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Abstract

Optimizing a combination of local cost functions on dis-
crete variables is a central problem in many formalisms
such as in probabilistic networks, maximum satisfiabil-
ity, weighted CSP or factor graphs. Recent results have
shown that maintaining a form of local consistency in
a Branch and Bound search provides bounds that are
strong enough to solve many practical instances.
In this paper, we introduce Virtual Arc Consistency
(VAC) which iteratively identifies and applies se-
quences of cost propagation over rational costs that are
guaranteed to transform a WCSP in another WCSP with
an improved constant cost. Although not as strong as
Optimal Soft Arc Consistency, VAC is faster and power-
ful enough to solve submodular problems. Maintaining
VAC inside branch and bound leads to important im-
provements in efficiency on large difficult problems and
allowed us to close two famous frequency assignment
problem instances.

Introduction
Graphical model processing is a central problem in AI.
The optimization of the combined cost of local cost func-
tions, central in the valued CSP framework (Schiex, Fargier,
& Verfaillie 1995), captures problems such as weighted
MaxSAT, Weighted CSP or Maximum Probability Explana-
tion in probabilistic networks. It has applications in resource
allocation, combinatorial auctions, bioinformatics. . .

Dynamic programming approaches such as bucket or
cluster tree elimination have been largely used to tackle such
problems but are inherently limited by their guaranteed ex-
ponential time and space behavior on graphical models with
high tree width. Instead, Branch and Bound allows to keep
a reasonable space complexity but requires good (strong and
cheap) lower bounds on the minimum cost to be efficient.

In the last years, increasingly better lower bounds have
been designed by enforcing local consistencies for WCSP.
Enforcing is done by the iterated application of Equiva-
lence Preserving Transformations (EPTs, (Cooper & Schiex
2004)) which extend the usual local consistency operations
used in pure CSP. A similar trend has followed in Max-
SAT where equivalence preserving “inference rules” are
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now used in all recent solvers (Heras, Larrosa, & Oliveras
2007). Such EPTs move integer weights between cost func-
tions of different arities and may be able to eventually in-
crease the cost function of empty scope (a constant) to a non
naive value. This value provides an obvious lower bound on
the minimum cost which can be maintained during search.

At the arc consistency level, the unrestricted chaotic ap-
plication of arc EPTs does not usually converge to a unique
fix-point (Schiex 2000) and may even not terminate. Differ-
ent heuristic restrictions that terminates have been therefore
introduced leading to different variants of soft arc consis-
tency such as AC*, DAC*, FDAC*, EDAC* (de Givry et al.
2005). . . The recent definition of Optimal Soft Arc Consis-
tency (OSAC (Cooper, de Givry, & Schiex 2007)) showed
that it is possible to precompute, in polynomial time, a set
of rational cost EPTs that maximizes the constant cost func-
tion obtained. This algorithm (based on linear program-
ming) provides strong lower bounds but seems too costly
to be maintained during tree-search.

In this paper, we introduce Virtual Arc Consistency which
uses an instrumented classical arc consistency algorithm to
produce sequences of rational cost EPTs that increase the
lower bound. Although not as powerful as OSAC, VAC is
often much faster and still capable of directly solving sub-
modular cost function networks. It is one of the key ingredi-
ent that allowed us to close two hard frequency assignment
problems which have remained open for more than 10 years.

Preliminaries
A weighted CSP (WCSP) is a quadruplet (X,D,W,m). X
and D are sets of n variables and domains, as in a standard
CSP. The domain of variable i is denoted Di. For a set of
variables S ⊂ X , we note `(S) the set of tuples over S. W is
a set of cost functions. Each cost function (or soft constraint)
wS in W is defined on a set of variables S called its scope
and assumed to be different for each cost function. A cost
function wS assigns costs to assignments of the variables in
S i.e.: wS : `(S) → [0,m]. The set of possible costs is
[0,m] and m ∈ {1, . . . ,+∞} represents an intolerable cost.
Costs are combined by the bounded addition ⊕, defined as
a ⊕ b = min{m, a + b} and compared using ≥. Observe
that the intolerable cost m may be either finite or infinite. A
cost b may also be subtracted from a larger cost a using the
operation	where a	b is (a−b) if a 6= m andm otherwise.
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For simplicity, we assume that every constraint has a dif-
ferent scope. For binary/unary cost functions, we use simpli-
fied notations: a binary cost function between variables i and
j is denoted wij . A unary cost function on variable i is de-
noted wi. We assume the existence of a unary cost function
wi for every variable, and a nullary (constant) cost function,
noted w∅. Ifm = 1, note that the WCSP is equivalent to the
CSP (cost 1 being associated to forbidden tuples). To make
clear that in this case, cost functions represent constraints,
they will be denoted as cS instead of wS .

