Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

Online Learning with Expert Advice and Finite-Horizon Constraints

Branislav Kveton JiaYuan Yu
Intel Research Department of Electrical and
Santa Clara, CA Computer Engineering
branislav.kveton@intel.com McGill University

jia.yu@mcgill.ca

Georgios Theocharous Shie Mannor
Intel Research Department of Electrical and
Santa Clara, CA Computer Engineering
georgios.theocharous@intel.com McGill University

shie@ece.mcgill.ca

Abstract problems with these properties. We believe that the solution
is suitable for real-world optimization problems, which may

The objective is to maximize the average reward accumulated need a_ldaptation over time without making any statisti(_:al as-
over time subject to temporal cost constraints. The novelty of ~ SUMPtions on the dynamics of data. To support the claim, we

our setup is that the rewards and constraints are controlled by ~ demonstrate the quality of our solution in a real-world power
an adverse opponent. To solve our problem in a practicalway, =~ Management (PM) domain. This is our second contribution.

we propose an expert algorithm that guarantees both a vanish- The paper is structured as follows. First, we formulate our

ing regret and a sublinear number of violated constraints. The  optimization problem and relate it to the existing work. Sec-

quality of this solution is demonstrated on a real-world power ond, we propose and analyze a practical solution to the prob-

management problem. Our results support the hypothesis that  |em based on prediction with expert advice. Third, we eval-

online learning with convex cost constraints can be performed uate the quality of our solution on a real-world PM problem.

successfully in practice. Finally, we summarize our work and suggest future research
directions.

In this paper, we study a sequential decision making problem.

Introduction
Online learning with expert advice (Cesa-Bianchi & Lugosi Online constrained optimization

2006) has been studied extensively by the machine learning |, this paper, we study an online learning problem, where an
community. The framework has been also successfully used 5qant wants to maximize its total reward subject to temporal
to solve many real-world problems, such as adaptive caching gt constraints. At every timethe agent takes some action
(IGrg(gr(l)%dert]_al. 20035). or ppvvzeororg.anagemeth(goelmbcﬁﬂ 9; from the action se#, and then receives a rewardf;) €

al. 2000; Dhiman & Simunic . Kvetcetal. 2007). The 4 41 'and a cost, (6;) € [0, 1]. We assume that our agent has
major advantage of the online setting is that no assumption is g prior knowledge on reward and cost functions except that
made about the environment. As a result, there is no need to they are bounded. Therefore, they can be generated in a non-

build its model and estimate its parameters. In tum, this type giationary or even adverse way. The agent may consider only
of learning is naturally robust to environmental changes and o past rewards,, . .., and the past costs, . . ., ¢;_1

suitable for solving dynamic real-world problems. when deciding what actiofy to take.

In this paper, we study online learning problems with side 14 ¢|arify our online learning problem and its challenges,
consj[lr(?lntgbésyrgl_lgr setup was considered by Man?or alr:jd we first define amfflineversion of the problem. This offline
gs'ts' IS (F 6). . de constraints are comrr;on |rt1)|rea -wor ¢ version simply assumes that our agents knows all reward and

omains. For instance, power managément problems are ot- ¢t tarms in advance. In such a setting, the optimal strategy

ten formulated as maximizing power savings subject t0 SOome ¢ yha aqent is a solution to the optimization problem:
average performance criteria. The criteria usually restrict the

rate of bad power management actions and can be naturally 1 X
represented by constraints. maximizey — Z +(6;) 1)
Our work makes two contributions. First, we show how to T

t=1

apply prediction with expert advice to solve online optimiza- subjectto:  g,(6) <co VteG;

tion problems with temporal cost constraints efficiently. Our
solution is based on the mixing of expert policies that violate
only a bounded number of constraints. This approach is both
practical and sound. Based on our knowledge, this is the first
online solution to a general class of constrained optimization

where the sequence of actighs= (61, ..., 0r) is optimized

to maximize the average reward oetime steps subject to
a set of constraint§. We assume that the constraint function
9:(0) is a temporal function of instantaneous costs:

Copyright(©) 2008,Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved. gt : Cory1(Ot—ri1), ..., (b)) = R (2)

331



defined on a time interval that spantime steps and ends at
the timet. In practice, the function is typically convex:

t

Z 65(95).

