
A New Incomplete Method for CSP Inconsistency Checking

Belaı̈d Benhamou and Mohamed Réda Saı̈di
Laboratoire des Sciences de l’Information et des Systèmes (LSIS)

Centre de Mathématiques et d’Informatique
39, rue Joliot Curie - 13453 Marseille cedex 13, France

email:{Belaid.Benhamou;saidi}@cmi.univ-mrs.fr

Abstract
Checking CSP consistency is shown, in theory, to be an
NP-complete problem. There is two families of meth-
ods for CSP consistency checking. The first family
holds the complete methods which make an exhaustive
search on the solution space. These methods have the
advantage to prove CSP inconsistency, but their com-
plexity grows exponentially when the problem size in-
creases. The second family includes the incomplete
methods that make a local search on the solution space.
These methods have been efficiently used to find solu-
tions for large size consistent CSPs that complete meth-
ods can not solve. One major drawback of the incom-
plete methods, is their inability to prove CSP inconsis-
tency. One of the challenges that have been put forward
by the CP community (Selman et al. 1997) is to provide
incomplete methods that can deal with CSP inconsis-
tency efficiently. The work that we present here, is a
contribution towards an answer to this hard challenge.
We introduce a new incomplete method for CSP incon-
sistency checking that is based on both a new notion of
dominance between CSPs and a coloration of the CSP
micro-structure. We experimented the method on ran-
domly generated CSP instances and the results obtained
are very promising.

Introduction
The work that we present here is a contribution to solve the
challenge 5 given in (Selman, Kautz, & McAllester 1997).
Challenge 5 consists in exploiting incomplete methods to
prove efficiently CSP inconsistency. The motivation in solv-
ing this challenge, comes from the advances made on CSP
and SAT solvers. Indeed, several large size problems that are
known to be hard for complete methods like Davis-Putnam-
Logemann-Loveland (Davis, Logemann, & Loveland 1962)
or its improvements, had been solved efficiently by using
incomplete methods (Selman, Levesque, & Mitchell 1992;
Hoos & Stützle 2004) that are based on a local search in
the solution space. However, local search methods can not
be used to prove CSP inconsistency and lose a great part of
their usefulness in CSP Solving.

Although Challenge 5 is known since 1997, the are only
few works that had been done on this subject: we can find
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some works that use incomplete approaches to prove unsat-
isfiability of propositional formulas in (Klerk, Maaren, &
Warners 2000; Goldberg 2002; Prestwich & Lynce 2006;
Aloul, Lynce, & Prestwich 2007; Audemard & Simon 2007)
and mainly two other works in CSPs (Gaur, Jackson, &
Havens 1997; Bès & Jégou 2005) that attempt to prove CSP
inconsistency with incomplete approaches.

We propose in this work a new incomplete method for bi-
nary CSP inconsistency checking. This method is based on a
new notion that we call CSP dominance and on a coloration
of the CSP micro-structure. We will prove that the known
coloration approach used in (Gaur, Jackson, & Havens 1997)
is a particular case of our method. We implemented the new
method and experimented it on several random inconsistent
CSP instances, and the results obtained are very promising
and show that our method outperforms all the other tested
methods.

This paper is organized as follows: CSP background is
given in the second section. We introduce in the third section
the basis of the new method that we propose in this work and
show that the approach used in (Gaur, Jackson, & Havens
1997) is a particular case of our approach. We evaluate the
proposed method in the fourth section where we can see the
experiment results obtained on random CSP instances and
a comparison of our method with some other methods. We
conclude the work in last section.

