. The taxis haveprivate actions
(e.g., driving a specific route) and receive private rewards
(e.g., payment by passengers net fuel cost), both of which
are again unobservable by the center. Central dispatch has
information about customers waiting at designated locations
and can assign them to particular taxis (i.e., making a re-
source allocation decision). Furthermore, the center can sug-
gest specific routes or locations to the taxis.

Taxi drivers areself-interestedand seek to maximize indi-
vidual utility, which depends on local state, local actions,
and also the center’s resource allocation decisions. This
can lead to incentive problems, for instance with many taxi
drivers claiming they are closest to a passenger wishing to go
to the airport. We explore in this paper the use of dynamic
mechanisms, wherein the center can provide payments (both
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Figure 1: Taxi domain: coordination of self-interested
agents with private actions and periodic inaccessibility.

to and from taxis) in order to align the local goals of each
driver with those of the entire company.

A particularly interesting challenge arises when taxis
might becomeinaccessiblefor certain time periods, for ex-
ample because they are driving through a tunnel or because
their communication device fails. During times of inacces-
sibility the center continues taking central actions and inac-
cessible agents continue taking local actions, but they cannot
communicate and payments cannot be made. See Figure 1.

The combination of both unobservable and thus not “con-
tractible” actions and periodic inaccessibility makes this a
novel problem indynamic mechanism design, where one
seeks to align incentives with the social good (Parkes 2007).
We model the goal of the center as that of a “social plan-
ner”, interested in implementing sequential, system-optimal
decisions, both at the local and central levels, despite con-
flicting interests of the individual agents. To address our set-
ting (with private actions), we need to extend the methods of
Cavallo et al. (2007) and Bergemann & Välimäki (2006).

Without inaccessibility, the decision problem can be mod-
eled as amulti-agent MDP(Boutilier 1999), which can be
solved in time polynomial in the input size of the problem.
At every time step the center could elicit state reports and
then compute a new joint action. With inaccessibility and
private actions, on the other hand, this is precluded.

Now, in every time step, the center takes an action and
proposes local policies for each accessible agent to follow
in the current period and also in the future should the agent
become inaccessible. The resulting computational problem
is related to the family ofdecentralized Markov decision
processes(DEC-MDPs, DEC-POMDPs) and significantly
harder to solve than MMDPs. However, the problem we
study—that ofpartially-synchronized DEC-MDPs—is quite
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different from existing DEC-MDP models in that agents are
only periodically inaccessible and local agents can “syn-
chronize” their local states with the center when accessible.

An interesting aspect of this work is the dance between
incentive requirements and computational requirements: we
are able to carve out a class of models that avoids the com-
plexity of many problems in the DEC-MDP class while also
facilitating the alignment of agent incentives.

Related Work

Cavallo et al. (2006) introduced an efficient (i.e., value-
maximizing), incentive-compatible mechanism for an envi-
ronment in which agents have a dynamically evolving local
state. Bergemann & Välimäki (2006) independently devel-
oped thedynamic-VCGmechanism that is able to achieve
a stronger participation constraint, so that agents will want
to continue to participate in the mechanism whatever the
current state. Cavallo et al. (2007) provide an extension
that allows forperiodically inaccessibleagents. But none
of these earlier mechanisms allow for the coupling of both
local actions and periodic inaccessibility. We content our-
selves here presenting a dynamic Groves mechanism that
aligns incentives but runs at a deficit and defer present-
ing the full dynamic-VCG generalization to the full paper.
Athey and Segal (2007) consider a similar domain (with-
out inaccessibility) and devise an efficient mechanism that
is budget-balanced but with weaker participation properties.
See Parkes (2007) for a recent survey.

Bernstein et al. (2002) introduced the DEC-MDP model,
the first formal framework for decentralized decision mak-
ing under uncertainty. It and all subsequent models have
assumed a context of cooperative agents. At each time step,
an agent takes a local action, a state transition occurs, and
each agent receives a local observation from the environ-
ment. Thus, each agent can have different partial informa-
tion about the other agents and about the state of the world.
Bernstein et al. (2002) proved that the finite-horizon ver-
sion of this problem is NEXP-complete, and thus is likely
to require double exponential time to solve in the worst
case. Becker et al. (2004) show that with transition- and
observation-independence the finite-horizon version of the
problem is NP-complete. But this model is insufficient for
our purposes because we have periodic communication op-
portunities between the center and agents and also because
it would preclude an agent from observing a reward that
depends on the center’s action. See Seuken and Zilber-
stein (2008) for a survey.

Partially-Synchronized DEC-MDPs
We now introduce our new model. Consider a multi-agent
domain withn + 1 agents: a set of agentsI = {1, . . . , n}
and a designated center agent. We refer to agents1, ..., n as
local agentsand we use the term “agents” when referring to
local agents and the center agent. In our domain, the center
plays a special role because he coordinates all local agents.