The cost of a complete assignment t ∈ `(X) in a prob-
lem P = (X,D,W,m) is ValP (t) =

⊕
wS∈W wS(t[S])

where t[S] denotes the usual projection of a tuple on the set
of variables S. The problem of minimizing ValP (t) is an
optimization problem with an associated NP-complete deci-
sion problem.

Enforcing a given local consistency property on a prob-
lem P consists in transforming P = (X,D,W,m) in a
problem P ′ = (X,D,W ′,m) which is equivalent to P
(ValP = ValP ′ ) and which satisfies the considered local
consistency property. This enforcing may increase w∅ and
provide an improved lower bound on the optimal cost. En-
forcing is achieved using Equivalence Preserving Transfor-
mations (EPTs) moving costs between different scopes.

Algorithm 1 gives two elementary EPTs. Project() works
in the scope of one cost function wS . It moves an amount
of cost α from wS to a unary cost function wi, i ∈ S, for
a value a ∈ Di. If the cost α is negative, cost moves from
the unary cost function wi to the cost function wS : this is
called an extension. To avoid negative costs in P ′, one must
have −wi(a) ≤ α ≤ mint∈`(S),t[{i}]=a{wS(t)}. Similarly,
UnaryProject() works on a subproblem defined by one vari-
able i ∈ X . It moves a cost α from the unary cost func-
tion wi to the nullary cost function w∅ (with −w∅ ≤ α ≤
mina∈Di

{wi(a)} in order to keep costs positive).

Algorithm 1: The two EPTs Project and UnaryProject
Procedure Project(wS , i, a, α)
wi(a)← wi(a)⊕ α;
foreach (t ∈ `(S) such that t[{i}] = a) do
wS(t)← wS(t)	 α;

Procedure UnaryProject(i, α)
w∅ ← w∅ ⊕ α;
foreach (a ∈ Di) do wi(a)← wi(a)	 α;

All previous arc level local consistencies definitions (AC,
DAC, FDAC, EDAC) can be seen as well defined poly-
nomial time heuristics trying to get closer to a closure
maximizing w∅. Allowing for rational costs, it has been
shown that such an optimal closure can be found by Optimal
Soft Arc Consistency (OSAC, (Cooper, de Givry, & Schiex
2007)). This requires solving a large linear program and
has therefore been limited to preprocessing. We introduce
in the next section an alternative cheaper mechanism based
on classical AC which can be maintained during search.

Virtual Arc Consistency
Given a WCSP P = (X,D,W,m), we define Bool(P ) as
the CSP (X,D,W ) where cS ∈ W iff ∃wS ∈ W with
S 6= ∅ such that ∀t ∈ `(S) (t ∈ cS ⇔ wS(t) = 0).
Bool(P ) is a classical CSP whose solutions (if any) have
cost w∅ in P .

Definition 1 A WCSP P is Virtual Arc Consistent (VAC) if
the arc consistent closure of Bool(P ) is not empty.

If a WCSP P is not VAC, then Bool(P ) is inconsistent
and it is known that all solutions of P have a cost strictly
higher than w∅. More interestingly, by simulating the appli-
cation of classical AC on Bool(P ), one can built a sequence
of EPTs which are guaranteed to increase w∅. Consider
for example the problem in Figure 1(a). This problem is a
boolean binary WCSP also defined as a Max-SAT problem
with clauses x̄;x ∨ ȳ;x ∨ z; y ∨ z̄. It is EDAC. Note that
Bool(P ) is represented by the same figure if one assumes
that m = 1 (1 represents “forbidden”).

In a first phase, we enforce arc consistency on Bool(P ).
The result is depicted in Figure 1(b): since the value (x, t)
is forbidden, values (y, t) and (z, f) have no support on x
and can be deleted (marked with cost 1). For each deletion,
we remember the “source” of the deletion by a grey arrow
pointing to the variable that offered no support. Value (z, t)
can then be deleted thanks to the deletion of (y, t) and vari-
able z wipes-out. Since the WCSP has integer costs, we can
deduce a lower bound of 1 for the original problem P .