Background
A CSP is a structure P (n) = (V,D,C) where: V =
{v1, ..., vn} is a set of n variables; D = {D1, ..., Dn} is
the set of finite discrete domains associated to the CSP vari-
ables, Di includes the set of possible values of the CSP vari-
able vi, C = {C1, ..., Cm} is a set of m constraints each in-
volving some subsets of the CSP variables. The constraints
are given in their extension form, each constraint Ci ∈ C
is represented by the list of its permitted value tuples. A bi-
nary constraint is a constraint which involves at most two
variables. A binary CSP P (n) (a CSP involving only bi-
nary constraints) can be represented by a constraint graph
G(V,E) where the set of vertices V is the set of the CSP
variables and each edge (vi, vj) ∈ E connects the variables
vi and vj involved in the constraint Cij ∈ C. The micro-
structure (Jégou 1993) of a binary CSP P (n) is a graph
MP (n)(V ×D, É), where each edge of É corresponds either

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

229

to a tuple allowed by a specific constraint or to an allowed
tuple because there is no constraint between the associated
variables.

An Alldifferent constraint is a global constraint that
forces all the variables in its scope to take different values.
Alldifferent is a well studied global constraint, several ef-
ficient dedicated algorithm are known in the literature.

An instantiation I = (〈v1, d1〉, 〈v2, d2〉, . . . , 〈vn, dn〉) is
the variable assignment {v1 = d1, v2 = d2, . . . , vn = dn}
where a value di of the domain Di is assigned to the vari-
able vi. The instantiation I is consistent if it satisfies all the
constraints of C, thus I is a solution of the CSP.

The Dominance-Coloration method
Before describing the theoretical basis of our method, we
recall the principle of the method introduced in (Gaur, Jack-
son, & Havens 1997).

The main theoretical result on which the method is based
is given in the following corollary.
Corollary 1 (Gaur, Jackson, & Havens 1997) If the micro-
structure MP (n) of a CSP P (n) having n variables, can be
colored with n − 1 colors, then the CSP is inconsistent.

To illustrate how this corollary can be used in a CSP in-
consistency proof, we take an instance of the pigeon-holes
problem with three pigeons and two holes that we denote by
Pigeons(3). The problem consists in putting the pigeons
in the holes, in such way that each hole holds at most one
pigeon. Figure 1 gives the constraint graph of the CSP rep-
resenting Pigeons(3) in the left part and its micro-structure
in the right part. The CSP variables vi, i ∈ {1,2,3} represent
the pigeons and the values a and b express the holes.

The micro-structure of Pigeons(3) admits a 2-coloration.
Indeed, it is trivial to see that the vertices 〈v1, a〉, 〈v2, a〉
and 〈v3, a〉 can be colored with one color, say color 1 for
instance, and the other vertices 〈v1, b〉, 〈v2, b〉 and 〈v3, b〉
are then colored with the color 2. Now, by application of
the result of Corollary 1, we can deduce that the problem is
inconsistent, since there is no clique of size 3 (a 3-clique).

For a CSP P (n) having n variables, the authors of (Gaur,
Jackson, & Havens 1997) try to find a (n − 1)-coloration
of its micro-structure to show its inconsistency, we call this
method the coloration method.

Figure 1: Pigeons(3): pigeon-holes instance

The basis of the Dominance-Coloration method
Now, we define the notion of dominance between CSPs
which is one of the two fundamental notions on which the
method is based.
Definition 1 If P (n) and P ′(n) are two CSPs having n
variables, then P ′(n) dominates P (n), if only if, there ex-
ists a mapping that matches each solution of P (n) with a
solution of P ′(n).

From the previous definition we understand that a CSP
P ′(n) dominates another CSP P (n) iff each solution of
P (n) can be mapped to a solution of P ′(n). The interac-
tion between dominance and CSP consistency is given in
the following proposition.
Proposition 1 If an inconsistent CSP P ′(n) dominates an-
other CSP P (n), then P (n) is inconsistent.
Proof 1 The proof can be easily derived from Definition 1.

We define now the k-coloration notion which is the sec-
ond basic element of our method.
Definition 2 Let us given a CSP P (n) and its micro-
structure MP (n). A k-coloration of MP (n), is a mapping
fk that associates to each vertex of MP (n), a color repre-
sented by an integer j such that 1 ≤ j ≤ k and the colors of
adjacent vertices must be different.

