
The Parameterized Complexity of Global Constraints∗

C. Bessiere
LIRMM

Montpellier,
France

bessiere@lirmm.fr

E. Hebrard
4C

UCC, Ireland
ehebrard@4c.ucc.ie

B. Hnich
Izmir Uni. of Economics,

Izmir,
Turkey

brahim.hnich@ieu.edu.tr

Z. Kiziltan
CS Department

Uni. of Bologna, Italy
zeynep@cs.unibo.it

C.-G. Quimper
École Polytechnique

de Montréal,
Canada

cquimper@alumni.uwaterloo.ca

T. Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract

We argue that parameterized complexity is a useful tool with
which to study global constraints. In particular, we show that
many global constraints which are intractable to propagate
completely have natural parameters which make them fixed-
parameter tractable and which are easy to compute. This
tractability tends either to be the result of a simple dynamic
program or of a decomposition which has a strong backdoor
of bounded size. This strong backdoor is often a cycle cutset.
We also show that parameterized complexity can be used to
study other aspects of constraint programming like symme-
try breaking. For instance, we prove that value symmetry is
fixed-parameter tractable to break in the number of symme-
tries. Finally, we argue that parameterized complexity can be
used to derive results about the approximability of constraint
propagation.

Introduction

One of the jewels of constraint programming is the notion of
a global constraint (Régin 1994; 1996; Bessiere and Régin
1997; Régin and Rueher 2000; Beldiceanu and Contegean
1994; Frisch et al. 2002). Global constraints specify pat-
terns that occur in many real-world problems, and come with
efficient and effective propagation algorithms for pruning
the search space. For instance, we often have sets of vari-
ables which must take different values (e.g. activities in a
scheduling problem requiring the same resource must all be
assigned different times). Most constraint solvers therefore
provide a global ALLDIFFERENT constraint which is prop-
agated efficiently and effectively (Régin 1994). Unfortu-
nately many common and useful global constraints proposed
by researchers in the past have turned out to be intractable to
propagate completely (e.g. (Quimper 2003; Bessiere et al.
2004; Bessière et al. 2005; 2006b; Samer and Szeider 2008;
Artiouchine, Baptiste, and Durr 2008)). In this paper, we
argue that we can understand more about the source of this
intractability by using tools from parameterized complexity.

∗Brahim Hnich is supported by the Scientific and Technolog-
ical Research Council of Turkey (TUBITAK) under Grant No.
SOBAG-108K027. Toby Walsh is funded by the Australian Gov-
ernment’s Department of Broadband, Communications and the
Digital Economy and the Australian Research Council.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The insights gained from this analysis may lead to better
search methods as well as new propagation algorithms.

Formal background
A constraint satisfaction problem (CSP) consists of a set of
variables, each with a finite domain of values, and a set of
constraints specifying allowed combinations of values for
some subset of variables. We presume any constraint can
be checked in polynomial time. We use capital letters for
variables (e.g. X , Y), and lower case for values (e.g. d and
di). We consider both finite domain and set variables. A
variable X takes one value from a finite domain of possi-
ble values dom(X). A set variable S takes a set of values
from a domain of possible sets. We view set variables as a
vector of 0/1 finite domain variables representing the char-
acteristic function of the set. This representation is equiva-
lent to that of maintaining upper bound (ub(S)) and lower
bound (lb(S)) on the potential and definite elements in the
set. However, it permits us to simplify our analysis.

Constraint solvers typically use backtracking search to ex-
plore the space of partial assignments. After each assign-
ment, constraint propagation algorithms prune the search
space by enforcing local consistency properties like domain
or bound consistency. A constraint is domain consistent
(DC) iff when a variable is assigned any of the values in its
domain, there exist compatible values in the domains of all
the other variables of the constraint. Such values are called
a support. A CSP is domain consistent iff every constraint
is domain consistent. A constraint is bound consistent (BC)
iff when a variable is assigned the minimum (or maximum)
value in its domain, there exist compatible values between
the minimum and maximum domain value for all the other
variables. Such values are called a bound support. A CSP
is bound consistent iff every constraint is bound consistent.
A global constraint is one in which the number of variables
is not fixed. For instance, the NVALUE([X1, . . . , Xn], N)
constraint ensures that n variables, X1 to Xn, take N dif-
ferent values (Pachet and Roy 1999). The ALLDIFFERENT

constraint (Régin 1994) is a special case of the NVALUE

constraint in which N = n.