A second phase retraces the steps of the first phase, start-
ing from the wiped-out variable. Assume that an unknown
quantum of cost λ can be moved to w∅ from the variable z
that wiped-out. This would require costs of at least λ at each
value of variable z to project on w∅. Following the arrows,
we know these costs can be obtained by projection from the
cost functionswyz andwxz respectively. The costswyz(f, t)
and wxz(f, f) being non-zero in P , we will be able to take
the costs here and there is no need to trace them back fur-
ther. The other required costs must be obtained from wy
and wx and extended. A weight of λ has to be traced back
further via wxy to wx. This process halts when all the re-
quired weights are non-zero in the original problem P . We
are now able to count the number of requests for a cost of
λ on every non-zero cost. These counts are shown in italic
in Figure 1(c). Here the maximum number of requests is
reached on wx(t) with 2 requests. Since wx(t) = 1 in P ,
the maximum amount we can assign to λ is therefore 1

2 .
In a third phase, we apply all the traced-back arc EPTs in

reverse order to the original WCSP P with λ = 1
2 . The pro-

cess is illustrated in Figures 1(d) to 1(g) where extended and
projected costs are shown in bold. The result is an equiva-
lent WCSP with w∅ = 1

2 . Being equivalent to the original
P , this process can be repeated. Here, no wipe-out occurs in
the new Bool(P ), the problem is VAC. Because the original
problem has integer costs, we can infer a lower bound of 1.

The following theorem shows that if establishing arc con-
sistency in Bool(P ) produces an inconsistency, then it is al-
ways possible to increase w∅ by a sequence of soft arc con-
sistency operations (and conversely).
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Figure 1: A WCSP where VAC enforcing produces a better lower bound than EDAC.

Theorem 1 Let P be a WCSP. There exists a sequence of
arc EPTs which when applied to P leads to an increase in
w∅ iff the arc consistency closure of Bool(P ) is inconsistent.

Proof: ⇒: Let O1, . . . , Ot be a sequence of arc EPTs in
P which produces an equivalent WCSP with an increased
w∅. Let O′1, . . . , O

′
t be the corresponding arc EPTs with the

weight being projected or extended always equal to 1 and
assuming m = 1. Applying this sequence of operations to
Bool(P ) (a WCSP withm = 1) inevitably leads to a domain
wipe-out and hence inconsistency.
⇐: Let O1, . . . , Ot be a sequence of arc EPTs in Bool(P )

which leads to a domain wipe-out. We can assume without
loss of generality that no two of the operations Oi, Oj are
strictly identical, since the same arc EPTs never needs to
be applied twice in a classical CSP. Each Oi corresponds
to a Project or UnaryProject operation when Bool(P ) is
viewed as a WCSP withm = 1. LetO′i be the corresponding
soft EPT in P applied with a weight δ/ei, where δ is the
minimum non zero weight occurring in P . We divide by e =
|W | each time, since a weight may need to be divided into
smaller quantities to be extended to all constraints involving
the same variable (or projected to all variables in the same
constraint scope). After applying O′1, . . . , O

′
t to P we ne-

cessarily have an increase of w∅ larger than δ/et > 0. �
VAC is easily shown to be stronger than EAC and can

solve submodular problems, a non trivial polynomial lan-
guage of WCSP (Cohen et al. 2006). Assuming an arbitrary
ordering on every domain, a cost function wS is submodular
iff ∀t, t′ ∈ `(S), w(max(t, t′)) + w(min(t, t′)) ≤ w(t) +
w(t′) where max and min represent point-wise applications
of max (resp. min) on the values of t, t′. This class in-
cludes functions such as

√
x2 + y2 or (x ≥ y?(x−y)r : m)

with (r ≥ 1), useful in bioinformatics (Zytnicki, Gaspin, &
Schiex 2006) and capturing simple temporal CSP with linear
preferences (Khatib et al. 2001).

Theorem 2 Let P be a WCSP whose cost functions are all
submodular and which is VAC, then an optimal solution can
be found in polynomial time and has cost w∅.