Now, we show how to associate to a given CSP P (n) and
a given k-coloration fk of its micro-structure MP (n), a CSP
Alldiff(P (n),fk) expressing a global Alldifferent constraint
between its variables and we will prove that the Alldifferent
CSP dominates P (n).
Definition 3 Let P (n)=(V,D,C) be a CSP having n vari-
ables, MP (n) its micro-structure and a k-coloration fk

of MP (n). We associate to P (n) and fk, the CSP
Alldiff(P (n), fk)=(V ′, D′, C ′) where:
• V ′ = {v′1, v

′
2, ..., v

′
n}, we associate a variable v′i to each

variable vi of P (n);
• D′ = {D′1, D

′
2, ..., D

′
n}, where each domain D′i is de-

fined as follows: D′i={fk(〈vi, di〉)/di ∈ Di}; in other
words D′i includes all the colors involved in fk when col-
oring the vertices 〈vi, di〉, ∀di ∈ Di;

• C ′={Alldifferent(v′1, v
′
2, ..., v

′
n)}, that is, C ′ is

formed by the single global Alldifferent constraint
Alldifferent(v′1, v

′
2, ..., v

′
n) defined on the variables of

V ′.
Example 1 Take the pigeon-hole CSP of Figure
1 (Left part) and the 2-coloration f2 applied to
color its micro-structure (the right part). We asso-
ciate to the pigeon-hole CSP Pigeons(3), the CSP
Alldiff(Pigeons(3), f2)=(V ′, D′, C ′) where:
• V ′={v′1, v′2, v′3}, represents the variables associated

with the variables {v1, v2, v3} of the the initial CSP
Pigeons(3);

• D′={D′1, D′2, D′3}, where
D′i={f2(〈vi, a〉), f2(〈vi, b〉)}= {1, 2}, ∀i ∈ {1, 2, 3};

• C ′={Alldifferent(v′1, v
′
2, v
′
3)}.

230

Figure 2: The Alldiff(Pigeons(3), f2) associated with the
pigeon-holes CSP Pigeons(3) and the 2-coloration f2.

The constraint graph of the CSP Alldiff(Pigeons(3), f2),
is given in Figure 2.

Now, we introduce the key property of this work. The
main results is derived from the dominance relation exist-
ing between P (n) and the CSP Alldiff(P (n), fk) associated
with the CSP P (n) and the k-coloration fk. We have the
following theorem.
Theorem 1 If P (n) is a CSP having n variables, and fk a
k-coloration of its micro-structure MP (n), then the associ-
ated CSP Alldiff(P (n), fk) dominates the CSP P (n).
Proof 2 We shall prove that, each solution I of the
CSP P (n) can be mapped to a solution I ′ of the CSP
Alldiff(P (n), fk). Let I=(〈v1, d1〉, 〈v2, d2〉, ..., 〈vn, dn〉)
be an instantiation of P (n), and consider the mapping
Γ :

∏n

i=1({vi} × Di) −→
∏n

i=1({v
′
i} × D′i), such that

Γ(I)=(〈v′1, fk(〈v1, d1〉)〉, 〈v
′
2, fk(〈v2, d2〉)〉, ...,

〈v′n, fk(〈vn, dn〉)〉). Now, suppose that I is a solution
of P (n), then we deduce that the vertices in the set
S = {〈v1, d1〉, 〈v2, d2〉, ..., 〈vn, dn〉} form a clique of
size n of the micro-structure MP (n). Because, fk is a
k-coloration of MP (n), then the vertices of the n-clique
have two by two different colors. That is, ∀ 〈vi, di〉, 〈vj , dj〉
∈ S such that i 6= j, we have fk(〈vi, di〉) 6= fk(〈vj , dj〉).
Finally, Γ(I)=(〈v′1, fk(〈v1, d1〉)〉, 〈v

′
2, fk(〈v2, d2〉)〉, ...,

〈v′n, fk(〈vn, dn〉)〉)=I ′ is a solution of the CSP
Alldiff(P (n), fk).

