
Online Learning with Expert Advice and Finite-Horizon Constraints

Branislav Kveton
Intel Research

Santa Clara, CA
branislav.kveton@intel.com

Jia Yuan Yu
Department of Electrical and

Computer Engineering
McGill University
jia.yu@mcgill.ca

Georgios Theocharous
Intel Research

Santa Clara, CA
georgios.theocharous@intel.com

Shie Mannor
Department of Electrical and

Computer Engineering
McGill University
shie@ece.mcgill.ca

Abstract

In this paper, we study a sequential decision making problem.
The objective is to maximize the average reward accumulated
over time subject to temporal cost constraints. The novelty of
our setup is that the rewards and constraints are controlled by
an adverse opponent. To solve our problem in a practical way,
we propose an expert algorithm that guarantees both a vanish-
ing regret and a sublinear number of violated constraints. The
quality of this solution is demonstrated on a real-world power
management problem. Our results support the hypothesis that
online learning with convex cost constraints can be performed
successfully in practice.

Introduction
Online learning with expert advice (Cesa-Bianchi & Lugosi
2006) has been studied extensively by the machine learning
community. The framework has been also successfully used
to solve many real-world problems, such as adaptive caching
(Gramacyet al. 2003) or power management (Helmboldet
al. 2000; Dhiman & Simunic 2006; Kvetonet al. 2007). The
major advantage of the online setting is that no assumption is
made about the environment. As a result, there is no need to
build its model and estimate its parameters. In turn, this type
of learning is naturally robust to environmental changes and
suitable for solving dynamic real-world problems.

In this paper, we study online learning problems with side
constraints. A similar setup was considered by Mannor and
Tsitsiklis (2006). Side constraints are common in real-world
domains. For instance, power management problems are of-
ten formulated as maximizing power savings subject to some
average performance criteria. The criteria usually restrict the
rate of bad power management actions and can be naturally
represented by constraints.

Our work makes two contributions. First, we show how to
apply prediction with expert advice to solve online optimiza-
tion problems with temporal cost constraints efficiently. Our
solution is based on the mixing of expert policies that violate
only a bounded number of constraints. This approach is both
practical and sound. Based on our knowledge, this is the first
online solution to a general class of constrained optimization

Copyright c© 2008,Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems with these properties. We believe that the solution
is suitable for real-world optimization problems, which may
need adaptation over time without making any statistical as-
sumptions on the dynamics of data. To support the claim, we
demonstrate the quality of our solution in a real-world power
management (PM) domain. This is our second contribution.

The paper is structured as follows. First, we formulate our
optimization problem and relate it to the existing work. Sec-
ond, we propose and analyze a practical solution to the prob-
lem based on prediction with expert advice. Third, we eval-
uate the quality of our solution on a real-world PM problem.
Finally, we summarize our work and suggest future research
directions.

Online constrained optimization
In this paper, we study an online learning problem, where an
agent wants to maximize its total reward subject to temporal
cost constraints. At every timet, the agent takes some action
θt from the action setA, and then receives a rewardrt(θt) ∈
[0, 1] and a costct(θt)∈ [0, 1]. We assume that our agent has
no prior knowledge on reward and cost functions except that
they are bounded. Therefore, they can be generated in a non-
stationary or even adverse way. The agent may consider only
the past rewardsr1, . . . , rt−1 and the past costsc1, . . . , ct−1
when deciding what actionθt to take.

To clarify our online learning problem and its challenges,
we first define anofflineversion of the problem. This offline
version simply assumes that our agents knows all reward and
cost terms in advance. In such a setting, the optimal strategy
of the agent is a solution to the optimization problem:

maximizeθ
1

T

T
∑

t=1

rt(θt) (1)

subjectto: gt(θ) ≤ c0 ∀ t ∈ G;

where the sequence of actionsθ = (θ1, . . . , θT ) is optimized
to maximize the average reward overT time steps subject to
a set of constraintsG. We assume that the constraint function
gt(θ) is a temporal function of instantaneous costs:

gt : ct−τ+1(θt−τ+1), . . . , ct(θt)→ R (2)

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

331



defined on a time interval that spansτ time steps and ends at
the timet. In practice, the function is typically convex:

gt(θ) =
1

τ

t
∑

`=t−τ+1

c`(θ`). (3)

Note that our optimization problem has a very general form,
andgt, τ , c0, andG are its parameters. How to choose these
parameters to represent a problem is a design issue.