Parameterized complexity
Recently, Bessiere et al. have shown that a number of com-
mon global constraints are intractable to propagate (Bessière

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

235

et al. 2006b). For instance, whilst enforcing bound consis-
tency on the NVALUE constraint is polynomial, domain con-
sistency is NP-hard. We show here that the tools of param-
eterized complexity can provide a more fine-grained view
of such complexity results. These complexity tools help us
to identify more precisely what makes a global constraint
(in)tractable. The insights gained may guide search – for
example, we shall see that they can identify small backdoors
on which to branch – as well as suggesting new propagation
algorithms.

We introduce the necessary tools from parameterized
complexity theory. A problem is fixed-parameter tractable
(FPT) if it can be solved in O(f(k)nc) time where f is any
computable function, k is some parameter, c is a constant,
and n is the size of the input. For example, vertex cover
(“Given a graph with n vertices, is there a subset of vertices
of size k or less that cover each edge in the graph”) is NP-
hard in general, but fixed-parameter tractable with respect to
k since it can be solved in O(1.31951kk2+kn) time. Hence,
provided k is small, vertex cover can be solved effectively.

Downey et al. argue (Downey, Fellows, and Stege
1999) that about half the naturally parameterized NP-hard
problems in (Garey and Johnson 1979) are fixed-parameter
tractable including 3 out of the 6 basic problems. Above
FPT , Downey and Fellows have proposed a hierarchy of
fixed-parameter intractable problem classes:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ XP

For instance, the clique problem is W [1]-complete with re-
spect to the size of the clique, whilst the dominating set
problem is W [2]-complete with respect to the size of the
dominating set. W [t] is characterized by the maximum num-
ber t of unbounded fan-in gates on the input-output path of
a Boolean circuit specifying the problem. There is consid-
erable evidence to suggest that W [1]-hardness implies para-
metric intractability. In particular, the halting problem for
non-deterministic Turing machines is W [1]-complete with
respect to the length of the accepting computation.

An example

Parameterized complexity gives us a more fine-grained view
of the complexity of propagating global constraints. Con-
sider again the NVALUE constraint. Whilst enforcing do-
main consistency on the NVALUE constraint is NP-hard in
general, it is fixed-parameter tractable to enforce in the total
number of values in the domains. In hindsight, it is perhaps
obvious that propagating NVALUE is easy when the num-
ber of values is fixed. However, many different propagation
algorithms for NVALUE have been proposed, and none of
them prune all possible values and are polynomial when the
number of values is fixed.

Theorem 1 Enforcing domain consistency on
NVALUE([X1, . . . , Xn], N) is fixed-parameter tractable in
k = |

⋃
i∈1..n dom(Xi)|.

Proof: We give an automaton for accepting solutions to this
constraint that scans through X1 to Xn and then N . The
states of this automaton are all the possible sets of values
that can be used by the Xi, plus one accepting state F . As

there are k possible values in the domains of the Xi, there
are O(2k) states. The transition on seeing Xi from state q
goes to state q ∪ {Xi}. Finally, we only accept a transition
on seeing N from state q if |q| = N . Quimper and Walsh
have shown that we can efficiently enforce domain consis-
tency wrt the assignments accepted by such an automaton in
O(2knd) time where d = max({|dom(Xi)|}i∈1..n) using a
simple decomposition (Quimper and Walsh 2007). 2

Thus, if the total number of values in the domains is small,
NVALUE is tractable to propagate completely since propa-
gation takes polynomial time in the number of variables. For
such complexity results to be useful, the identified parameter
needs to be “natural” and potentially small. It helps also if
the parameter is easy to compute. We can then build a prop-
agator which only decides to propagate the constraint com-
pletely when it is cheap to do so. As we shall see, several
global constraints are fixed-parameter tractable with respect
to the total number of values in the domains. This param-
eter is easy to compute, and is often small in practice. For
instance, many radio frequency link assignment problems
only require half a dozen values. We shall also see that dy-
namic programming is often a means (as here) to show that
a global constraint is fixed-parameter tractable.