Theorem 1 holds an important result. We showed that
the CSP Alldiff(P (n), fk) associated with P (n) and fk

dominates the CSP P (n). On the other hand, the CSP
Alldiff(P (n), fk) has a single global Alldifferent constraint
that is well studied in CP community and for which several
good algorithms exist. One of the most known algorithms
for Alldifferent constraint, is the one of Régin (Régin 1994)
which is based on maximum matching search in bipartite
graphs. This algorithm performs a generalized arc consis-
tency (GAC) on global Alldifferent constraints in polyno-
mial time complexity. The GAC algorithm is complete for
inconsistency checking of Alldifferent CSPs and is efficient
in practice. We use it to check the consistency of the CSP
Alldiff(P (n), fk) derived from P (n) and fk. If the CSP

Alldiff(P (n), fk) is shown to be inconsistent, then we de-
duce from Proposition 1 that the CSP P (n) is inconsistent.

A necessary condition for the CSP Alldiff(P (n), fk) to be
consistent is that, the number of different values in ∪i=1,nD′i
must at least equal n (i.e. | ∪i=1,nD′i |≥ n). Otherwise,
there will be fewer values than variables, then the global
Alldifferent becomes inconsistent.
Remark 1 Since the domain values of Alldiff(P (n), fk) are
the colors used by fk to color MP (n), then the CSP incon-
sistency detected by the color method given in (Gaur, Jack-
son, & Havens 1997) is a particular case of inconsistency of
the CSP Alldiff(P (n), fk) corresponding to the trivial case
where Alldiff(P (n), fk) contains less values than variables
which is included in our method. Therefore our method in-
cludes the color method (Gaur, Jackson, & Havens 1997)
and will detect more inconsistencies.

Theorem 1 states that when the CSP Alldiff(P (n), fk) is
inconsistent, P (n) is inconsistent too. However if we run
GAC on Alldiff(P (n), fk) and the CSP remains consistent,
then we can not deduce any information on the consistency
of P (n), but, some values that do not participate in any so-
lution in Alldiff(P (n), fk) could be filtered by GAC during
the consistency checking. We show in the following that we
can use such values to simplify the CSP P (n) by remov-
ing some corresponding values that do not participate in any
solution of P (n). We have the following proposition.
Proposition 2 Let P (n)=(V,D,C) be a CSP,
fk a k-coloration of its micro-structure,
Alldiff(P (n),fk)=(V ′, D′, C ′) the Alldiff CSP associ-
ated to P (n) and fk, and v′i ∈ V ′ the variable associated
with vi ∈ V . If there exists a value d′i ∈ D′i of the variable
v′i, such that d′i does not participate in any solution of
Alldiff(P (n), fk), then each value di ∈ Di of the variable
vi verifying fk(〈vi, di〉) = d′i does not participate in any
solution of P (n).
Proof 3 By hypothesis, the CSP Alldiff(P (n), fk)
dominates the CSP P (n). Thus, each solution
I=(〈v1, d1〉, 〈v2, d2〉, ..., 〈vn, dn〉) can be transformed by
the mapping Γ :

∏n
i=1({vi}×Di) −→

∏n
i=1({v

′
i}×D′i), to

a solution Γ(I)=(〈v′1, fk(〈v1, d1〉)〉, 〈v
′
2, fk(〈v2, d2〉)〉, ...,

〈v′n, fk(〈vn, dn〉)〉) of the CSP Alldiff(P (n), fk). There-
fore, if di participates in a solution of P (n), then
fk(〈vi, di〉) = d′i will participate in a solution
of Alldiff(P (n), fk). Thus, conversely if the value
fk(〈vi, di〉) = d′i does not participate in any solution
of Alldiff(P (n), fk), then the value di of vi does not
participate in any solution of P (n).
Example 2 Consider the CSP P (3) of Figure 3. Its micro-
structure admits a 3-coloration f3. The coloration method
(Gaur, Jackson, & Havens 1997) is not pertinent here, and
can not prove the inconsistency of P (3). On other hand,
the CSP Alldiff(P (3), f3) associated to P (3) and the 3-
coloration, obtained at the step (E1) is consistent. We can
deduce nothing on the consistency of P (3). However the
value 1 of the domain of the variable v′3 participate in no
solution of the CSP Alldiff(P (3), f3), thus it is suppressed
by the GAC filtering. Now by applying Proposition 2, we