Instances of our problem are common in the field of engi-
neering. For example, most of power management problems
are formulated as maximizing power savings subject to some
performance criteria. The criteria are usually represented by
side constraintsgt(θ)≤c0, which are defined at regular time
stepskτ , wherek≥1 is an integer. The functiongt(θ) is of-
ten convex and aggregates recent costs of the system, such as
the frequency of taking bad power management actions. The
scalarc0 determines the acceptable level of bad PM actions.

The offline version of our online optimization problem (1)
can be solved by standard techniques for nonlinear program-
ming (Bertsekas 1999). In this work, we attempt to solve the
problem online. The challenges of the online setting are that
the horizonT is unknown, and no statistical assumptions on
the rewardsrt and costsct are made in advance. As a result,
it may be too ambitious to expect to learn as good policies as
in the offline setting. Therefore, the goal of our work is more
modest. We want to learn a policy that yields as high rewards
as the best solution to our problem chosen offline from some
set of experts. This setup is known as prediction with expert
advice (Littlestone & Warmuth 1994). At the same time, our
solution should satisfy all but a small number of constraints.

Existing work
This section positions our work with respect to the literature
on online convex programming (Zinkevich 2003) and online
learning with constraints (Mannor & Tsitsiklis 2006).

Online convex programming (Zinkevich 2003) involves a
convex feasible setF ⊂ Rn and a sequence of convex func-
tionsft : F → R. At every timet, a decision maker chooses
some actionθt ∈ F based on the past functionsf1, . . . , ft−1
and actionsθ1, . . . , θt−1. The goal is to minimize the regret:

T
∑

t=1

ft(θt)−min
θ∈F

T
∑

t=1

ft(θ). (4)

In contrast to online convex programming, the feasible setF
in our problem (1) may change arbitrarily over time because
our constraint functions (Equation 2) depend on the costsct.
A useful interpretation is that the feasible setF is controlled
by an adverse opponent. This is the main source of difficulty
addressed in this paper.

Mannor and Tsitsiklis (2006) investigated online learning
in the context of the constrained optimization problem:

maximizeθ∈∆(A)
1

T

T
∑

t=1

rt(θ) (5)

subject to:
1

T

T
∑

t=1

ct(θ) ≤ c0;

where∆(A) denotes the simplex of probability distributions
over the set of actionsA. Based on their work, the reward in
hindsight, which corresponds to the solution of the optimiza-
tion problem (5), is generally unattainable online. Results in
our paper do not contradict to this claim. The main reason is
that we study a different optimization problem. In particular,
our goal is to satisfy a set of finite-horizon constraints rather
than a single terminal constraint. The repetitive nature of the
problem allows for solving it efficiently by online learning.

Online learning with constraints
In this section, we show how to learn an online policyθ from
a set of expertsξ1, . . . , ξN that guarantees a sublinearregret:

max
n=1,...,N

T
∑

t=1

rt(ξn(t))−
T
∑

t=1

E [rt(θt)] (6)

with respect to the best expert, and a sublinear bound on the
total number ofconstraint violations1:

∑

t∈G

1[gt(θ)>c0]. (7)

In other words, we want to achieve close-to-optimal rewards
asT→∞while violating a vanishing number of constraints.
These two objectives are optimized independently instead of
being combined. This allows us to provide separate guaran-
tees on the regret and constraint violation of learned policies.
Therefore, our approach is suitable for constrained optimiza-
tion problems, where the tradeoff between the two objectives
is hard to quantify, or it cannot be established at all.

The online policyθ is learned by a modified version of the
standard exponentially weighted forecaster (Cesa-Bianchi &
Lugosi 2006). Our expertsξ1, . . . , ξN can be viewed as sub-
optimal solutions to a constrained optimization problem (1),
which satisfy most of its constraints. These experts are often
available in practice. For instance, in the power management
domain, the experts are PM heuristics that do not exceed the
acceptable level of bad PM actions.