Definition 1 (PS-DEC-MDP). A partially-
synchronized DEC-MDP is a tuple
〈I, {Si}, {ASi}, Sc, s

0, {Ai}, Ac, {Pi}, Pc, {Ri}, Rc, T, γ〉.

• Each agenti ∈ {1, . . . , n} has a set of local statesSi. A
characteristic feature of our domain is that local agents
can become inaccessible to the center. The set of ofac-
cessible statesfor agenti is denoted byASi ⊆ Si.

• The center agent has a finite set of center statesSc. The
space of local states and the center’s state space consti-
tute the global system state spaceS = Sc × S1 × S2 ×
. . . × Sn. Let s0 = 〈s0

c , s
0
1, s

0
2, ..., s

0
n〉 denote the ini-

tial system state. We require that all agents are initially
accessible, i.e.,s0

i ∈ ASi for all i ∈ I.

• Each local agent has a set of local actionsAi and the
center has a set of center actionsAc.

• The transitions and rewards of local agents can de-
pend on the center but not on other local agents. Let
Pi : Si × Sc × Ai × Ac → ∆Si denote the transi-
tion function for agenti, wherePi(s

′

i|si, sc, ai, ac) de-
notes the probability that, after taking actionsai andac

in statessi andsc, a transition to local states′i occurs.
Let Ri : Si × Sc × Ai × Ac → ℜ denote the reward
function for agenti.

• For inaccessible states, agenti’s transition and reward
is also independent of the center, i.e. there exists
P ′

i s.t. ∀si ∈ Si \ ASi, sc ∈ Sc, ac ∈ Ac :
Pi(s

′

i|si, sc, ai, ac) = P ′

i (s
′

i|si, ai). Similarly, for the
reward there exists someR′

i s.t. Ri(si, sc, ai, ac) =
R′

i(si, ai) for all si ∈ Si \ ASi, sc ∈ Sc, ac ∈ Ac.

• The center’s transition function isPc : Sc × Ac → ∆Sc

and completely independent of local agents. The cen-
ter’s intrinsic rewardRc : Sc × Ac → ℜ for its own
actions has the same independence.1

• The problem can either have a finite or infinite horizon.
A finite horizon is denoted with a positive integerT , and
for infinite horizonsT is replaced with∞.

• γ is a discount factor∈ [0, 1].

Both the local agents and the center take actions and re-
ceive rewards, but we impose the particular independence
structure so that local agent problems are independent of
those of other agents when we condition on the action and
state of the center. The inaccessibility of an agent is an at-
tribute of the local state space of an agent. When all agents
are accessible we say that the system is “synchronized.”

The PS-DEC-MDP model does not model communica-
tion actions explicitly. However, in solving the model we
will allow for the agents to communicate their local model
and local state to the center when accessible, and for the
center to communicate a local policy back to each agent.
An agent is unable to communicate with the center when
inaccessible and an agent’s reward and transitions are also
completely independent while inaccessible.2

1This is not to be confused with the higher-level goal of the cen-
ter as a social planner, which is then to design a system that maxi-
mizes the sum of its own intrinsic reward and that of the agents. In
this paper, we will assume the center’s intrinsic reward is always 0.

2This independence when inaccessible is crucial for complexity
considerations because it ensures that when an agent is inaccessi-
ble there is no way any information can be transmitted between the
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Policies and Value Functions for PS-DEC-MDPs

To complete the PS-DEC-MDP model we need to define
both the center’s policy and the policy of local agents. For
this we first introduce semantics forobservationsin this do-
main. Each local agent and the center always observes its
own local state. But because agents can go inaccessible, the
state of the systemas viewed by the centeris not always the
true system statest ∈ S, but rather that reflected by the most
recent reports from agents. The planning problem facing the
center must allow for this partial information.

At every time stept, the center observes its own local state
sc ∈ Sc and receives informationsi ∈ AS i ∪ {ε} from ev-
ery agenti, whereε modeling missing information an agent.
The center also remembers the last time that agent was ac-
cessible (or reported to be accessible). We will generally
assume that there is a parameterLi, the maximal limit of
inaccessibility for agenti. Thus, at any time step, the inac-
cessibility information for the center about agenti will be
li ∈ Li = {0, 1, . . . , Li − 1}, where0 corresponds to being
accessible right now.

But for optimal decision making, the center does not need
to remember this whole stream of information/observations
he gets over time. To account for this fact we will slightly
abuse the term “observation” and define thecenter’s obser-
vation spaceasOc = AS1×L1×AS2×L2× . . .×ASn×
Ln × Sc. We will say that at every time stept, the center is
in a new “observation state”ot

c ∈ Oc. Based on that and the
current timet, the center 1) determines actionπc(o

t
c, t) = at

c

for himself, and 2) computes for each agenti newlocal poli-
ciesπi : Si × T → Ai of lengthLi. Note that the obser-
vation stateot

c is a sufficient statistic for the past stream of
observations of the center and can thus be used for optimal
meta-level decision making. Due to space constraints, we
omit a formal proof for this which would work analogous to
the proof of Lemma 2 in (Goldman and Zilberstein 2004).