231

deduce that the value a of the variable v3 does not partici-
pate in any solution of P (3), thus it is removed. This leads
to a simplification of the CSP P (3) (step E2). Now take the
simplified CSP and try to find a new coloration for its micro-
structure (step E3). We obtain a 2-coloration which means
that the CSP is inconsistent.

Figure 3: An example of inconsistency detection after value
filtering

The Dominance-Coloration algorithm
The previous example gives an intuition of an incremental
method to check CSP inconsistency by using the result of
Proposition 2 and Theorem 1. Indeed, by iterating several
times CSP simplification and coloration we can show the
inconsistency of a CSP. The baseline method is sketched in
Algorithm 1.

The principle of this algorithm consists in repeating the
following main operations until the inconsistency is shown
or the number of fixed steps is reached.

1. Use some incomplete graph coloring algorithm (here we
use DSATUR (Brélaz 1979)) to compute a k-coloration fk

Algorithm 1 The dominance-coloration algorithm
Require: P (n) {n is the number of variables}
Ensure: {”P (n) inconsistent”;”P (n) simplified”;”nothing”}

1: test← 1

2: Old P (n)← P (n)

3: G← micro-structure(P (n)) {Generate the micro-structure}
4: while (test ≤ NBTESTS) {NBTESTS is the maximal number of steps}

do
5: fk ← color(G)

6: if (k < n) then
7: return ”P (n) inconsistent”
8: else
9: P ′(n)← build Alldiff(P (n), fk)

10: P ′′(n)← GAC(P ′(n))

11: if (is inconsistent(P ′′(n))) then
12: return ”P (n) inconsistent”
13: else if (P ′′(n) 6= P ′(n)) then
14: Update(P (n), P ′′(n)) {simplification of P ′′(n)⇒ simplification

of P (n)}

15: G ← micro-structure(P (n)) {Generation of a new micro-
structure}

16: test← 0 {simplification of P (n), make NBTESTS new tests}
17: end if
18: end if
19: test← test + 1

20: end while
21: if (Old P (n) 6= P (n)) then
22: return ”P (n) simplified”
23: else
24: return ”nothing”
25: end if

of the micro-structure G=MP (n) (line 5). Notice that the
inconsistency check of (Gaur, Jackson, & Havens 1997)
is made in lines 6 and 7. That is, if a k-coloration such
that k < n is found, then the CSP is inconsistent.

2. Otherwise, derive the CSP P ′(n)=Alldiff(P (n), fk) from
P (n) and fk (line 9).

3. Apply the general arc consistency method (GAC) on
P ′(n)=Alldiff(P (n), fk) (line 10), and then get in re-
turn, either a proof of the inconsistency of the CSP
P ′(n)=Alldiff(P (n), fk) (line 11), thus P (n) is inconsis-
tent, or a simplified form P ′′(n) of the CSP P ′(n) .

4. Simplify P (n) with respect to P ′′(n) and compute the
micro-structure of the resulting CSP (line 15), then com-
pute a k-coloration for the new micro-structure, and repeat
the described operations on the simplified form of P (n)
(lines 5-19).
To make the algorithm terminate, the algorithm repeat

the previous steps NBTESTS times. After performing
the NBTESTS steps, the algorithm returns one alternative
among the following: either the inconsistency of P (n) is
shown, or, the inconsistency is not proved, but we get in re-
turn a simplified form of P (n); or, neither the inconsistency
is shown, nor the CSP P (n) is simplified.