-
b=t—7+1

1

9:(0) ®3)

Note that our optimization problem has a very general form,
andg;, 7, cg, andg are its parameters. How to choose these
parameters to represent a problem is a design issue.
Instances of our problem are common in the field of engi-
neering. For example, most of power management problems
are formulated as maximizing power savings subject to some
performance criteria. The criteria are usually represented by
side constraintg; (8) < c¢g, which are defined at regular time
stepskr, wherek > 1 is an integer. The functiog () is of-

ten convex and aggregates recent costs of the system, such as

the frequency of taking bad power management actions. The
scalarcy determines the acceptable level of bad PM actions.
The offline version of our online optimization problem (1)
can be solved by standard technigues for nonlinear program-
ming (Bertsekas 1999). In this work, we attempt to solve the
problem online. The challenges of the online setting are that
the horizonI" is unknown, and no statistical assumptions on
the rewards; and costg; are made in advance. As a result,
it may be too ambitious to expect to learn as good policies as
in the offline setting. Therefore, the goal of our work is more
modest. We want to learn a policy that yields as high rewards
as the best solution to our problem chosen offline from some
set of experts. This setup is known as prediction with expert
advice (Littlestone & Warmuth 1994). At the same time, our
solution should satisfy all but a small number of constraints.

Existing work

This section positions our work with respect to the literature
on online convex programming (Zinkevich 2003) and online
learning with constraints (Mannor & Tsitsiklis 2006).

Online convex programming (Zinkevich 2003) involves a
convex feasible sef ¢ R™ and a sequence of convex func-
tionsf; : F — R. Atevery timet, a decision maker chooses
some actiod; € F based on the past functioffis, .. ., f;_1
and action®,,...,60;_1. The goal is to minimize the regret:

T T
D fulf) —min  fi(6). 4)
t=1 t=1

In contrast to online convex programming, the feasibleset
in our problem (1) may change arbitrarily over time because
our constraint functions (Equation 2) depend on the cgsts
A useful interpretation is that the feasible geis controlled
by an adverse opponent. This is the main source of difficulty
addressed in this paper.

Mannor and Tsitsiklis (2006) investigated online learning
in the context of the constrained optimization problem:

T
. 1
Maximizca (.4) Tzn(e) (5)
t=1
1 T
subject to: T th(e) < co;

332

whereA(A) denotes the simplex of probability distributions
over the set of actiond. Based on their work, the reward in
hindsight, which corresponds to the solution of the optimiza-
tion problem (5), is generally unattainable online. Results in
our paper do not contradict to this claim. The main reason is
that we study a different optimization problem. In particular,
our goal is to satisfy a set of finite-horizon constraints rather
than a single terminal constraint. The repetitive nature of the
problem allows for solving it efficiently by online learning.

Onlinelearning with constraints

In this section, we show how to learn an online policiyom
a set of expertsy, . . ., {x that guarantees a sublineagret

hax Z e (€n(t)) — Z E [r(6:)] (6)

L]

with respect to the best expert, and a sublinear bound on the
total number otonstraint violations:

Z 1ig,(0)>col-

teg

()

In other words, we want to achieve close-to-optimal rewards
asT — oo while violating a vanishing number of constraints.
These two objectives are optimized independently instead of
being combined. This allows us to provide separate guaran-
tees on the regret and constraint violation of learned policies.
Therefore, our approach is suitable for constrained optimiza-
tion problems, where the tradeoff between the two objectives
is hard to quantify, or it cannot be established at all.

The online policyd is learned by a modified version of the
standard exponentially weighted forecaster (Cesa-Bianchi &
Lugosi 2006). Our experts, ..., &y can be viewed as sub-
optimal solutions to a constrained optimization problem (1),
which satisfy most of its constraints. These experts are often
available in practice. For instance, in the power management
domain, the experts are PM heuristics that do not exceed the
acceptable level of bad PM actions.