These policies prescribe to the agents which action to take
given local state and time for the nextLi time steps for-
ward, should they become inaccessible. Thus, they can be
seen as “emergency policies.” The decision policy for the
center at timet is thus ameta-decision policy: π(ot

c, t) =
〈πc, π1, ..., πn〉.3 Because all agents are accessible in initial
states0, every agent gets an initial local policy. For nota-
tional purposes we will assume thatπt

i = πt−1
i if agent i

is not accessible at timet. This means that local policyπi

in the meta-decision policy vector stays the same as long as
agenti is inaccessible.

It bears emphasis that this joint policyπ is not imple-
mented on joint states ∈ S but rather implemented by
each agent (including the center) on its observation state.
In fact, it is convenient to adoptot

i to denote agenti’s lo-

center and that agent, implicitly or explicitly. Note also that the
local agents as well as the center can always observe their rewards
after each time step. This is different from most of the existing
models (like the DEC-MDP model), but seems essential to captur-
ing the essence of domains with self-interest.

3Note that the center only actually has to determine its own
action for the current state, but we adopt the convention that it de-
termines its own (base) policyπc for convenience.

cal observation state, which is simplyot
i = st

i. Again,
the local observation stateot

i is a sufficient statistic for the
past history of true observations for agenti and can thus
be used for optimal local decision making. With this, then
ot = 〈ot

c, o
t
1, ..., o

t
n〉 = 〈ot

c, s
t
1, ..., s

t
n〉 denotes thejoint ob-

servation stateat time t. Note thatot contains the infor-
mation about the true system state and we will writes(ot)
to denote that. Given meta-decision policyπ(ot

c, t), we de-
note the joint action in periodt (again, with fully cooperative
agents) asA(ot, π(ot

c)) = 〈πc(o
t
c), π1(o

t
1), ..., πn(ot

n)〉 =
〈ac, a1, ..., an〉 = a.

In any time stept, given current system statest and joint
actionat, the joint reward from the social planner’s perspec-
tive is R(st, at) =

∑n

i=1 Ri(s
t
i, s

t
c, a

t
i, a

t
c) + Rc(s

t
c, a

t
c).

Solving a PS-DEC-MDP means finding the center’s meta-
decision policyπ∗ ∈ Π that maximizes the expected total
reward over the problem horizon. We can define the value of
a meta-decision policyπ for a finite-horizon PS-DEC-MDP
(the infinite-horizon case is analogous) with initial system
states0 as:

V π(s0) = E
[

T−1
∑

t=0

γtR(s0, a0)|s0, π
]

.

The center’s observation state together with meta-decision
policy π is sufficient to compute a distribution over system
states. Thus, we can also define the value ofπ for ot

c:

V π(ot
c) = P (ot|ot

c, π)·E
[

T−1
∑

t=0

γtR(s(ot), A(ot, π(ot
c))|o

t, π
]

.

We define the optimal value for observation stateot
c as:

V ∗(ot
c) = max

π∈Π

V π(ot
c)

Computational Complexity of PS-DEC-MDPs
Note that for the complexity analysis we always consider
the decision problem for PS-DEC-MDPs. That is, given
the problem description and a threshold valueK, is there
a policy for the problem with expected value greater than
K? Furthermore, we make the following two assumptions:

Assumption 1. For finite-horizon problems, we assume that
the time horizonT is polynomially bounded by the size of the
problem description. This is a standard assumption which is
also required to show P-completeness of MDPs.

Assumption 2. We assume that the number of agents is a
fixed constant. This is necessary to achieve positive com-
plexity results because the observation space of the center is
already exponential in the number of agents.

Theorem 1. Finite-horizon partially-synchronized DEC-
MDPs without a priori limits on inaccessibility are NP-
complete.

Proof. To show NP-hardness we reduce the NP-complete
problem DTEAM (Papadimitriou and Tsitsiklis 1986) to a
finite-horizon PS-DEC-MDP with a center and one local
agent. The proof is similar to one given by (Becker et al.
2004) but our proof is more involved because we require in-
dependent reward functions when agent1 is inaccessible.
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Figure 2: Reduction of the DTEAM problem (NP-complete)
to a finite-horizon PS-DEC-MDP.

DTEAM is a decentralized team decision problem.
Two agents independently observe random integers
k1, k2 ∈ {1, ..., N}. Then they have to choose actions
γ1(k1), γ2(k2) ∈ {1, ..., M}. A joint cost function
c(k1, k2, a1, a2) specifies the resulting cost for every tuple
of observed integers and action pairs taken. The optimal
solution to this problem specifies local policiesγ1, γ2 such
that the expected joint cost is minimized.