Non-overlapping constraints
First, let us consider an online learning setup where we have
access to a pool of expertsξ1, . . . , ξN that never violate con-
straints. We assume that these constraints do notoverlap. In
other words,Dom(gt)∩Dom(gt′) = ∅ for everyt′ 6= t. An
example of such a constraint space is given in Figure 1a. The
constraints spanτ time steps and are defined at the timeskτ ,
wherek ≥ 1 is an integer. In the rest of this section, we use
the constraint space to illustrate our online learning solution.
This can be done without loss of generality.

Recall that our objective is to learn an online policy from
a set of expertsξ1, . . . , ξN that yields a sublinear regret with
respect to the best expert. Since our constraints do not over-
lap, and they are satisfied by the experts, a regret minimizing
policy that satisfies all constraints can be easily computed as
follows. First, we partition the time steps1, . . . , T into T/L
segmentsP1, . . . ,PT/L of the lengthL such that every con-
straint belongs to a single segment (Figure 1a). The lengthL
is a multiple of the constraint spanτ . Second, we modify the

1Our work can be extended to other constraint violation metrics,
such as the magnitude of violated constraints

∑
t∈G
[gt(θ)− c0]

+.

332



(a) 

(b) 

0 0 0 0 0 0 0 0 0 0 

1 1 0 1 1 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 1 1 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 

1 1 0 1 1 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 1 1 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 

1 1 0 1 1 1 0 1 0 1 

Expert policy ξ1 

Expert policy ξ2 

gτ(θθθθ) ≤ c0 g2τ(θθθθ) ≤ c0 g3τ(θθθθ) ≤ c0 g4τ(θθθθ) ≤ c0 g5τ(θθθθ) ≤ c0 
Constraints 

Learned policy θθθθ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 t 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 

Expert policy ξ1 

Expert policy ξ2 

Learned policy θθθθ t 

gτ(θθθθ) ≤ c0 g2τ(θθθθ) ≤ c0 g3τ(θθθθ) ≤ c0 g4τ(θθθθ) ≤ c0 g5τ(θθθθ) ≤ c0 
Constraints 

g1.5τ(θθθθ) ≤ c0 g2.5τ(θθθθ) ≤ c0 g3.5τ(θθθθ) ≤ c0 g4.5τ(θθθθ) ≤ c0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 L 

P1 P2 P4 P3 P5 

2L 3L 4L 5L P1 P2 P4 P3 P5 

0 L 2L 3L 4L 5L 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

6L 

6L 

0 1 1 1 0 1 1 1 1 1 

0 0 0 1 0 0 0 1 0 1 

g6τ(θθθθ) ≤ c0 

g6τ(θθθθ) ≤ c0 

g5.5τ(θθθθ) ≤ c0 

0 0 0 0 0 0 0 0 0 0 

P6 

P6 

Figure 1:a. An online learning problem with non-overlapping constraints. The example involves expert policiesξ1 andξ2, side
constraints, and a policyθ generated by the lazy learner (Figure 2). The policies are depicted as functions of time. The temporal
span of the constraints is illustrated by arrows. Time steps at which the lazy learner may switch between the experts are denoted
by dotted lines.b. An online learning problem with overlapping constraints. Constraints that may be violated due to switching
between the experts are depicted as jagged arrows.

standard exponentially weighted forecaster (Cesa-Bianchi &
Lugosi 2006) such that expert switches are permitted only at
the beginning of each segmentP.

The modified forecaster is described in Figure 2. We refer
to it as alazy learnerbecause it commits to one expert forL
time steps. Thelearning windowL is the main parameter of
the forecaster. The following proposition relates this param-
eter to the quality of lazily learned policies.
Proposition 1. Letξ1, . . . , ξN be expert policies that satisfy
all constraints. Then the regret of the lazy learner (Figure 2)
is bounded as:

max
n=1,...,N

T
∑

t=1

rt(ξn(t))−
T
∑

t=1

E [rt(θt)] ≤
log(N)

η
+
ηTL

2
.