Non-overlapping constraints

First, let us consider an online learning setup where we have
access to a pool of expeds, . . . , £y that never violate con-
straints. We assume that these constraints doverap. In
other wordsDom(g¢) N Dom(g,/) = () for everyt’ # ¢. An
example of such a constraint space is given in Figure 1la. The
constraints spantime steps and are defined at the tirkes
wherek > 1is an integer. In the rest of this section, we use
the constraint space to illustrate our online learning solution.
This can be done without loss of generality.

Recall that our objective is to learn an online policy from
a set of expert§,, . ..,y that yields a sublinear regret with
respect to the best expert. Since our constraints do not over-
lap, and they are satisfied by the experts, a regret minimizing
policy that satisfies all constraints can be easily computed as
follows. First, we partition the time stefs..., T intoT/L
segment®y, ..., Pr,/r, of the lengthL such that every con-
straint belongs to a single segment (Figure 1a). The lehgth
is a multiple of the constraint span Second, we modify the

*our work can be extended to other constraint violation metrics,
such as the magnitude of violated constrajjs. ; [g:(8) — cot.



Expert policy &;
Expert policy &,

Constraints

(a)

Learned policy @

Expert policy &;
Expert policy &,

(b)

Constraints

Learned policy @

P1
A

P>
A

Ps
A

P4
A

Ps
A

Ps
A

0000000000
0111011101
(@) <co

&

0000000000
1101110111
924(8) < co

0000000000
0111011101
9x(8) < co

0000000000
1101110111
9x(8) < co

0000000000
0111011101
95:(8) < co

0000000000
1101110111
96:(8) < Co

3
>

0000000000

&
<

3
>

1101110111

& 3
< >

0000000000

& 3
< >

1101110111

& 3
< >

0111011101

& 3
< >

0000000000

0 Py

A

L

P>
A

2

L P3

A

3L

P4
A

aL

Ps
A

5L

Ps
A

6L

0000000000
0001000100
(@) <co

&

0000000000
0100010001
924(8) < co

0000000000
0001000100
9x(8) < co

0000000000
0100010001
9x(8) < co

0000000000
0001000100
95:(8) < co

0000000000
0100010001
96:(8) < Co

0000000O0O0O

“—MNANA—
015:(0) < co

3
>

%

0100010001

025:(0) < co

0001000100

— > —/NAMWA—
035:(0) < Co

3
>
3 € —

& 3
< >

Y

&
<

<

0000000O0O0O

045:(0) < Co

3 € —
> <

0000000O0O0O

0s5:(0) < Co

3 &
<

0000000000

0

L

2

L

3L

4L

5L

6L

Figure 1:a. An online learning problem with non-overlapping constraints. The example involves expert pgliaies,, side
constraints, and a poli@y generated by the lazy learner (Figure 2). The policies are depicted as functions of time. The temporal
span of the constraints is illustrated by arrows. Time steps at which the lazy learner may switch between the experts are denoted
by dotted linesb. An online learning problem with overlapping constraints. Constraints that may be violated due to switching
between the experts are depicted as jagged arrows.

nTL

2

standard exponentially weighted forecaster (Cesa-Bianchi & _ log(N)
Lugosi 2006) such that expert switches are permitted only at n
the beginning of each segmemt

The modified forecaster is described in Figure 2. We refer The first step of the proof follows by algebra, the second step
to it as alazy learnerbecause it commits to one expert for is based on Theorem 2.1 (Cesa-Bianchi & Lugosi 2006), and
time steps. Théearning windowL is the main parameter of  the third step results from the reward term&eing bounded
the forecaster. The following proposition relates this param- on the interval0, 1].
eter to the quality of lazily learned policies. Our second claim follows from two assumptions. First, no
Proposition 1. Letés, ... ¢y be expert policies that satisfy ~ Constraint s violated by the experts. Second, no constraint is
all constraints. Then the regret of the lazy learner (Figure 2) Violated due to switching between the expests.
is bounded as: The parameterg and L can be set such that the regret bound

T in Proposition 1 is sublinear iA. For instance, fon = T—1

and L=T", the bound is on the order 61(T'%). Therefore,
the average regret of the lazy learner vanish&Siasreases.
Furthermore, note that when the learning windbyg given,

the regret bound is tightest fgr= /2 log(N)/(TL). From
now on, we adopt this setting of the learning rate

+

T

r¢(&n(t) ZE r(0;)] <
t=1 t=1

The constraint violation of its policies is 0.