The reduction is illustrated in Figure 2. The agents start
in statess0

1, s
0
c and agent1 is accessible. Then, with uni-

form probability, agent1 transitions to a new local state
si
1, i ∈ {1, ..., N} which is an inaccessible state. The cen-

ter also transitions to a new local statesi
c, i ∈ {1, ..., N}.

Then, both agents can choose a local actionπ1(s1), πc(sc) ∈
{a1, ..., aM} based on their local state which results in a new
state transition as shown in Figure 2. Now agent1 is acces-
sible again and the reward function for agent1 is defined
based on the joint state and joint action for the last time step
the following way:

R(sij
1 , slm

c , ∗, ∗) = −c(ki, kl, aj , am)

where∗ indicates that any action can be taken
For the other time steps the reward is always 0. It is now

easy to see that any joint policy〈πc, π1〉 that maximizes the
expected reward for the resulting PS-DEC-MDP also consti-
tutes a joint policy for the original DTEAM problem mini-
mizing the expected cost. This completes the reduction.

To prove membership in NP we first show that the repre-
sentation size of the center’s meta-decision policy is polyno-
mial in the input size of the problem. As explained in the dis-
cussion on the policy representation, the center’s observation
stateot

c is a sufficient statistic for optimal decision making.
Note that for a finite-horizon PS-DEC-MDP, the time hori-
zonT is an implicit limit on each agent’s maximal time of
inaccessibility. Thus, in this case, the observation space for
the center isOc = AS1×T ×AS2×T ×· · ·×ASn×T ×Sc

which can be represented in sizeO(|ASi|
n · log(T )n). Be-

cause the number of agentsn is considered fixed, this is
polynomial in the problem size. The meta-decision policy is
a mapping from observation states and current time to local
policies. It is easy to see that the representation size for the
local policies is smaller thanOc and thus also polynomially
bounded. Thus, the representation size of the center’s meta-
decision policy is polynomial in the size of the problem. We
can guess an optimal meta-decision policy and evaluate it in
polynomial time which shows membership in NP.

Theorem 2. Finite-horizon partially-synchronized DEC-
MDPs with a priori limits L1, L2, ..., Ln on the maximal
time of inaccessibility are P-complete.

Proof. P-hardness follows because an MMDP (P-complete)
can be reduced to a PS-DEC-MDP without inaccessible
agents. Membership in P follows from the limits on the time
of inaccessibility. With the limitsLi we know that the max-
imal number of different observation statesoc the center can
be in isK = |ASi|

n · L1 · L2 · . . . · Ln · |Sc|. Again, this
number is exponential in the number of agents but otherwise
polynomial. We can see theK observation states as “meta-
states” for the center, thus, the center’s meta-decision policy
can now be described as a mapping from meta states and
current timeT to policy vectors. Now, for all local agentsi
the local policies are of maximum lengthLi. The policy for
the center,πc, can be a one-step policy. Thus, both policy
representations are polynomial in the size of the problem de-
scription. For every observation stateoc and every timet, we
can enumerate all local policies of lengthLi (length1 for the
center). Obviously, this is a number of policies exponential
in theLi’s but this is not a problem for the complexity anal-
ysis because we have assumed that the limitsLi are known
a priori and are not part of the problem description.

Once we have enumerated all policies those can be treated
as meta-actions and we can use dynamic programming to
compute the optimal policy in time polynomial in the size
of the problem description. Thus, we can decide in polyno-
mial time whether there exists a policy whose value exceeds
thresholdK which shows membership inP .

Theorem 3. Infinite-horizon PS-DEC-MDPs without limits
on inaccessibility are undecidable.

Proof. To show this result we will leverage a proof by
(Madani 2000) who showed that infinite-horizon UMDPs
(unobservable MDPs) are undecidable. Madani constructs
a 3-state UMDP with 2 actions where both actionsa andb
executed in any state lead to the same stochastic state tran-
sition. However, their reward vectorsRa() andRb() for the
3 states are different. Madani shows that the optimal policy
for that UMDP is an infinite non-periodic action sequence.
This result allows him to prove undecidability.

We can reduce this 3-state UMDP to a PS-DEC-MDP
with a center and just 1 local agent. The resulting PS-DEC-
MDP is depicted in Figure 3. Agent1 has 8 states where
for 3 of them he is inaccessible and for the other 5, he is
accessible. The center just has three states wheresa andsb

correspond to the actionsa andb in the UMDP. Both agents’
local states0 is simply the initial start state where agent1
is still accessible. Agent1 has no actions but still makes
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Figure 3: Reduction of an undecidable infinite-horizon
UMDP to an infinite-horizon PS-DEC-MDP.

stochastic state transitions. Once the agent is in statess1, s2

or s3, with probability0.99 agent1 follows the state transi-
tion matrix outlined by Madani. But in each statesi, with
probability0.01 agent1 transitions to the corresponding ac-
cessible states′i. From there, agent1 transitions to a final
absorbing statesf . Thus, agent1’s transitions are indepen-
dent of any actions taken. The center can take actiona or b
in every time step which lead to a deterministic transition to
the corresponding state. However, the center does not know
agent1’s state as long as agent1 is inaccessible.