Other parameters can help identify features that make a
global constraint intractable. For instance, domain consis-
tency on the NVALUE constraint is intractable to enforce
when the fixed parameter is the maximum number of val-
ues that can be used by the Xi.

Theorem 2 Enforcing domain consistency on
NVALUE([X1, . . . , Xn], N) is W [2]-hard in k =
max(dom(N)).

Proof: Hitting set is W [2]-complete in the size of the hitting
set. Given a collection of sets {S1, . . . , Sn} and an integer
k, consider the set of variables {X1, . . . , Xn, N} such that
dom(N) = {0..k} and ∀i ∈ 1..n, dom(Xi) = Si. It is
easy to see that a solution of NVALUE([X1, . . . , Xn], N)
corresponds to a hitting set of cardinality k or less. Thus,
we can reduce hitting set to NVALUE immediately. 2

Hence, we see that the complexity of propagating the
NVALUE constraint comes from the potentially large num-
ber of values in the domains of the Xi.

Backdoors

As we shall see in the next section, dynamic programming is
a frequent way to obtain fixed-parameter tractability results
for constraint propagators. Another method is to identify a
decomposition of the global constraint in which there is a
strong backdoor containing a bounded number of variables.
This backdoor is often a cycle cutset into an acyclic (and
thus polynomial) subproblem. A strong backdoor is a subset
of variables which give a polynomial subproblem however
they are instantiated (Williams, Gomes, and Selman 2003).
A cycle cutset is a subset of variables which break all cycles
in the problem (Dechter and Pearl 1987). Once the cycle cut-
set is instantiated, the problem can be solved in a backtrack
free manner using a domain consistency algorithm.

Consider the global constraint,
DISJOINT([X1, . . . , Xn], [Y1, . . . , Ym]) (Beldiceanu 2000).

236

This ensures that Xi 6= Yj for any i and j. Such a global
constraint is useful in scheduling and time-tabling problems.
Enforcing domain consistency on DISJOINT is NP-hard
(Bessiere et al. 2006a). However, it is fixed-parameter
tractable in the total number of values in the domains. To
show this, we give a simple decomposition which has a
strong backdoor of bounded size that is a cycle cutset. In
fact, we give a slightly stronger result. Enforcing domain
consistency on DISJOINT is fixed-parameter tractable in
the size of the intersection of the domains of Xi and Yj .
Clearly if the total number of values is bounded then the
intersection is too.

Theorem 3 Enforcing domain consistency on
DISJOINT([X1, . . . , Xn], [Y1, . . . , Ym]) is fixed-parameter
tractable in k = |

⋃
i∈1..n dom(Xi) ∩

⋃
j∈1..m dom(Yj)|.

Proof: Without loss of generality, we assume n ≥ m.
Consider a set variable S and the decomposition: Xi ∈ S
and Yj 6∈ S. Recall that a set variable can be viewed
as a vector of 0/1 variables representing the characteris-
tic function. Let Sv = 1 iff v ∈ S. Then, the set
{Sv | v ∈

⋃
i∈1..n dom(Xi)∩

⋃
j∈1..m dom(Yj)} is a strong

backdoor because once these variables are set, the Xi and Yj

are disconnected and domain consistency on the decompo-
sition prunes the same values as on the original constraint.
Detecting the supports can therefore be done in O(nd) time
where d = max({|dom(Xi)|}i∈1..n ∪ {|dom(Yj)|}j∈1..m).
Since there are at most O(2k) possible instantiations for
the strong backdoor, enforcing domain consistency on the
DISJOINT constraint can be achieved by calling O(2k) times
domain consistency on the decomposition and taking the
union of the 2k domain consistent domains obtained. This
takes O(2knd) time. 2

Other examples

We give some other examples of global constraints which
are fixed-parameter tractable to propagate.