Proof: Our first claim is proved by interpreting lazy learning
as an online learning problem with a convex reward function

nTL
+*7?<

log(N
n

)

max
n=1,...,

Elri(0:)] = ., Ple)ri(Ee, (1)): In the rest of the paper, we study the lazy learner in a more
T T general context. In particular, we relax the assumptions that
. Elr (0 constraints do not overlap and that the experts do not violate
nfﬁlﬁ’f]\, Z re(€n(t)) = Z [¢(6:)] them. It turns out that the paramefehas an important role
= = in this new setting. It trades off the regret of learned policies
T/L-1 (m+1 for their constraint violation.
= max Z Z ri(€n(t)) — E[re(6,)]) o
m=0 t=mL+1 Imperfect expert policies
log(N) 1 T/L-1 Building of expert policies that satisfy all constraints may be
< + B Z too restrictive or hard in practice. In this section, we attempt
N m=0 to relax this assumption. We still assume that the constraints
(m+1)L 2 do not overlap.
B One way of restricting the constraint violation of individ-
e Z (re(€n () — Efr(60))) ual experts is with respect to each segnfenlf this quantity
t=ml+l is bounded, we can bound the regret and constraint violation
< log(N) n TL2 of lazily learned policies as follows.
- 2L Proposition 2. Let&,, ..., &y be expert policies whose con-

333



straint violation is bounded as:
Z 1[9t(5n)>co] <e
tePNgG

for some scalae and all segment®. Then the regret of the
lazy learner (Figure 2) is bounded as suggested by Proposi-
tion 1. The constraint violation of its policies is:

T
D 1 0)5c] < &
teg

max
n=1,...,N

Proof: The regret bound is proved as in Proposition 1. The
constraint violation bound follows from the observation that
the number of segmenBisT/L.m

The parameterg and L can be set such that both our regret
and constraint violation bounds (Proposition 2) are sublinear
in 7. For instance, foy=7T-1 and L=T', the bounds are
on the order o©)(T'3) and O(T'z). In turn, both the average
regret and constraint violation of the lazy learner vanist'as
increases.

Finally, note that our bounds suggest that the paranieter
can trade off the regret of learned policies for their constraint
violation. For instance, as the learning windévdecreases,

the regret bound becomes tighter. At the same time, the con-
straint violation bound becomes looser. This phenomenon is

studied empirically in the experimental section.

Overlapping constraints

Inputs:
alearning windowL
a learning rate)
expert policiess, ..., &N
expert weightsuvs—1 (1), ..., wi—1(N)
an expere;—; followed at the time step— 1
a reward function;

Algorithm:
if (¢t (mod L)=1)
randomly choose an expest according to the distribution:
wt—l(et)
P(et)

Zi\rzl we—1(n)

else
€t = €t—1

play an actior9; = &, (t)

foreveryn=1,...,N
wi(n) = wi—1(n) exp[nr(&n(t))]

Outputs:
an actiord; played at the time step
updated expert weights; (1), . .., w: (V)
an expert; followed at the time step

Figure 2: An exponentially weighted forecaster that permits
one expert switch pek time steps.

The assumption of non-overlapping constraints helped us to Similarly to Proposition 2, the parameterandL can be set

learn online policies up to this point. In this section, we relax
this assumption.

such that both bounds in Proposition 3 are sublinedt.im
addition, the parametdr allows for trading off the regret of

A simple example of a constraint space where constraints learned policies for their constraint violation.

overlap is depicted in Figure 1b. The constraints spaime
steps and are defined at the tink€s /2), wherek > 1 is an

integer. When the lazy learner is applied to these constraints,

it may violate a constraint whenever it switches between the
experts. The reason is that constraint functign@), which
are affected by policy transitions, involve actions of multiple
experts. Therefore, even if the constraifts - (&) <co and
93.5+(&n) <o are satisfied by both expert policigsandés,
they may be violated by the learned poligy