The constraint violation of its policies is 0.
Proof: Our first claim is proved by interpreting lazy learning
as an online learning problem with a convex reward function
E [rt(θt)] =

∑

et
P (et)rt(ξet(t)):

max
n=1,...,N

T
∑

t=1

rt(ξn(t))−
T
∑

t=1

E [rt(θt)]

= max
n=1,...,N

T/L−1
∑

m=0

(m+1)L
∑

t=mL+1

(rt(ξn(t))− E [rt(θt)])

≤
log(N)

η
+
η

2

T/L−1
∑

m=0

max
n=1,...,N





(m+1)L
∑

t=mL+1

(rt(ξn(t))− E [rt(θt)])





2

≤
log(N)

η
+
η

2

T

L
L2

=
log(N)

η
+
ηTL

2
.

The first step of the proof follows by algebra, the second step
is based on Theorem 2.1 (Cesa-Bianchi & Lugosi 2006), and
the third step results from the reward termsrt being bounded
on the interval[0, 1].

Our second claim follows from two assumptions. First, no
constraint is violated by the experts. Second, no constraint is
violated due to switching between the experts.

The parametersη andL can be set such that the regret bound
in Proposition 1 is sublinear inT . For instance, forη = T−

3

4

andL=T
1

2 , the bound is on the order ofO(T
3

4 ). Therefore,
the average regret of the lazy learner vanishes asT increases.
Furthermore, note that when the learning windowL is given,
the regret bound is tightest forη =

√

2 log(N)/(TL). From
now on, we adopt this setting of the learning rateη.

In the rest of the paper, we study the lazy learner in a more
general context. In particular, we relax the assumptions that
constraints do not overlap and that the experts do not violate
them. It turns out that the parameterL has an important role
in this new setting. It trades off the regret of learned policies
for their constraint violation.

Imperfect expert policies

Building of expert policies that satisfy all constraints may be
too restrictive or hard in practice. In this section, we attempt
to relax this assumption. We still assume that the constraints
do not overlap.

One way of restricting the constraint violation of individ-
ual experts is with respect to each segmentP. If this quantity
is bounded, we can bound the regret and constraint violation
of lazily learned policies as follows.

Proposition 2. Letξ1, . . . , ξN be expert policies whose con-

333



straint violation is bounded as:

max
n=1,...,N

∑

t∈P∩G

1[gt(ξn)>c0] ≤ ε

for some scalarε and all segmentsP. Then the regret of the
lazy learner (Figure 2) is bounded as suggested by Proposi-
tion 1. The constraint violation of its policies is:

∑

t∈G

1[gt(θ)>c0] ≤
T

L
ε.

Proof: The regret bound is proved as in Proposition 1. The
constraint violation bound follows from the observation that
the number of segmentsP is T/L.
The parametersη andL can be set such that both our regret
and constraint violation bounds (Proposition 2) are sublinear
in T . For instance, forη=T−

3

4 andL=T
1

2 , the bounds are
on the order ofO(T

3

4 ) andO(T
1

2 ). In turn, both the average
regret and constraint violation of the lazy learner vanish asT
increases.

Finally, note that our bounds suggest that the parameterL
can trade off the regret of learned policies for their constraint
violation. For instance, as the learning windowL decreases,
the regret bound becomes tighter. At the same time, the con-
straint violation bound becomes looser. This phenomenon is
studied empirically in the experimental section.

Overlapping constraints
The assumption of non-overlapping constraints helped us to
learn online policies up to this point. In this section, we relax
this assumption.

A simple example of a constraint space where constraints
overlap is depicted in Figure 1b. The constraints spanτ time
steps and are defined at the timesk(τ/2), wherek ≥ 1 is an
integer. When the lazy learner is applied to these constraints,
it may violate a constraint whenever it switches between the
experts. The reason is that constraint functionsgt(θ), which
are affected by policy transitions, involve actions of multiple
experts. Therefore, even if the constraintsg1.5τ (ξn)≤c0 and
g3.5τ (ξn)≤c0 are satisfied by both expert policiesξ1 andξ2,
they may be violated by the learned policyθ.

Fortunately, the maximum number of constraints overlap-
ping between any two consecutive segmentsP` andP`+1 is
often bounded in practice. The reason is that side constraints
are usually enforced with some periodicity, such as minutes,
hours, or days. Based on this observation, we can generalize
Proposition 2 as follows.