Sketch of proof: in Bool(P ), the cost function submodu-
larity becomes c(t) ∧ c(t′) ⇒ c(max(t, t′)) ∧ c(min(t, t′))
which means that all the relations of Bool(P ) are both min
and max-closed. Given that the original WCSP is VAC,
Bool(P ) is arc consistent and max-closed and therefore
completely solved (Jeavons & Cooper 1995). A solution can

be found in polynomial time by taking maximum values. Its
cost in the original WCSP is w∅ and therefore optimal. �

Because Project and UnaryProject preserve submodular-
ity (Cooper 2008), enforcing VAC on a submodular problem
solves the problem. Since the domain order has no influ-
ence on VAC, it can solve arbitrarily permutated submodular
problems (Schlesinger 2007) without domain reordering.

Enforcing VAC
In this section we restrict ourselves to binary WCSP, but
VAC enforcing can be applied to problems of arbitrary ar-
ities using GAC instead of AC (the killer structures would
be a constraint scope in this case). As our previous example
shown, VAC enforcing is a three-phase process. The first
phase consists in applying an instrumented classical AC al-
gorithm on Bool(P ), denoted as Instrumented-AC and not
described here because of its simplicity. If no wipe-out oc-
curs, the problem is already VAC and 0 is returned. Oth-
erwise, it should return the wiped-out variable. The instru-
mentation should collect two types of information: for ev-
ery value (i, a) deleted by lack of support on a constraint
cij , the data structure killer(i, a) must contain the variable
j. Furthermore, the value (i, a) itself must be pushed in a
queue P . These two data structures have a space complexity
of O(ed) and O(nd) respectively which do not modify the
time and space complexity of optimal AC algorithms.

The second phase is described in Algorithm 2. It exploits
the queue P and the killer data structure to rewind the prop-
agation history and collect an inclusion-minimal subset of
value deletions that is sufficient to explain the domain wipe-
out observed. For this a boolean M(i, a) is set to true when-
ever the deletion of (i, a) is needed to explain the wipe-out.
This phase also computes the quantum of cost λ that we will
ultimately add to w∅. Using the previous killer structure, it
is always possible to trace back the cause of deletions until
a non zero cost is reached: this will be the source where the
cost of λmust be taken. However, in classical CSP, the same
forbidden pair or value may serve multiple times. In order
to compute the value of λ, we must know how many quanta
of costs are requested for each solicited source of cost in
the original WCSP, at the unary or binary level. For a tuple
(a pair or a value) tS of scope S, such that wS(tS) 6= 0,
we use an integer k(tS) to store the number of requests of
the quantum λ on wS(tS). Using the queue P guarantees
that the deleted values are explored in anti-causal order: a
deleted value is always explored before any of the deletions
that caused its deletion. Thus, when the cost request for a
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given tuple is computed, it is based on already computed
counts and it is correct. Ultimately, we will be able to com-
pute λ as the minimum of wS(tS)

k(tS) for all tS s.t. k(tS) 6= 0.
Initially, all k are equal to 0 except at the variable i0 that

has been wiped-out where one quantum is needed for each
value (line 1). A value (i, a) extracted from P (line 2) has
been deleted by lack of support on the variable killer(i, a) =
j. If cost is needed at (i, a) (line 3), this lack of support can
be due to the fact that:

1. the pair (a, b) is forbidden by cij in Bool(P ) which means
that wij(a, b) 6= 0 (line 5). The traceback can stop, the
number of quanta requested on pair (a, b) (line 6) and λ
(line 7) are updated accordingly.

2. otherwise, value (j, b) was deleted and k((i, a)) quanta
of costs are needed from it. Note that if different values
of i request different amounts of quanta from (j, b), just
the maximum amount is needed since one extension from
(i, a) to wij provides cost to all wij(a, b). To maintain
this maximum, we use another data structure, ki((j, b))
to store the number quanta requested by i on (j, b). We
therefore have k((i, a)) =

∑
kj((i, a)). Here, if the

new request is higher than the known request (line 8),
ki((j, b)) (line 9) and k((j, b)) (line 10) must be increased
accordingly. If there is no unary cost wj(b) explaining
the deletion, this means that (j, b) has been deleted by AC
enforcing and we need to traceback the deletion of (j, b)
inductively (line 11). Otherwise, the traceback can stop at
(j, b) and λ is updated (line 12).