Uses

The global constraint USES([X1, . . . , Xn], [Y1, . . . , Ym])
holds iff {Xi |1 ≤ i ≤ n} ⊆ {Yj | 1 ≤ j ≤ m}. That
is, the Xi use only values used by the Yj . Enforcing domain
consistency on such a constraint is NP-hard (Bessière et al.
2005). However, it is fixed-parameter tractable to propa-
gate in the total number of values in the domain of Yj . We
let k = |

⋃
j∈1..m dom(Yj)|. We give an automaton for ac-

cepting solutions to the USES constraint that scans through
Y1 to Ym and then X1 to Xn. The states of this automa-
ton are all the possible sets of values that can be used by
Yj . As there are k possible values in the domains of the

Yj , there are O(2k) possible states. The transition on see-
ing Yj from state q goes to q ∪ {Yj}. We also only ac-
cept a transition on seeing Xi from a state q if Xi ∈ q.
This transition goes to state q itself. We can therefore en-
force domain consistency using the simple decomposition in
(Quimper and Walsh 2007) in O(2k(n + m)d) time where
d = max({|dom(Xi)|}i∈1..n ∪ {|dom(Yj)|}j∈1..m).

Among

The AMONG constraint was introduced in CHIP to
model resource allocation problems like car sequenc-
ing (Beldiceanu and Contegean 1994). It counts the
number of variables using values from a given set.
AMONG([X1, . . . , Xn], [d1, . . . , dm], N) holds iff N =
|{i | Xi = dj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}|. We
here consider a generalisation of AMONG where instead
of the fixed values dj we have a set variable S. That is,
AMONG([X1, . . . , Xn], S,N) holds iff N = |{i | Xi ∈
S, 1 ≤ i ≤ n}|. Enforcing domain consistency on this
extended version of AMONG is NP-hard (Bessiere et al.
2006a). However, it is fixed-parameter tractable to prop-
agate in k = |ub(S) \ lb(S)|. AMONG can be decom-
posed into (Xi ∈ S) ↔ (Bi = 1),∀i ∈ 1..n, and∑

i∈1..n Bi = N , where Bi are additional Boolean vari-
ables. (Note that the sum constraint is polynomial to propa-
gate when it sums Boolean variables.) S is a cycle cutset of
the decomposition. Thus, once S is set, domain consistency
on the decomposition is equivalent to domain consistency
on the original AMONG constraint. Since there are at most
O(2k) possible instantiations for S, enforcing domain con-
sistency on the AMONG constraint can be achieved by call-
ing O(2k) times domain consistency on the decomposition
and making the union of the 2k domain consistent domains
obtained. This takes O(2knd) time.

Roots

Many counting and occurrence constraints can be specified
using the global ROOTS constraint (Bessière et al. 2005).
ROOTS([X1, . . . , Xn], S, T) holds iff S = {i | Xi ∈ T}.
As before, we consider S and T as shorthand for the vec-
tor of 0/1 variables representing the associated characteristic
function. ROOTS can specify a wide range of other global
constraints including the AMONG, ATMOST, ATLEAST,
USES, DOMAIN and CONTIGUITY constraints. Enforcing
domain consistency on ROOTS is NP-hard (Bessière et al.
2006c). However, it is fixed-parameter tractable to propa-
gate in k = |ub(T) \ lb(T)|. ROOTS can be decomposed
into (i ∈ S) ↔ (Xi ∈ T),∀i ∈ 1..n. T is a cycle cutset of
the decomposition. Thus, once T is set, domain consistency
on the decomposition is equivalent to domain consistency
on the original ROOTS constraint. Since there are at most
O(2k) possible instantiations for T , enforcing domain con-
sistency on the ROOTS constraint can be achieved by calling
O(2k) times domain consistency on the decomposition and
making the union of the 2k domain consistent domains ob-
tained. This takes O(2knd) time.

Bound consistency

Often bound consistency on a global constraint is tractable
but domain consistency is NP-hard to enforce. For in-
stance, as we observed before, bound consistency on the
NVALUE constraint is polynomial, but domain consis-
tency is NP-hard (Bessière et al. 2006b). As a sec-
ond example, bound consistency on the INTERDISTANCE

constraint is polynomial, but domain consistency is NP-
hard (Régin 1997; Artiouchine, Baptiste, and Durr 2008).

237

INTERDISTANCE([X1, . . . , Xn], p) holds iff |Xi − Xj | ≥
p for i 6= j. This global constraint is useful
in scheduling problems like runway sequencing. As
a third example, the extended global cardinality con-
straint, EGCC([X1, . . . , Xn], [O1, . . . , Om]) ensures Oj =
|{i | Xi = j}| for all j. Enforcing bound consistency on
the Oj and domain consistency on the Xi is polynomial,
but enforcing domain consistency on all variables is NP-hard
(Quimper 2003). As a fourth and final example, bound con-
sistency on a linear equation with coefficients set to one is
polynomial, but domain consistency is NP-hard.