Proposition 3. Letξ1, . . . , ξN be expert policies whose con-
straint violation is bounded as in Proposition 2. In addition,
let s be the maximum number of constraints that overlap be-
tween any two segmentsP` andP`+1. Then the regret of the
lazy learner (Figure 2) is bounded as suggested by Proposi-
tion 1. The constraint violation of its policies is:

∑

t∈G

1[gt(θ)>c0] ≤
T

L
(ε+ s).

Proof: The regret bound is proved as in Proposition 1. The
first term in the constraint violation bound is borrowed from
Proposition 2. The second term accounts for constraint vio-
lations due to switching between the experts.

Inputs:
a learning windowL
a learning rateη
expert policiesξ1, . . . , ξN
expert weightswt−1(1), . . . , wt−1(N)
an expertet−1 followed at the time stept− 1
a reward functionrt

Algorithm:
if (t (mod L) ≡ 1)

randomly choose an expertet according to the distribution:

P (et) =
wt−1(et)

∑
N

n=1
wt−1(n)

else
et = et−1

play an actionθt = ξet(t)

for everyn = 1, . . . , N
wt(n) = wt−1(n) exp[ηrt(ξn(t))]

Outputs:
an actionθt played at the time stept
updated expert weightswt(1), . . . , wt(N)
an expertet followed at the time stept

Figure 2: An exponentially weighted forecaster that permits
one expert switch perL time steps.

Similarly to Proposition 2, the parametersη andL can be set
such that both bounds in Proposition 3 are sublinear inT . In
addition, the parameterL allows for trading off the regret of
learned policies for their constraint violation.

Convex constraint functions

From the theoretical point of view, lazy learning can provide
sublinear guarantees on the regret and constraint violation of
learned policies without making any assumption on the form
of side constraints. However, in this general setting, building
of expert policies that violate only a bounded number of con-
straints is hard in practice. This type of experts is required as
an input to the lazy learner (Figure 2). In the rest of this sec-
tion, we show how to build these experts efficiently when the
constraint functiongt(θ) is convex (Equation 3).

Our solution assumes that we have a special actionθ0 that
guaranteesct(θ0)�c0 for all time stepst. The key is to play
the actionθ0 when the original expert may violate more than
an acceptable fraction of constraints. We refer to this process
asarbitration.

Arbitration can be carried out in most real-world domains.
For instance, it corresponds to taking no power management
actions in the power management domain. It is conceptually
equivalent to having a non-empty feasible set in a traditional
optimization setting. Unfortunately, the arbitrating actionθ0

often yields zero rewards. Therefore, it should be taken only
when necessary because it conflicts with our main objective
of maximizing rewards.

In the rest of the paper, we evaluate the performance of the
lazy learner on a power management problem. The nature of
the problem is not adversarial as typically assumed in online
learning. Therefore, although our approach learns almost as

334



good policies as the best experts, our bounds are a little loose
to justify its performance.

Package power management
Our online solution is evaluated on a challenging real-world
problem. We look at the power management of the complete
processing unit including multi-core processors, L1 and L2
caches, and associated circuitry. Solving this PM problem is
important because the complete processing unit may account
for as much as 40 percent of the power consumed by mobile
computers. In the rest of this paper, we use the termpackage
to refer to the complete processing unit.

The primary goal of package PM is to minimize the power
consumption of the package without impacting its perceived
performance. This performance objective can be restated as
maximizing theresidencyof the package in low power states
while minimizing thelatencyin serving hardware interrupts.
The latency is a delay caused by waking up the package from
low power states. The central component of package PM is a
prediction module, which predicts idle CPU periods that are
sufficiently long to power down the package. This prediction
is made at every OS interrupt. Under normal circumstances,
Microsoft Windows generates OS interrupts every 15.6 ms.

A state-of-the-art solution to package PM are static time-
out policies. Astatic timeout policy(Karlin et al. 1994) is a
simple power management strategy, which is parameterized
by the timeout parameterT . When the package remains idle
for more thanT ms, the policy puts it into a low power state.
When an unpredicted hardware interrupt occurs, the package
must wake up to serve it. Due to the delay in performing this
task, the package incurs a 1 ms latency penalty. The package
wakes up ahead of the OS interrupts because these interrupts
are predictable. This setting is suggested by domain experts.