The center never gets a reward and only when agent1 is in
one of the three accessible statess′1, s

′

2, s
′

3, he gets a positive
reward that depends on his state and the center’s state but is
independent of any actions (see Figure 3). The rewards are
set up such that Madani’s reward vector for actiona corre-
sponds to the reward vector when the center is in statesa.
Analogous, the reward vector for actionb corresponds to the
reward vector when the center is in statesb.

The center’s problem is that he must try to be in the re-
ward maximizing state when agent1 becomes accessible.
Thus, the center must optimize its action sequence while
agent1 is inaccessible based on the sequence of belief points
in the 3-point simplex(s1, s2, s3). As long as agent1 is in-
accessible, the corresponding sequence of optimal actions
(a vs. b) is irregular, as was shown by Madani. It is now
easy to see that the optimal local policy for the centerπc for
this PS-DEC-MDP would also constitute the optimal policy
for Madani’s UMDP. Because infinite-horizon UMDPs are
undecidable this shows that infinite-horizon PS-DEC-MDPs
are undecidable.

As before for the finite-horizon case, the complexity
changes when we put a limit on the time of inaccessibility.
In particular, now the problem becomes decidable.

Theorem 4. Infinite-horizon partially synchronized DEC-
MDPs with limitsL1, L2, ..., Ln on the maximal time of in-
accessibility are NP-complete (when the limits are part of
the problem description and polynomially bounded by the
size of the problem description).

Proof. We show NP-hardness by reducing the DTEAM
problem described in the proof for Theorem 1 to an infinite-
horizon PS-DEC-MDP. We use the same reduction as shown
in Figure 2 with two small modifications. First, the agents
can continue taking actions when they have reached the final
state, however, the state stays the same and no rewards are
collected. Second, discount factorγ is set to any value in
(0, 1). Because the agents only collect rewards at a single
time step,γ has no influence on the optimal policy. Thus,
the policy that is optimal for the resulting infinite-horizon
PS-DEC-MDP is also optimal for the DTEAM problem.

To show membership in NP we we can leverage the well-
known fact that there exist stationary optimal policies for
infinite-horizon MDPs, where stationary means the optimal
policy is a mapping from states to actions and independent
of time. With the time limitsLi we know that an upper limit
on the number of different observation statesoc the center
can observe isK = |ASi|

n · L1 · L2 · ... · Ln · |Sc|. Again,
this number is exponential in the number of agents but we
consider the number of agents to be a fixed constant. We
can see thoseK observation states as “meta-states” for the
center, thus, the center’s meta-decision policy can now be
described as a mapping from meta-states to policy vectors
and in particular, this mapping is independent of time. For
all local agentsi their policies can be of maximum lengthLi

and the center’s policy can be a one-step policy. Thus, both
policy representations are polynomial in the problem size.
We can guess the optimal meta-decision policy and verify
that its value exceeds thresholdK. All this can be done in
polynomial time, which shows membership in NP.

Theorem 5. Infinite-horizon partially-synchronized DEC-
MDPs with a priori limits L1, L2, ..., Ln on the maximal
time of inaccessibility are P-complete.

Proof. P-completeness follows easily by reducing an
MMDP to a PS-DEC-MDP without inaccessible agents.
Membership in P can be proved by appealing to the proofs
for Theorems 2 and 4. We argue again that we will have
stationary policies on a finite number of meta-states. Then,
we can enumerate all possible policies, evaluate them (e.g.,
via linear programming), and verify that the value of the best
meta-decision policy exceeds thresholdK. This can be done
in polynomial time, which shows membership in P.

Incentive Analysis: Self-Interested Agents
We now introduce self-interest on the part of agents, and ad-
dress how to leverage the PS-DEC-MDP framework within
the context of dynamic incentive mechanisms. The goal is
to implement the socially optimal policy subject to the con-
straints on information provided by the periods of inacces-
sibility. We present a dynamic mechanism that will provide
incentives for self-interested agents to truthfully participate,
both in the sense of truthfully reporting local state (and lo-
cal models) when accessible and also to faithfully follow the
prescribed local policies of the center.