We can give a general fixed-parameter tractability result
for such global constraints. The parameter is the sum of
the number of non-interval domains and of the maximum
number of “holes” in a domain. This measures how close
the domains are to intervals. If there are many holes in the
domains, then we are far from intervals and the problem is
intractable. We define #intervals(S) = |{v ∈ S | v + 1 6∈
S}|. If S contains no holes then #intervals(S) = 1. If S
contains p holes, then #intervals(S) = p + 1.

Theorem 4 Suppose enforcing bound consistency on a
global constraint over X1 to Xn is polynomial. Then en-
forcing domain consistency is fixed-parameter tractable in
k = p + q where p = max({#intervals(dom(Xi)}i∈1..n)
and q is the number of non-interval variables.

Proof: We give a decomposition with a strong backdoor.
Consider Xi. Suppose the jth interval in dom(Xi) runs
from lj to uj (that is, lj −1 6∈ dom(Xi), uj +1 6∈ dom(Xi),
and [lj , uj] ⊆ dom(Xi)). We introduce a variable Zi. When
Zi = j, Xi will be restricted to the jth interval. To en-
sure this, we post (Zi = j) ↔ (lj ≤ Xi ≤ uj). By
definition of bound consistency, when domains are all in-
tervals, a constraint is bound consistent iff it contains at
least a satisfying tuple. Thus, the Zi are a strong backdoor
into a subproblem which bound consistency can solve be-
cause when all Zi are set, all Xi become intervals. Check-
ing if a value v for Xi is domain consistent on the global
constraint is done by instantiating Xi to v (which is an
interval), and by trying all the possible instantiations of
the backdoor, except Zi, until bound consistency does not
fail. This means that a support contains Xi = v. The
total cost is bounded by nd ·

∏
i #intervals(dom(Xi))

times the cost of bound consistency on this constraint, with∏
i #intervals(dom(Xi)) ≤ pq. 2

Meta-constraints

Parameterized complexity also provides insight into prop-
agators for meta-constraints. A meta-constraint is a
constraint that applies other constraints. For instance,
given a constraint C of arity p, the meta-constraint
CARDPATH(N, [X1, . . . , Xn], C) holds iff N of the con-
straints, C(X1, . . . , Xp) to C(Xn−p+1, . . . , Xn) hold
(Beldiceanu and Carlsson 2001). This permits us to specify,
say, that we want at least 2 days “off” in every 7 along a se-
quence of shifts. CARDPATH can encode a range of Boolean
connectives since N ≥ 1 gives disjunction, N = 1 gives
exclusive or, and N = 0 gives negation. It therefore has

numerous applications in domains including car-sequencing
and rostering.

Enforcing domain consistency on CARDPATH is NP-hard
even when enforcing domain consistency on each C is poly-
nomial (Bessière et al. 2007). However, domain consistency
is fixed-parameter tractable to enforce with respect to the
sum of the arity of C and the maximum domain size.

Theorem 5 Enforcing domain consistency on
CARDPATH(N, [X1, . . . , Xn], C) is fixed-parameter
tractable in k = p + d where p is the arity of C and
d = max({|dom(Xi)|}i∈1..n).

Proof: We give an automaton for accepting solutions to this
constraint that scans through X1 to Xn and then read N .
The states of this automaton are the possible sequences of
values of length smaller than p − 1 labelled by the value 0,
plus n + 1 copies of the sequences of values of length p− 1
labelled with the integers from 0 to n, and a final accepting
state F . The integer labels count the number of times C has
been satisfied so far. For l < p, the transition on reading
vl from the state [v1, . . . , vl−1] (labelled 0) goes to the state
[v1, . . . , vl−1, vl] with label 0. The transition on reading vp

from the state [v1, . . . , vp−1] with label r goes to the state
[v2, . . . , vp] with label r′, where r′ = r +1 if C(v1, . . . , vp)
is satisfied and r′ = r otherwise. Finally, there is a tran-
sition reading character r from any state labelled with r to
the final state F . The state F is the unique final state and
the initial state is the empty sequence ǫ (labelled 0). There
are O(ndp−1) distinct states. We can therefore enforce do-
main consistency using the simple decomposition in (Quim-
per and Walsh 2007) in O(dpn2) time. 2

This is another example of a fixed-parameter tractability
result with respect to two parameters, p and d. However,
CARDPATH is not fixed-parameter tractable with respect to
d. In fact it is NP-hard when d is fixed.