In the experimental section, we consider a pool of experts,
which are adaptive timeout policies. The policies adapt their
timeout parameters at every OS interrupt with respect to the
current workload (Kvetonet al. 2007).

Experiments
The main goal of the experimental section is to demonstrate
online learning with constraints in practice. Our experiments
are performed on the package PM problem. We simulate the
package in MATLAB on two CPU activity traces.

Experimental setup
The first trace is recorded during running MobileMark 2005
(MM05). MM05 is a performance benchmark that simulates
the activity of an average Microsoft Windows user. A corre-
sponding CPU activity trace is 90 minutes long and contains
more than 500,000 OS interrupts. The second trace is gener-
ated by running Adobe Photoshop, Microsoft Windows Ex-
plorer, Microsoft WordPad, and Microsoft Media Player. It
reflects 30 minutes of human activity and contains more than
200,000 OS interrupts. In the rest of the section, we refer to
it as a heavy workload trace.

Our goal is to maximize the residency of the package sub-
ject to latency constraints. This is a constrained optimization
problem, where the residency and latency of the package be-
tween two consecutive OS interrupts represent instantaneous
rewardsrt(θt) and costsct(θt), respectively. The variableθt
denotes the timeout parameter of the package PM module at

E1 E2 E3 E4 E5 E6 LL LB
65

70

75

80
MM05 trace

R
es

id
en

cy
 [%

]

E1 E2 E3 E4 E5 E6 LL LB
10

20

30

40
Heavy workload trace

R
es

id
en

cy
 [%

]

Figure 3: Comparison of lazily learned policies (LL) to their
pools of experts (E1, . . . , E6). The policies are compared by
their residency for different latency budgetsc0: 0.02 (black
bars), 0.04 (dark gray bars), and 0.06 (light gray bars). We
also show lower bounds on the residency of the learned poli-
cies (LB) as suggested by Proposition 1.

the time stept. Our latency constraints are averages over 10
second periods, which corresponds toτ = 640. The purpose
of the constraints is to restrict the rate of bad PM actions over
longer periods of time. Such actions may significantly affect
the perceived performance of the computer.

All online solutions to our constrained optimization prob-
lem are computed by the lazy learner (Figure 2). The experts
ξ1, . . . , ξN are timeout policies (Kvetonet al. 2007), whose
timeout parameters are adapted by the fixed-share algorithm
(Herbster & Warmuth 1995). These policies are additionally
arbitrated to satisfy our latency constraints.

Unless specified otherwise, the following parametrization
is employed in our experiments. Side constraints are defined
at 10 second intervals such thatG = {640, 1280, 1920, . . . },
the latency budgetc0 is set to 0.03, and the learning window
L is equal toτ . All reported empirical results correspond to
averages of 10 stochastic simulations.

Experimental results
The first experiment (Figure 3) demonstrates that lazy learn-
ing yields high-quality package PM policies (Proposition 1).
We assume non-overlapping constraints (Figure 1a) that are
completely satisfied by our experts. Based on our results, the
regret of learned policies is always less than 2 percent. This
evidence suggests that the policies are almost as good as the
best expert in hindsight. The learned policies are also signifi-
cantly better than worst experts, which may yield as much as
7 percent less residency. On the heavy workload trace, this 7
percent improvement can be viewed as more than 30 percent
when measured in relative terms. At the same time, our poli-
cies satisfy all latency constraints and their regret is bounded
as suggested by Proposition 1.