The last phase is described in Algorithm 3 and actually
modifies the original WCSP by applying the sequence of
EPTs identified in the previous phase in the reverse order,
thanks to the queueR. As Theorem 1 shows, the new WCSP
will have an improved w∅.

Algorithm 2: VAC - Phase 2: Computing λ
Initialize all k, kj to 0, λ← m ;
i0 ← Instrumented-AC() ;
if (i0 = 0) then return;
foreach a ∈ Di0 do
k((i, a))← 1,M(i, a)← true;1
if (wi(a) 6= 0) then M(i, a)← false, λ← min(λ,wi(a)) ;

while (P 6= ∅) do
(i, a)← P.Pop() ;2
if (M(i, a)) then3
j ← killer(i, a); R.Push(i, a) ;
foreach b ∈ Dj do4

if (wij(a, b) 6= 0) then5
k((i, a), (j, b))← k((i, a), (j, b)) + k((i, a)) ;6

λ← min(λ,
wij(a,b)

k((i,a),(j,b))
) ;7

else if (k((i, a)) > ki((j, b))) then8
ki((j, b))← k((i, a)) ;9
k((j, b))← k((j, b)) + k((i, a))− ki((j, b)) ;10
if (wj(b) = 0) then M(j, b)← true ;11

else λ← min(λ,
wj(b)

k((j,b))
) ;12

Algorithm 3: VAC - Phase 3: Applying EPTs
while (R 6= ∅) do

(j, b)← R.Pop() ;
i← killer(j, b) ;
foreach a ∈ Di s.t. kj((i, a)) 6= 0 do

Project(wij , i, a,−λ× kj((i, a)));
kj((i, a))← 0 ;

Project(wij , j, b, λ× k((j, b))) ;
UnaryProject(i0, λ) ;

Because of the k((i, a), (j, b)) data structure, the algo-
rithm has aO(ed2) space complexity. It is possible to get rid
of these binary counters by observing that quanta requests on
wij(a, b) can come only from i or from j. k((i, a)) quanta
are requested by i if killer(i, a) = j and M(i, a) is true, and
symmetrically for (j, b). Thus, k((i, a), (j, b)) can be com-
puted in constant time from the killer, M and unary k data
structures. This yields a O(ed) space complexity.

One iteration of the algorithm has a time complexity of
O(ed2). This is true for the first phase as long as an opti-
mal AC algorithm is used since the instrumentation itself is
O(nd). The 2nd phase is O(nd2) since there are at most
nd values in P and the loop at line 4 takes O(d). Using the
O(ed) space trick, the same O(nd2) complexity applies to
the last phase. Because λmay become smaller and smaller at
each iteration, the number of iterations could be unbounded.
To implement VAC, we used a threshold ε. If more than a
given number of iterations never improvew∅ by more than ε
then VAC enforcing stops prematurely. This is called VACε.
The number of iterations is then O(mε ). When one iteration
does not increase the lower bound by more than ε, one bot-
tleneck (that fixed the value of λ) is identified and the unary
and binary costs associated to a related variable are ignored
in Bool(P ) at following iterations.

In order to rapidly collect large cost contributions, we re-
placed Bool(P ) by a relaxed but increasingly strict variant
Boolθ(P ). A tuple t is forbidden in Boolθ(P ) iff its cost in
P is larger than θ. After sorting the list of non zero binary
costswij(a, b) in a fixed number k of buckets, the decreasing
minimum cost observed in each bucket define a sequence of
thresholds (θ1, . . . , θk). Starting from θ1, iterations are per-
formed at a fixed threshold until no wipe-out occurs. Then
the next value θi+1 is used. After θk, a geometric schedule
defined by θi+1 = θi

2 is used and stopped when θi ≤ ε.

Experimental results
In this section we present experimental results of VACε on
randomly generated and real problems using toulbar21.
Our implementation uses fixed point representation of costs.
To achieve this, all initial costs in the problem are multiplied
by 1

ε assumed to be integer. To exploit the knowledge that
the original problem solved is integer, the branch and bound
pruning occurs as soon as dw∅×εe

ε ≥ ub where ub = m is
the global upper bound (best known solution cost).

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro.