Theorem 6 Enforcing domain consistency on
CARDPATH(N, [X1, . . . , Xn], C) is NP-hard even if
|dom(Xi)| ≤ 2 ∀i ∈ 1..n.

Proof: The reduction used in the proof of NP-hardness of
CARDPATH in Theorem 12 (Bessière et al. 2007) uses just
1 or 2 domain values for each variable. 2

Symmetry breaking

Parameterized complexity also provides insight into sym-
metry breaking. Symmetry is a common feature of many
real-world problems that dramatically increases the size of
the search space if it is not taken into consideration. Con-
sider, for instance, value symmetry. A value symmetry is
a bijection σ on values that preserves solutions. That is, if
Xi = ai for 1 ≤ i ≤ n is a solution then Xi = σ(ai)
is also. For example, if two values are interchangeable,
then any possible permutation of these values is a sym-
metry. A simple and effective mechanism to deal with
symmetry is to add constraints to eliminate symmetric so-
lutions (Puget 1993; Crawford et al. 1996). For exam-
ple, given a set of value symmetries Σ, we can eliminate
all symmetric solutions by posting the global constraint

238

VALSYMBREAK(Σ, [X1, . . . , Xn]). This ensures that, for
each σ ∈ Σ:

〈X1, . . . , Xn〉 ≤lex 〈σ(X1), . . . , σ(Xn)〉

Enforcing domain consistency on such a global symmetry
breaking constraint is NP-hard (Walsh 2007). However, this
complexity depends on the number of symmetries. Breaking
all value symmetry is fixed-parameter tractable in the num-
ber of symmetries.

Theorem 7 Enforcing domain consistency on
VALSYMBREAK(Σ, [X1, . . . , Xn]) is fixed-parameter
tractable in k = |Σ|.

Proof: We give an automaton for accepting solutions to
this constraint that scans through X1 to Xn. The states
of the automaton are the set of value symmetries which
have been broken up to this point in the vector. For in-
stance, at the ith state, σ is a symmetry in the state iff
〈X1, . . . , Xi〉 <lex 〈σ(X1), . . . , σ(Xi)〉. If we are in the
state q, we accept Xi if Xi ≤ σ(Xi) or (Xi > σ(Xi)
and σ ∈ q). ¿From the state q, on seeing Xi, we move
to q ∪ {σ | σ ∈ Σ, Xi < σ(Xi)}. There are O(2k) possible
states. We can enforce domain consistency using the simple
decomposition in (Quimper and Walsh 2007) in O(2knd)
time where d = max({|dom(Xi)|}i∈1..n). 2

Approximate consistency

Parameterized complexity also provides insight into the
approximability of constraint propagation. For optimization
problems, global constraints can incorporate a variable
taking the objective value. We can use approximation
algorithms to filter partially such global constraints (Sell-
mann 2003). For example, consider the knapsack constraint,
KNAPSACK([X1, . . . , Xn], [w1, . . . , wn], C, [p1, . . . , pn], P)
which holds iff:

n∑

i=1

wiXi ≤ C and

n∑

i=1

piXi > P

C is the capacity and P is the profit. Based on a fully
polynomial time approximation scheme, Sellmann gives a
dynamic programming propagator for filtering the domains
which guarantees an approximate consistency that filter val-
ues which only have supports that are a factor ǫ outside
the optimal profit. A fully polynomial time approximation
scheme (FPTAS) is an algorithm that computes an answer
with relative error ǫ in time polynomial in the input length
and in 1/ǫ. A weaker notion is an efficient polynomial time
approximation scheme (efficient PTAS) which is an algo-
rithm that computes an answer with relative error ǫ in time
polynomial in the input length and in some function of ǫ.