Fortunately, the maximum number of constraints overlap-
ping between any two consecutive segméptaindP,; is

Convex constraint functions

From the theoretical point of view, lazy learning can provide
sublinear guarantees on the regret and constraint violation of
learned policies without making any assumption on the form
of side constraints. However, in this general setting, building
of expert policies that violate only a bounded number of con-
straints is hard in practice. This type of experts is required as
an input to the lazy learner (Figure 2). In the rest of this sec-
tion, we show how to build these experts efficiently when the

often bounded in practice. The reason is that side constraints constraint functiony, (6) is convex (Equation 3).

are usually enforced with some periodicity, such as minutes,

Our solution assumes that we have a special aéfidghat

hours, or days. Based on this observation, we can generalizeguarantees; (6°) < ¢, for all time stepg. The key is to play

Proposition 2 as follows.

Proposition 3. Let&y,. .., &N be expert policies whose con-
straint violation is bounded as in Proposition 2. In addition,
let s be the maximum number of constraints that overlap be-
tween any two segmeri& andP,.,. Then the regret of the
lazy learner (Figure 2) is bounded as suggested by Proposi-
tion 1. The constraint violation of its policies is:

T
Z Lig,(0)>co] = f(€ + s).
teg
Proof: The regret bound is proved as in Proposition 1. The
first term in the constraint violation bound is borrowed from
Proposition 2. The second term accounts for constraint vio-
lations due to switching between the expests.

334

the actior?® when the original expert may violate more than
an acceptable fraction of constraints. We refer to this process
asarbitration.

Arbitration can be carried out in most real-world domains.
For instance, it corresponds to taking no power management
actions in the power management domain. It is conceptually
equivalent to having a non-empty feasible set in a traditional
optimization setting. Unfortunately, the arbitrating actiSn
often yields zero rewards. Therefore, it should be taken only
when necessary because it conflicts with our main objective
of maximizing rewards.

In the rest of the paper, we evaluate the performance of the
lazy learner on a power management problem. The nature of
the problem is not adversarial as typically assumed in online
learning. Therefore, although our approach learns almost as



good policies as the best experts, our bounds are a little loos MMO5 trace

to justify its performance. —. 80
X
Package power management g 75y
Our online solution is evaluated on a challenging real-world § 70t
problem. We look at the power management of the complete 2
processing unit including multi-core processors, L1 and L2 65 El E2 E3 E4 E5 E6 LL LB
caches, and associated circuitry. Solving this PM problem is
important because the complete processing unit may account 20 Heavy workload trace
for as much as 40 percent of the power consumed by mobile ¥ T
computers. In the rest of this paper, we use the fgaickage g 30}
to refer to the complete processing unit. S
The primary goal of package PM is to minimize the power 2 207
consumption of the package without impacting its perceived &

performance. This performance objective can be restated as 0 E2 E3 E4 E5 E6 LL LB
maximizing theresidencyof the package in low power states
while minimizing thelatencyin serving hardware interrupts. i ) ) . .
The latency is a delay caused by waking up the package from Figure 3: Comparison of lazily learned policies (LL) to their
low power states. The central component of package PM is a Pools of experts (E1, ..., E6). The policies are compared by
prediction module, which predicts idle CPU periods that are their residency for different latency budgets 0.02 (black
sufficiently long to power down the package. This prediction bPars), 0.04 (dark gray bars), and 0.06 (light gray bars). We
is made at every OS interrupt. Under normal circumstances, also show lower bounds on the residency of the learned poli-
Microsoft Windows generates OS interrupts every 15.6 ms. Cies (LB) as suggested by Proposition 1.