If the method fails to prove the CSP inconsistency, but
returns a simplified form of P (n), then one can think that a
complete algorithm like Forward Checking or MAC that we
expect to combine in future with our method could solve the

232

simplified CSP more efficiently than the original one.
If the method fits in the third case, then usually the col-

oration used was not pertinent. It is then important to find
good heuristics for k-coloration choice, in order to compute
k-colorations that avoid this worst case.

Experiments
Now we evaluate our method by experiments. We propose
to use our method to check inconsistency of random CSP
instances. In this first implementation, we are interested to
know the rate of success of this new method in proving CSP
inconsistency and to compare it to other methods.

Problem generation
The random instances are generated with respect to the fol-
lowing parameters: n the number of variables, d the size of
the domains, density the constraint density , and tightness
the tightness. The code of the generator that we used can
be found at (http://www.lirmm.fr/∼bessiere/generator.html).
For each instance of the parameters n, d, density and
tightness, a sample of 100 problems are generated ran-
domly and the measures are taken in average.

The implemented methods
We implemented and compared six methods: Arc consis-
tency (AC), Path consistency (Path), the coloration method
given in (Gaur, Jackson, & Havens 1997) (Color), a hy-
brid method that uses both AC and Color where AC is
used as a preprocessing for Color (AC Color), a hybrid
method combining the methods Path and Color where
Path is used as preprocessing for Color (Path Color) and
the Dominance-Coloration method (Dominance Color).

In addition to these methods, we used a complete forward
checking algorithm (called here FC) as a reference method
to evaluate and compare the performances of the different
methods. This algorithm detects all the instances that are
inconsistent, it is used to compute the success rate of the
other incomplete methods in proving inconsistency.

Figure 4: Inconsistency rate w.r.t tightness for (n = 20,
d = 10 et density = 0.5)

Figure 5: Inconsistency rate w.r.t tightness for n = 20,
d = 10 et density = 0.9

Figure 6: Number of nodes on the average w.r.t tightness
for n = 20, and d = 10

Results
We reported here the curves expressing the inconsistency de-
tection rate with respect to a variation of the tightness for
some fixed value of the other parameters n, d and density.
The limit value of the constant NBTESTS of Algorithm 1
is fixed to 5. A run time limit for solving a sample of 100
instances is fixed to one hour for all the methods.

Figures 4 and 5 show the results of all the methods on
the random CSPs where the number of variables is fixed to
n = 20, the domain size to d = 10 and where we tested
two densities density = 0.5 and density = 0.9. Here,
we use an incomplete version of the graph coloring algo-
rithm (Brélaz 1979) to compute a k-coloration of the micro-
structure.

We remark that the method Dominance Color has the
best inconsistency detection rate, it outperforms all the other
methods. Its curve is superposed on the one of the complete
method, meaning that it succeeds to solve almost all of the
inconsistent problems.

Because path consistency filtering is more robust than arc
consistency, the methods Path and Path Color have a bet-
ter rate than both AC et AC Color. The Color method
has the worst inconsistency detection rate, it solved only the
over-constrained instances. Notice that the curves of AC

233

and AC Color are confused, the same situation happened
with the curves of Path and Path Color. This explains the
fact that the coloration operation does not improve AC nor
Path.

We can see that our method outperforms both the Path
and Path Color methods in the region where the instances
generated are the hardest (near the pick of difficulty). We
can see on the curves depicted in Figure 6 representing the
average number of search nodes generated by the complete
algorithm in function of the tightness that the pick of diffi-
culty is in the region where the Dominance Coloration
algorithm outperforms the two previous algorithms. The
pick is situated approximately in the neighborhood of
tightness = 0.37 for the instances having a density = 0.5
and in the neighborhood of tightness = 0.23 for the in-
stances having density = 0.9.

Our method looks to succeed where the other methods
fail. It detected almost all of the inconsistent instances even
in the hard region. It offers the best detection rate for the
hard instances. We hope that we can use it in the future to
show CSP inconsistency where the best complete algorithm
fails.