256



The experiments were performed on a 3 GHz Intel Xeon
with 16 GB. Our solver includes a certain number of features
including a last conflict driven variable selection heuristic,
variable elimination during search and dichotomic branch-
ing. When VACε is used we have fixed its default setting
to ε = 1

10000 . It is also possible to maintain VACε dur-
ing search. Because of the overhead of each iteration of
VACε, which implies a reconstruction of Boolθ(P ), the con-
vergence of VACε is stopped prematurely during search, us-
ing a final θ larger than during preprocessing. This enforces
VAC only when it is capable of providing large improve-
ments in the lower bound. No initial upper bound is used on
the random instances.

Randomly generated instances The first set of instances
are random Max-CSP. We used the problems generated
in (Cooper, de Givry, & Schiex 2007). These are Sparse
Tight, Dense Tight, Complete Tight (ST, DT, CT with 32
variables, 10 values, 50 instances per class) where VACε and
OSAC preprocessing yield non trivial lower bounds. The
following table shows the time and the quality of the lower
bound (lb) after preprocessing by EDAC, VACε and OSAC:

ST DT CT
lb time lb time lb time

EDAC 16 <.01s 18 <.01s 40 <.01s
VACε 25 .06s 28 .09s 49 .25s

pr
ep

ro
ce

ss
in

g

OSAC 27 10.5s 32 2.1s 74 631s

As expected OSAC always provides the strongest lb.
VACε computes a lb which is 8% (ST) to 33% (DT) weaker
than OSAC and is one to two orders of magnitude faster.

To evaluate the efficiency of VACε on submodular prob-
lems, we generated random permutated submodular prob-
lems. At the unary level, every value receives a 0/1 cost
with identical probability. Binary submodular constraints
can be decomposed in a sum of so-called generalized in-
terval functions (Cohen et al. 2004). Such a GI function is
defined by a fixed cost (we used 1) and one value a (resp. b)
in each involved variable. We summed together d such GI
functions using random values a and b uniformly sampled
from the domains to generate each submodular binary cost
function. The domains of all variables were then randomly
permutated to “hide” submodularity.

The following table shows that maintaining VACε allows
to rapidly outperforms EDAC on these problems. Problems
have from 100 to 150 variables, 20 values, from 900 to 1450
constraints, and 10 instances per class. The CPU time used
for solving these problems, including the proof of optimal-
ity, is reported below (a dash for > 104 seconds):

n vars: 100 110 120 130 140 150
EDAC 17 85 135 433 1363 -
VACε 0.31 0.34 0.37 0.36 0.77 1.17

Radio Link Frequency Assignment Problem (RL-
FAP) (Cabon et al. 1999) consists in assigning frequencies
to a set of radio links in such a way that all the links may
operate together without noticeable interference. Some RL-
FAP instances can be naturally cast as binary WCSPs.

We first compared VACε to OSAC and EDAC for prepro-
cessing only. RLFAP instances are distributed either in their
original formulation or preprocessed by a combination of
dominance analysis and singleton AC. A subindex r in the
name of instances below identifies the reduced preprocessed
instances (equivalent to the original ones).

The table below shows that VACε can be one to two orders
of magnitude faster than OSAC and gives almost the same
lb on the graph11r and graph13r instances.

scen07r scen08r graph11r graph13r

EDAC 10000 6 2710 8722
VACε 29498 35 2955 9798lb

OSAC 31454 48 2957 9798
VACε 211s 86s 3.5s 29s

pr
ep

ro
ce

ss
in

g

tim
e

OSAC 3530s 6718s 492s 6254s

We then tried to solve the same problems by main-
taining simultaneously EDAC (useful for variable order-
ing heuristics) and VACε. During search, VACε was
stopped at θ = 10/ε. The table below reports the re-
sults on the open instances graph11 and graph13 (see
fap.zib.de/problems/CALMA) which are solved to opti-
mality for the first time both in their reduced and original
formulation, given the best known upper bound and on the
scen06. The table gives for each problem the number of
variables, total number of values, number of cost functions,
cpu time for EDAC alone, number of developed nodes with
VAC, cpu-time with VAC, mean increase of the lower bound
observed after one VAC iteration (lb/iter) and total num-
ber of VAC iterations (niter). We observed that the value k
(number of cost requests) at each VAC iteration can be high,
reaching a mean value of 16 in some resolutions of graph
instances.