A state-of-the-art solution to package PM are static time-

out policies. Astatic timeout policyKarlin etal. 1994)isa the time steg. Our latency constraints are averages over 10

simple power management strategy, which is parameterized second periods, which corresponds-te- 640. The purpose

by the timeout paramet@r. When the package remainsidle  of the constraints is to restrict the rate of bad PM actions over

for more tharl’ ms, the policy puts it into a low power state.  |onger periods of time. Such actions may significantly affect

When an unpredicted hardware interrupt occurs, the packagethe perceived performance of the computer.

must wake up to serve it. Due to the delay in performing this Al online solutions to our constrained optimization prob-

task, the package incurs a 1 ms latency penalty. The packagejem are computed by the lazy learner (Figure 2). The experts

wakes up ahead of the OS interrupts because these interruptse, . ¢ are timeout policies (Kvetoat al. 2007), whose

are predictable. This setting is suggested by domain experts. timeout parameters are adapted by the fixed-share algorithm
In the experimental section, we consider a pool of experts, (Herbster & Warmuth 1995). These policies are additionally

which are adaptive timeout policies. The policies adapt their grpitrated to satisfy our latency constraints.

timeout parameters at every OS interrupt with respect to the  yp|ess specified otherwise, the following parametrization

current workload (Kvetoet al. 2007). is employed in our experiments. Side constraints are defined
. at 10 second intervals such titat= {640, 1280, 1920, ... },
Experiments the latency budget, is set to 0.03, and the learning window

The main goal of the experimental section is to demonstrate L is equal tor. All reported empirical results correspond to
online learning with constraints in practice. Our experiments averages of 10 stochastic simulations.
are performed on the package PM problem. We simulate the

package in MATLAB on two CPU activity traces. Experimental results
. The first experiment (Figure 3) demonstrates that lazy learn-
Experimental setup ing yields high-quality package PM policies (Proposition 1).

The first trace is recorded during running MobileMark 2005 We assume non-overlapping constraints (Figure 1a) that are
(MMO05). MMO5 is a performance benchmark that simulates completely satisfied by our experts. Based on our results, the
the activity of an average Microsoft Windows user. A corre- regret of learned policies is always less than 2 percent. This
sponding CPU activity trace is 90 minutes long and contains evidence suggests that the policies are almost as good as the
more than 500,000 OS interrupts. The second trace is gener-best expert in hindsight. The learned policies are also signifi-
ated by running Adobe Photoshop, Microsoft Windows Ex- cantly better than worst experts, which may yield as much as
plorer, Microsoft WordPad, and Microsoft Media Player. It 7 percent less residency. On the heavy workload trace, this 7
reflects 30 minutes of human activity and contains more than percent improvement can be viewed as more than 30 percent
200,000 OS interrupts. In the rest of the section, we refer to when measured in relative terms. At the same time, our poli-
it as a heavy workload trace. cies satisfy all latency constraints and their regret is bounded
Our goal is to maximize the residency of the package sub- as suggested by Proposition 1.
jectto latency constraints. This is a constrained optimization  Finally, the learned policies also outperform static timeout
problem, where the residency and latency of the package be- policies, which are state-of-the-art solutions to package PM.
tween two consecutive OS interrupts represent instantaneousOn the heavy workload trace, for instance, none of the time-
rewardsr,(6;) and costs; (6,), respectively. The variablg out polices that satisfy latency constraipté9) <0.06 yield
denotes the timeout parameter of the package PM module atmore than 5 percent residency. This is more than 6 times less

335



MMOS trace Heavy workload trace

= 90 =5 10 ¥
= = =
= 85 = 4t p
3 o 5
é 80 g} 3r {1 %
2= I 5 2| |2
X 4o . . . . S 10.1 'S
0 20 40 60 80 2 G
(4]
Heavy workload trace x1 : : : : : 0.01 8
100 v ‘ 1 2 4 8 16 256 512 °
X 75 Learning window multiplier k
= I
o
é 50 Figure 5: Constraint violation (dark gray line) and residenc
e 25 regret (light gray line) of lazily learned policies as a function
xr g ‘ ‘ ‘ ‘ of the learning windowZ. The learning window is computed
0 5 10 15 20 asL = kr, wherek is an integer multiplier.
Time [min]

Figure 4: Average residency of three lazily learned policies nhumber of constraints. Since arbitration typically yields zero
The policies are learned from three pools of experts that sat- rewards, it is crucial to develop online learning solutions that
isfy 100 (light gray lines), 50 (dark gray lines), and 0 (black do not require it. Whether this goal can be achieved by mod-

lines) percent of latency constraints in every segrfierithe ifying standard techniques for nonlinear programming, such
residency is depicted as a function of time (in minutes). as penalty methods, is an interesting open question.
than the residency of a corresponding lazily learned policy. Acknowledgment