Conclusion and perspectives
The main purpose behind this work is to offer a contribution
to the CP community challenge which consists in finding
efficient incomplete method that detect CSP inconsistency.
We studied in this work the notion of dominance and showed
how to combine it with graph coloring techniques to provide
an incomplete method to prove CSP inconsistency. We in-
troduced the method Dominance Coloration that includes
the Color method given in (Gaur, Jackson, & Havens 1997).
Our method is based on a nice property of dominance be-
tween the CSP that we are dealing with, and an Alldiff CSP
that we derive from the original CSP and a k-coloration of
its micro-structure. We showed that the derived Alldiff CSP
dominates the original CSP, and some filtering of value in
the Alldiff when using the known GAC algorithm induces
value filtering in the original CSP without additional effort.
Our method can then be seen as a new efficient CSP filtering
technique. Its efficiency comes from the fact that GAC is
polynomial and performs well on Alldiff CSPs.

The experiments made on random CSP instances, show
that our method has a good rate of CSP inconsistency detec-
tion even when testing instances in the hard mushy region.
The results obtained on the problems checked showed that
our method outperforms (in inconsistency detection rate) all
of the methods: Arc-Consistency (AC), path-consistency
(Path), Coloration (Color), and the combined methods
AC Color, Path Color.

The work we give here is just a first contribution towards
an answer to the challenge that consists in proving inconsis-
tency by incomplete methods. There are many other direc-
tions that we are exploring:
• First, we are looking after coloration heuristics that will

produce colorations which are more profitable for the
dominance filtering. This will improve dramatically the
inconsistency detection rate of the method.

• Since the dominance filtering could remove some extra
inconsistent values from the variable domains, one can
use it as a filtering procedure that can be applied prior to
or during search. This is a particular interesting point that
we are investigating theoretically and practically.

• Finally, it will be important to find other pertinent CSP
derivations from the original CSP P (n) that conserve the
dominance property.

References
Aloul, F.; Lynce, I.; and Prestwich, S. 2007. Symmetry
breaking in local search for unsatisfiability. In SymCon’07,
9–13.
Audemard, G., and Simon, L. 2007. Gunsat: A greedy
local search algorithm for unsatisfiability. In IJCAI’07,
2256–2261.
Bès, J., and Jégou, P. 2005. Proving graph un-colorability
with a consistency check of csp. In ICTAI’05, 693–694.
Hong Kong, China: IEEE. POSTER.
Brélaz, D. 1979. New methods to color vertices of a graph.
Commun. ACM 22(4):251–256.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Commun. ACM
5(7):394–397.
Gaur, D. R.; Jackson, W. K.; and Havens, W. S. 1997. De-
tecting unsatisfiable csps by coloring the micro-structure.
In AAAI/IAAI, 215–220.
Goldberg, E. 2002. Proving unsatisfiability of cnfs locally.
J. Autom. Reasoning 28(5):417–434.
Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. Elsevier / Morgan Kaufmann.
Jégou, P. 1993. Decomposition of domains based on the
micro-structure of finite constraint satisfaction problems.
In Proceedings AAAI’93.
Klerk, E. D.; Maaren, H. V.; and Warners, J. P. 2000.
Relaxations of the satisfiability problem using semidefinite
programming. J. Autom. Reason. 24(1-2):37–65.
Prestwich, S., and Lynce, I. 2006. Local search for unsat-
isfiability. In SAT’06, LNCS, 283–296. Springer.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in csps. In AAAI ’94: (vol. 1), 362–367. Menlo
Park, CA, USA.
Selman, B.; Kautz, H. A.; and McAllester, D. A. 1997.
Ten challenges in propositional reasoning and search. In
IJCAI’97, 50–54.
Selman, B.; Levesque, H. J.; and Mitchell, D. G. 1992.
A new method for solving hard satisfiability problems. In
AAAI’92, 440–446.

234