nb. nb. nb. EDAC VAC VAC lb/ nb.
var. val c.f cpu nodes cpu iter iter

gr11r 232 5747 792 - 1536 18.2s 2.5 973
gr11 340 12820 1425 - 2 · 105 217min. 6.63 2.6 · 105

gr13r 454 13153 2314 - 32 62s 4.8 1893
gr13 458 17588 4815 - 114 254s 0.4s 9486
sc06 82 3274 327 39min. 2 · 106 155min. 96 3 · 106

In the uncapacitated warehouse problem (UWLP, prob-
lem description and WCSP model in (Kratica et al. 2001)
and (de Givry et al. 2005) respectively). We tested VACε
preprocessing on instances capmq1-5 (600 variables, 300
values max. per variable and 90000 cost functions) and in-
stances capa, capb and capc (1100 variables, around 90 val-
ues per variable and 101100 cost functions). We report solv-
ing time in seconds in the following table:

mq1 mq2 mq3 mq4 mq5 a b c
EDAC 2508 3050 2953 7052 7323 6179 - -
VACε 2279 3312 2883 4024 8124 3243 4343 2751
CPLEXε 622 1022 415 1266 2357 3 4.5 13

Instances where also solved using the ILP solver
CPLEX 11.0 and a direct formulation of the problem. Note
that given the floating point representation of CPLEX and
the large range of costs in these problems, the proof of opti-
mality of CPLEX is questionable here. OSAC results are not
given because LP generation overflows on these instances.

257



Related works
As OSAC (Cooper, de Givry, & Schiex 2007), VAC aims at
finding an arc level EPT reformulation of an original prob-
lem with an optimized constant cost. OSAC identifies a set
of arc EPTs which applied simultaneously yield an optimal
reformulation. VAC just finds sequences of arc EPTs which
applied sequentially, improve this constant cost.

The idea of using classical local consistency to build
lower bounds in WCSP or Max-SAT is not new. On Max-
CSP, (Régin et al. 2001) used independent arc inconsistent
subproblems to build a lower bound. Similarly for Max-
SAT, (Li, Manyà, & Planes 2005) used minimal Unit Prop-
agation inconsistent subproblems to build a lower bound.
These approaches do not use EPTs but rely on the fact that
the inconsistent subproblems identified are independent and
costs can be simply summed up. But they lack the incremen-
tality of local consistencies.

In Max-SAT again, (Heras, Larrosa, & Oliveras 2007)
also used Unit Propagation inconsistency to build se-
quences of integer EPTs but possibly strictly above the
arc level, generating higher arity weighted clauses (cost
functions). Our approach remains at the arc level by al-
lowing for rational costs. It can be seen as a non triv-
ial extension (capable of dealing with non boolean do-
mains and non binary constraints) of the roof-dual algo-
rithm based on a max-flow algorithm used in quadratic
pseudo-boolean optimization (Boros & Hammer 2002). It
is similar to the “Augmenting DAG” algorithm indepen-
dently proposed by (Schlesinger 1976) for preprocessing 2-
dimensional grammars, recently reviewed in (Werner 2007).

Conclusion
This paper shows how classical arc consistency can be used
to identify a sequence of arc EPTs that can improve the con-
stant cost function. By using rational weights, Virtual Arc
Consistency is capable of providing improved lower bounds
that rely only on arc EPTs and therefore provide the incre-
mentality beneficial for maintenance in a tree search.

Our algorithm for enforcing Virtual AC is still prelimi-
nary. Only part of the work that is performed at each itera-
tion is useful for further iterations. Since Bool(P ) is relaxed
after every iteration, dynamic AC algorithms could probably
be very useful here. Ordering heuristics inside the instru-
mented AC algorithm should also be studied since the cost
increase obtained at each iteration of VAC depends on the
proof of inconsistency of Bool(P ) built by AC. Although
fundamentally different from a flow algorithm, VAC could
perhaps take advantage of the improvements obtained in ef-
ficient max-flow algorithms. Finally, we have presented our
algorithm in the framework of weighted binary CSP, but our
approach is also applicable to non-binary cost functions and
to other valuation structures opening the door to other do-
mains such as Max-SAT and MPE in Bayesian Networks.
Instrumenting existing hard global constraints to enforce
VAC is another attractive direction of research.
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