The second experiment (Figure 4) illustrates how the resi- We thank anonymous reviewers for comments that led to the
dency of lazily learned policies is impacted by imperfect ex- improvement of this paper.
perts. Similarly to the previous experiment, we assume non-

overlapping constraints (Figure 1a). We vary the proportion References
of the constraints that is satisfied by the experts and study its Bertsekas, D. 1999 Nonlinear Programming. Belmont, MA:
effect. The learning windou is equal tol07. Based on our Athena Scientific.

results, relaxation of the experts yields policies with a higher  cesa-Bianchi, N., and Lugosi, G. 200@rediction, Learning,

residency. This is expected since the relaxation increases the and Games. New York, NY: Cambridge University Press.

residency of individual experts. Dhiman, G., and Simunic, T. 2006. Dynamic power management
The third experiment (Figure 5) shows how the regret and  using machine learning. IRroceedings of the 2006 IEEE / ACM

constraint violation of lazily learned policies are affected by  International Conference on Computer-Aided Design.

the learning window. (Proposition 3). We assume overlap-  Gramacy, R.; Warmuth, M.; Brandt, S.; and Ari, I. 2003. Adap-

ping constraints (Figure 1b) defined at one second intervals. tive caching by refetching. IAdvances in Neural Information

Based on our results, the parameidrades off the regret of Processing Systems 15, 1465-1472.

learned policies for their constraint violation. SmallervaIL_Jes Helmbold, D.; Long, D.; Sconyers, T.; and Sherrod, B. 2000.

of the parameter generally cause a smaller regret and higher Adaptive disk spin-down for mobile computetdobile Networks

constraint violation. Higher values of the parameter have an  and Applications5(4):285-297.

opposite effect. This behavior is suggested by Proposition 3.  Herbster, M., and Warmuth, M. 1995. Tracking the best expert.

In Proceedings of the 12th International Conference on Machine
Conclusions Learning, 286—-294.

Although online learning has been studied extensively by the  Karlin, A.; Manasse, M.; McGeoch, L.; and Owicki, S. 1994.
machine learning community, solving constrained optimiza- gfmpet't'ye rand9m|zed algorithms for nonuniform problems.
. . . X - gorithmical1(6):542-571.
tion problems online remains a challenging problem. In this . o . . .
paper, we proposed a practical online solution to constrained Ev_etoré, SBH Eaﬁdhz'bg; Tg\‘gocpamtﬁjs' G"t Mal‘.”'f‘or’fs-'f R‘t’?.a”o'
optimization problems with temporal constraints. Moreover, - 808 58 . -l e i os of the aond Natonal
we provided guarantees on the quality of this solution in the %onfereﬁce on Artificgi]al Inteliigence 17%5—1800.
form of regret and constraint violation bounds. The solution Littlestone. N.. and Warmuth. M 1594 The weighted maiorit
was evaluated on a challenging real-world PM problem. Our algorithm Information and Cdmbutaﬁom'og(z).212g261 jonty
e?:jperimert'\ts_stjpporttt)he hyp-oéhesis that Onl]inﬁ Ieamingt-With Mannor S and Tsitsiklis, J. 2006. Online -Iearning \-/vith con-
side constraints can be carried out successfully in practice. il ; A : :
Results of this paper can be extended in sevgral cﬁ)irections. -Sl-ttqggrt; ' gggi%i%edmgs of 19th Annual Conference on Learning
First, since the lazy learner (Figure 2) is derived based on the Zink N h M 2603 onii . q
standard exponentilly weighed forecaster (Cesa-Bianchi&  41<5ch M. 2005, Onine convex brogramming and gener
Lugosi 2006), we believe that it can be easily generalized to ; P : .
minimize the regret with respect to tracking the best expert. International Conference on Machine Learning, 928-936.
Second, arbitration is by no means the most efficient way of
guaranteeing that online learned policies violate only a small

336