We can use parameterized complexity results to show that
such approximate consistency is intractable to achieve. In
particular, we can exploit a theorem first proved by Bazgan
that if a problem has an efficient PTAS then it is in FPT
(Downey, Fellows, and Stege 1999). Consider again the con-
straint NVALUE([X1, . . . , Xn], N). We might ask if we can
approximately filter domains.

Theorem 8 There is no polynomial algorithm for enforcing
approximate consistency on NVALUE([X1, . . . , Xn], N)
unless FPT = W [2].

Proof: By Theorem 2, enforcing domain consistency
on NVALUE([X1, . . . , Xn], N) is W [2]-hard in k =
max(dom(N)). By Bazgan’s theorem, we cannot have an
efficient PTAS (and thus FPTAS) for this problem unless
FPT = W [2]. 2

Other related work

In addition to the related work already mentioned, there
are a number of other related studies. The analysis of
(in)tractability has a long history in constraint programming.
Such work has tended to focus on the structure of the con-
straint graph (e.g. (Freuder 1982; Dechter and Pearl 1989))
or on the semantics of the constraints (e.g. (Cooper, Cohen,
and Jeavons 1994)). However, these lines of research are
concerned with a constraint satisfaction problem as a whole,
and do not say much about global constraints.

For global constraints of bounded arity, asymptotic anal-
ysis has been used to study propagation both in general and
for constraints with a particular semantics. For example, the
GAC-Schema algorithm of (Bessiere and Régin 1997) has
an O(dn) time complexity on constraints of arity n and do-
mains of size d, whilst the GAC algorithm of (Régin 1994)

for the n-ary ALLDIFFERENT constraint has O(n
3

2 d) time
complexity. For global constraints like the CUMULATIVE

and CYCLE constraints, there are very immediate reductions
from bin packing and Hamiltonian circuit which demon-
strate that these constraints are intractable to propagate in
general. Bessiere et al. showed that many other global
constraints like NVALUE are also intractable to propagate
(Bessiere et al. 2004). More recently, Samer and Szei-
der have studied the parameterized complexity of the EGCC

constraint (Samer and Szeider 2008). They show it is fixed-
parameter tractable to enforce domain consistency in the
tree-width of the value graph and the largest possible num-
ber of occurrences, but is W [1]-hard in just the tree-width.
Note that tree-width itself is NP-hard to compute.

Conclusions

We have argued that parameterized complexity is a useful
tool with which to study global constraints. In particular,
we have shown that many global constraints like NVALUE,
DISJOINT, and ROOTS, which are intractable to propagate
completely have natural parameters which make them fixed-
parameter tractable. This tractability tends either to be the
result of a simple dynamic program or of a decomposition
which has a strong backdoor of bounded size. This strong
backdoor is often a cycle cutset. We also showed that pa-
rameterized complexity can be used to study other aspects
of constraint programming like symmetry breaking. For in-
stance, we proved that value symmetry is fixed-parameter
tractable to break in the number of symmetries. Finally, we
argued that parameterized complexity can be used to derive
results about the approximability of constraint propagation.
For example, we cannot enforce an approximate consistency
within a guaranteed factor for the NVALUE constraint.

239

The insights provided by this work can help design new
search methods. For example, NVALUE, DISJOINT, USES,
AMONG and ROOTS all have efficient propagators when the
total number of value is small with respect to the number of
variables. We might therefore build a propagator that prop-
agates partially using a decomposition if the total number
of values is large, and calls a complete method otherwise.
We might also exploit their decompositions by branching on
the backdoor variables. Finally, when we have an efficient
bound consistency propagator, it may be worthwhile “elimi-
nating” holes in the domains by branching on those variables
whose domains have holes, or by introducing variables to
represent the intervals without holes and branching on these
introduced variables. In the longer term, we hope to apply
other ideas about tractability from parameterized complexity
like reduction to a problem kernel.

References

Artiouchine, K.; Baptiste, P.; and Durr, C. 2008. Run-
way sequencing with holding patterns. European Journal
of OR. In press.

Beldiceanu, N., and Carlsson, M. 2001. Revisiting the
cardinality operator and introducing cardinality-path con-
straint family. In Proc. of the Int. Conf. on Logic Program-
ming (ICLP 2001).