In every period, the mechanism elicits reports about state
from accessible agents and makes payments to all agents
that sent such a report (and are therefore accessible). We
adopt the common assumption ofquasilinear utilityso that
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an agent’s net payoff in a state is the sum of its intrinsic re-
ward and the payment made by the center. Given space con-
straints we present only a “Groves mechanism” and defer
the presentation of the appropriate variant on the dynamic-
VCG# mechanism (Bergemann & Välimäki 2006; Cavallo,
Parkes, and Singh 2007) for an extended version of the pa-
per. For now this means that the mechanism we present
makes the system a “team game” and runs at a deficit.

Modeling Agent Strategies
At each time stept, the center wants all accessible agents
to report their local state, and all agents (accessible or not)
to follow their prescribed local policies. In order to formal-
ize the equilibrium notion we need to be explicit about an
agent’s knowledge, independence assumptions, and commu-
nication structures. For his local strategy, agenti has to rea-
son about all agents in the system. But due to the communi-
cation structure we imposed, agenti can only possibly col-
lect information about the other agents when he is accessible
and only then about the other accessible agents.Thus, from
the constraints of the PS-DEC-MDP environment, and in
equilibrium when other agents are truthful, we can assume
that agenti can never know more about the other agents
than the center.Because the center’s observation stateoc

contains all information necessary to compute an expecta-
tion over future system statess, it is sufficient therefore for
agenti to form a belief over the center’s observation state;
we let boi ∈ ∆Oc denote a distribution on the center’s ob-
servation space.4

To capture the strategic problem facing an agent we in-
troduce some further notation. Let̄Si denote the space of
vectors of agenti’s local states sincei was last accessible.
Πi is the space of local agent policies that can be prescribed
by the center. Given the following three informational items
boi ∈ ∆Oc, s̄i ∈ S̄i andπi ∈ Πi, agenti can compute his
belief over the whole system. Thus, we can define his com-
plete belief spaceBi = ∆Oc × S̄i × Πi (where we require
consistency betweenboi and πi). Note that a belief state
bi ∈ Bi is not simply a distribution over system states, but a
more complex informational structure.

For local agents’ strategies we first allow for areporting
strategyfi : Bi × T → ASi ∪ {ε}. When agenti is ac-
cessible, it can a) report its state truthfully, b) report a false
state, or c) pretend to be inaccessible (which we will denote
as state reportε). Furthermore, agenti plays anaction strat-
egygi : Bi × T → Ai. In every time periodt, for any belief
statebi, gi(bi, t) denotes the action taken by the local agent.
Let f = (f1, . . . , fn) andg = (g1, . . . , gn) denote the re-
porting strategy profile and the action strategy profile for the
system ofn agents. An agent istruthful if it always reports
true state information to the center when accessible, never
pretends to be inaccessible when it is accessible, and abides
by the center’s policy prescriptions.

4To correctly update his belief, agenti would also need the
stochastic models of all agents including the center. However this
notion of belief is in essence a device we need for the proof, and we
will establish that truthful behavior is an equilibrium forall beliefs
and thus the agent will not need to do this kind of belief-update rea-
soning; as such, the agent does not require these stochastic models.

Definition 2 (Mechanism). A mechanismM = (π, X) in
our environment is defined by a meta-policyπ for the PS-
DEC-MDP along with a payment functionX(ot

c, t) ∈ R,
whereXi(oc, t) defines a payment to agenti given that the
center is in observation stateot

c at timet.

Because this is an environment with uncertainty—even on
the part of the center—about the current global system state
s ∈ S (due to inaccessibility), the appropriate equilibrium
concept isBayes-Nash equilibrium.

Definition 3 (Bayes-Nash Equilibrium). Given dynamic
mechanism(π, X) and agents’ beliefsbt = (bt

1, ..., b
t
n) at

timet (where beliefs are updated according to Bayes’ rule),
strategy profile〈f, g〉 constitutes a Bayes-Nash equilibrium
if and only if every agenti’s expected discounted utility go-
ing forward is maximized by following strategies〈fi, gi〉,
given that all other agentsj 6= i follow strategies〈fj , gj〉.

A mechanism isBayes-Nash incentive compatibleif at
any timet, for any joint belief state, truthful reporting and
taking local actions obediently is a Bayes-Nash equilibrium.

Mechanism 1 (Dynamic-Groves for PS-DEC-MDPs).
At every time stept:

1. Each accessible agent can report a claimfi(b
t
i, t) = ŝt

i

about its current state.

2. The center formsot
c and computesπ

∗(ot
c) =

(π∗

c , π∗

1 , . . . , π∗

n), the optimal meta-policy given the
agent models and current observation state. The cen-
ter communicates the local policies to all agents that
sent a report about state.

3. The center executesπ∗

c (st
c) = ac, and each agent exe-

cutes local actiongi(b
t
i, t).

4. The center pays every agenti a transfer:

Xi(o
t
c, t) =

X

j∈I\{i}

E
ˆ

R
t
j |o

t
c, π

∗(ot
c)

˜

which is the sum of all other agents’ expected rewards.
Here,Rt

j is short-hand for agentj’s expected reward,
where the expectation is taken with regard to the cen-
ter’s current observation stateot

c, the local policies
just prescribed to the agents who reported to be ac-
cessible, and the most recent local policy prescribed to
the inaccessible agents when they were last accessible.