Beldiceanu, N., and Contegean, E. 1994. Introducing
global constraints in CHIP. Mathematical Computer Mod-
elling 20(12):97–123.

Beldiceanu, N. 2000. Global constraints as graph prop-
erties on a structured network of elementary constraints of
the same type. SICS Technical Report T2000/01.

Bessiere, C., and Régin, J. 1997. Arc consistency for gen-
eral constraint networks: Preliminary results. In Proc. of
the 15th IJCAI.

Bessiere, C.; Hebrard, E.; Hnich, B.; and Walsh, T. 2004.
The complexity of global constraints. In Proc. of the 19th
National Conf. on AI. AAAI.

Bessière, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2005. The range and roots constraints: Spec-
ifying counting and occurrence problems. In Proc. of 19th
IJCAI, 60–65.

Bessiere, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2006a. Among, common and disjoint con-
straints. In Recent Advances in Constraints: Joint
ERCIM/CoLogNET Int. Workshop on Constraint Solving
and Constraint Logic Programming.

Bessière, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2006b. Filtering algorithms for the NVALUE
constraint. Constraints 11(4):271–293.

Bessière, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2006c. The ROOTS constraint. In Proc. of
12th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2006).

Bessière, C.; Hebrard, E.; Hnich, B.; and Walsh, T.
2007. The complexity of global constraints. Constraints
12(2):239–259.

Cooper, M.; Cohen, D.; and Jeavons, P. 1994. Character-

izing tractable constraints. Artificial Intelligence 65:347–
361.

Crawford, J.; Luks, G.; Ginsberg, M.; and Roy, A. 1996.
Symmetry breaking predicates for search problems. In
Proc. of the 5th Int. Conf. on Knowledge Representation
and Reasoning, (KR ’96).

Dechter, R., and Pearl, J. 1987. Network-based heuristics
for constraint-satisfaction problems. Artificial Intelligence
34(1):1–38.

Dechter, R., and Pearl, J. 1989. Tree clustering for con-
straint networks. Artificial Intelligence 38:353–366.

Downey, R. G.; Fellows, M. R.; and Stege, U. 1999. Pa-
rameterized complexity: A framework for systematically
confronting computational intractability. In Contemporary
Trends in Discrete Mathematics: From DIMACS and DI-
MATIA to the Future. 49–99.

Freuder, E. 1982. A sufficient condition for backtrack-free
search. Journal of the ACM 29(1):24–32.

Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and Walsh,
T. 2002. Global constraints for lexicographic orderings.
In Proc. of 8th Int. Conf. on Principles and Practices of
Constraint Programming (CP-2002).

Garey, M., and Johnson, D. 1979. Computers and in-
tractability. W.H. Freeman.

Pachet, F., and Roy, P. 1999. Automatic generation of
music programs. In Proc. of 5th Int. Conf. on Principles
and Practice of Constraint Programming (CP99).

Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In Proc. of ISMIS’93.

Quimper, C.-G., and Walsh, T. 2007. Decomposing global
grammar constraints. In 13th Int. Conf. on Principles and
Practices of Constraint Programming (CP-2007).

Quimper, C. 2003. Enforcing domain consistency on the
extended global cardinality constraint is NP-hard. Techni-
cal Report CS-2003-39, University of Waterloo.

Régin, J.-C., and Rueher, M. 2000. A global constraint
combining a sum constraint and difference constraints. In
Proc. of 6th Int. Conf. on Principles and Practice of Con-
straint Programming (CP2000).

Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In Proc. of the 12th National Conf. on
AI. AAAI.

Régin, J.-C. 1996. Generalized arc consistency for global
cardinality constraints. In Proc. of the 13th National Conf.
on AI. AAAI.

Régin, J.-C. 1997. The global minimum distance con-
straint. Technical report, ILOG Inc.

Samer, M., and Szeider, S. 2008. Tractable cases of the
extended global cardinality constraint. In Proc. of CATS
2008, Computing: The Australasian Theory Symposium.

Sellmann, M. 2003. Approximated consistency for knap-
sack constraints. In Proc. of 9th Int. Conf. on Principles
and Practice of Constraint Programming (CP2003).

Walsh, T. 2007. Breaking value symmetry. In Proc. of
13th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2007).

Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity. In Proc. of the 18th IJCAI.

240