For simplicity, we ignored the center’s local reward
Rc(sc, ac). We assume it to be zero, but it could be added
and the analysis would still go through the same way. In
presenting this mechanism, we also assume for now that it
is possible to provide a payment to each agent in each pe-
riod, whether or not the agent is inaccessible. In fact this is
precluded, and we explain how to handle this below.5

5We must also avoid these payments for reasons of computa-
tional complexity. If inaccessible agents could receive payments,
this would provide a new form of implicit communication. An in-
accessible agent could deduce new information about other agents
by observing its payments and would have to reason about them.
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Lemma 1. The dynamic-Groves mechanism in which pay-
ments are made in every period to every agent is Bayes-Nash
incentive compatible in the PS-DEC-MDP model.

Proof. Consider some periodt and assume agentsj 6= i fol-
low the equilibrium and are truthful. We assume that it is
common knowledge that the center is a social planner, i.e.,
the meta-decision policy is selected to maximize the agents’

expected joint rewards (based on reports). Letb
t

i denote the
special belief state in which agenti knows the true center’s
observation state when the agent was last accessible. We es-

tablish that the agent cannot benefit by deviatingfor anyb
t

i.
This immediately establishes that the agent cannot benefit
for anybeliefs (since it holds pointwise for any realization
of the center’s observation state.) We now adopt beliefsb

t

i

and proceed by case analysis on whether agenti is accessi-
ble in the current state.

(Case a)Agenti is accessible. We can write down agent
i’s total expected payoff (reward + payments) from timet
forward assuming he is truthful:

ρt
i(b

t

i) = E
[

T
∑

k=t

γk−tRi(s
k
i , sk

c , ak
i , ak

c ) + γk−tXi(o
k
c , k)|b

t

i

]

= E
[

T
∑

k=t

n
∑

j=1

γk−tRj(s
k
j , sk

c , ak
j , ak

c )|b
t

i

]

,

where the expectation is taken with respect to the distri-

bution on system states given belief stateb
t

i which implies
a belief over the center’s prescribed polices. We see that
the agent receives his own intrinsic rewardRi(s

t
i, s

t
c, a

t
i, a

t
c)

along with payments in each period that equal the expected
reward to all other agents in that period. Observe that when
the agent is truthful the system as a whole implements the
optimal PS-DEC-MDP policy and the agent’s expected pay-
off is exactlyV ∗(ot

c). For contradiction, assume that the
agent can achieve better expected payoff through some non-
truthful strategy〈f ′

i , g
′

i〉: by the principle of one deviation,
consider a deviation in〈f ′

i , g
′

i〉 in the current period only.
(1) if agenti misreports his local state to the center the

center forms an incorrect observation state. The effect of
the deviation is only to change the actions taken by the cen-
ter and other agents (indirectly via different prescribed poli-
cies from the center due to a different observation state).
But there exists an equivalent meta-decision policyπ

′ that
would implement the same actions, and thus this is a con-
tradiction because it implies that the center’s current meta-
decision policy is suboptimal (given that agenti’s payoff is
aligned with the total system reward, and the agent’s beliefs

b
t

i are those of the center.)
(2) if agenti deviates from the prescribed local strategy

this affects his immediate local reward, his local state tran-
sition and, depending on future state reports, provides the
center with a different observation state. Agenti could
affect (and indeed increase his local reward) directly, but
only affect his payment (other agents’ rewards) indirectly
via new policies issued by the center. This is true because
of the specific independence assumptions made in the PS-
DEC-MDP model. Again, there exists an equivalent meta-

decision policyπ′ that would implement the same actions
and this is a contradiction with the optimality of the current
meta-decision policy.

It is also easy to see from the same argument that no com-
bination of deviations of kinds (1) and (2) is useful.

(Case b)Agent i is inaccessible. The argument here is
essentially the same. Consider a deviation〈f ′

i , g
′

i〉 in the
current period only. The only deviation to consider now is
one in selecting the agent’s local action. When choosing
his local action the agent will compute his expected future
payoff given his belief stateb

t

i and taking into consideration
that he will only be able to communicate with the center
again and make a state report at some point in the future.
But again, the agent is computing the expectation with re-
spect to the same information available to the center when
he computed the meta-decision policy; in this case, this is
the center’s observation stateot′

c in periodt′ when the agent
was last accessible. In particular, if there is a useful action
deviation for agenti that would increase his expected payoff
this would contradict our assumption thatπ

∗ was optimal
because the center could have “programmed” this deviation
into the emergency policy provided to agenti and triggered
this deviation in the agent’s current local state.

We have shown that even if agenti has enough informa-
tion to reason about the center’s observation state correctly,
he doesn’t need to do so, because for any possible beliefs he
is best off following the prescribed local policy (given that
the center is acting as a social planner and in equilibrium
with the other agents acting truthfully).

The proof relied heavily on the specific independence as-
sumptions made in the PS-DEC-MDP model. It is impor-
tant that a misreport or an action deviation by agenti only
indirectly affects the other agents via future changes in the
policies assigned by the center. If that were not the case,
the mechanism would not be Bayes-Nash incentive compat-
ible. We can construct a simple counter-example: Assume
we have a PS-DEC-MDP with two agents and one center.
Agent 1 has only one local state and one action but agent
2 has one local state and two actionsa1 anda2. Agenti’s
reward function is dependent on agent2’s local action such
that he receives a very high reward whena1 is chosen but a
very low reward whena2 is chosen. Agent2’s reward func-
tion is set up such thata1 leads to a small anda2 only to
a slightly higher reward. Thus, the efficient meta-decision
policy that maximizes the joint reward would assign action
a1 to agent2 and the Dynamic-Groves mechanism would
pay agent2 the expected reward of agent1 given the meta-
decision policy. However, because payments are made based
on expectations and not on realized rewards, agent2 max-
imizes his payoff by taking actiona2, getting the slightly
higher local reward and still being paid the high reward that
was expected (but not received) for agent1.

To modify the mechanism to handle the constraint that
payments cannot be made while an agent is inaccessible
we can simply roll-up the payments that inaccessible agents
would otherwise receive and make a “lump sum” payment to
such an agent as soon as it becomes accessible. This, how-
ever, requires the additional assumption thateach agent must
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eventually make any payments it owes to the center.This is
required to preclude that an agent who still owes payments
to the center would choose to “hide for ever”.

With X(ot
c, i) still used to denote the payment made in

the dynamic-Groves mechanism (as described above) to an
agent at timet, the payment scheme in step (4.) of the mod-
ified mechanism is:

The center pays every agenti that makes a report about
his state:

X̂i(o
t
c, t) =

t
∑

k=t−δ(t)

Xi(o
k
c , k)

γt−k
,

whereδ(t) ≥ 0 is the number of successive periods prior to
t that i has been inaccessible andγ is the discount factor.

This reduces to the same payment term when an agent is
accessible, while ensuring that the expected payment of an
inaccessible agent forward from any state is equal to that in
the earlier mechanism; see also Cavallo et al. (2007). This
is easy to see when one observes that the paymentXi(o

t
c, t)

is already independent of agenti’s strategy until the agent is
again accessible because the center’s observation state in re-
gard to agenti does not change until it receives a new report
about local state and the agent’s actions do not influence any
other agent’s states. We refer to the modified mechanism as
the dynamic-Groves# mechanism.

Theorem 6. The dynamic-Groves# mechanism is efficient
and Bayes-Nash incentive compatible in the PS-DEC-MDP
model.

Conclusion
In this paper we presented the first work that combines mod-
els and techniques from decentralized decision making un-
der uncertainty with dynamic mechanism design. We specif-
ically addressed environments in which agents periodically
become inaccessible, yet can still take local actions and un-
dergo state transitions—for instance, when a group of self-
interested taxi drivers might occasionally lose communica-
tion with the dispatcher, or in Internet settings where a set
of network servers must be coordinated and communication
links are fragile or faulty. In formalizing these domain char-
acteristics, we introduced thepartially-synchronized DEC-
MDP framework that models precisely the specific indepen-
dence and communication limitations required for positive
complexity results and successful incentive design.

In considering incentive issues related to private actions,
the main challenge was that local actions are unobservable
and thus not “contractible,” so that the center’s decision pol-
icy must also be individually optimal for every agent in equi-
librium. As we illustrated in the counter-example, it is nec-
essary that local agents’ rewards are independent of each
other’s actions, even when they are accessible, which is a
requirement over-and-above that which would be required
just for computational tractability.

We proved a series of complexity results for the PS-DEC-
MDP model including on the negative side that the infinite-
horizon problem with no limits on inaccessibility is undecid-
able, and on the positive side that the finite and the infinite-

horizon problem for a fixed number of agents with a priori
limits on inaccessibility is P-complete. Finally, we presented
“Dynamic Groves#”, an efficient dynamic mechanism for
managing incentives in a context of self-interested agents.

For future research we are considering ways to relax the
strong independence assumptions in our model using the
techniques introduced in Mezzetti (2004). Another interest-
ing next step is the extension of this work to online scenar-
ios with changing agent populations where each agent has a
fixed arrival and departure time. We hope that this paper will
inspire development of computationally efficient algorithms
required for the PS-DEC-MDP model, together with other
directions in bridging the fields of dynamic mechanism de-
sign and decentralized decision making under uncertainty.
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