Finally, the learned policies also outperform static timeout
policies, which are state-of-the-art solutions to package PM.
On the heavy workload trace, for instance, none of the time-
out polices that satisfy latency constraintsgt(θ)≤0.06 yield
more than 5 percent residency. This is more than 6 times less

335



0 20 40 60 80
70

75

80

85

90
MM05 trace

R
es

id
en

cy
 [%

]

0 5 10 15 20
0

25

50

75

100
Heavy workload trace

Time [min]

R
es

id
en

cy
 [%

]

Figure 4: Average residency of three lazily learned policies.
The policies are learned from three pools of experts that sat-
isfy 100 (light gray lines), 50 (dark gray lines), and 0 (black
lines) percent of latency constraints in every segmentP. The
residency is depicted as a function of time (in minutes).

than the residency of a corresponding lazily learned policy.
The second experiment (Figure 4) illustrates how the resi-

dency of lazily learned policies is impacted by imperfect ex-
perts. Similarly to the previous experiment, we assume non-
overlapping constraints (Figure 1a). We vary the proportion
of the constraints that is satisfied by the experts and study its
effect. The learning windowL is equal to10τ . Based on our
results, relaxation of the experts yields policies with a higher
residency. This is expected since the relaxation increases the
residency of individual experts.

The third experiment (Figure 5) shows how the regret and
constraint violation of lazily learned policies are affected by
the learning windowL (Proposition 3). We assume overlap-
ping constraints (Figure 1b) defined at one second intervals.
Based on our results, the parameterL trades off the regret of
learned policies for their constraint violation. Smaller values
of the parameter generally cause a smaller regret and higher
constraint violation. Higher values of the parameter have an
opposite effect. This behavior is suggested by Proposition 3.

Conclusions
Although online learning has been studied extensively by the
machine learning community, solving constrained optimiza-
tion problems online remains a challenging problem. In this
paper, we proposed a practical online solution to constrained
optimization problems with temporal constraints. Moreover,
we provided guarantees on the quality of this solution in the
form of regret and constraint violation bounds. The solution
was evaluated on a challenging real-world PM problem. Our
experiments support the hypothesis that online learning with
side constraints can be carried out successfully in practice.

Results of this paper can be extended in several directions.
First, since the lazy learner (Figure 2) is derived based on the
standard exponentially weighted forecaster (Cesa-Bianchi &
Lugosi 2006), we believe that it can be easily generalized to
minimize the regret with respect to tracking the best expert.
Second, arbitration is by no means the most efficient way of
guaranteeing that online learned policies violate only a small

1 2 4 8 16 256 512
1

2

3

4
5

Heavy workload trace

Learning window multiplier k

R
es

id
en

cy
 r

eg
re

t [
%

]

1 2 4 8 16 256 512
0.01

0.1

1

10

C
on

st
ra

in
t v

io
la

tio
n 

[%
]

Figure 5: Constraint violation (dark gray line) and residency
regret (light gray line) of lazily learned policies as a function
of the learning windowL. The learning window is computed
asL = kτ , wherek is an integer multiplier.

number of constraints. Since arbitration typically yields zero
rewards, it is crucial to develop online learning solutions that
do not require it. Whether this goal can be achieved by mod-
ifying standard techniques for nonlinear programming, such
as penalty methods, is an interesting open question.

Acknowledgment
We thank anonymous reviewers for comments that led to the
improvement of this paper.

References
Bertsekas, D. 1999.Nonlinear Programming. Belmont, MA:
Athena Scientific.
Cesa-Bianchi, N., and Lugosi, G. 2006.Prediction, Learning,
and Games. New York, NY: Cambridge University Press.
Dhiman, G., and Simunic, T. 2006. Dynamic power management
using machine learning. InProceedings of the 2006 IEEE / ACM
International Conference on Computer-Aided Design.
Gramacy, R.; Warmuth, M.; Brandt, S.; and Ari, I. 2003. Adap-
tive caching by refetching. InAdvances in Neural Information
Processing Systems 15, 1465–1472.
Helmbold, D.; Long, D.; Sconyers, T.; and Sherrod, B. 2000.
Adaptive disk spin-down for mobile computers.Mobile Networks
and Applications5(4):285–297.
Herbster, M., and Warmuth, M. 1995. Tracking the best expert.
In Proceedings of the 12th International Conference on Machine
Learning, 286–294.
Karlin, A.; Manasse, M.; McGeoch, L.; and Owicki, S. 1994.
Competitive randomized algorithms for nonuniform problems.
Algorithmica11(6):542–571.
Kveton, B.; Gandhi, P.; Theocharous, G.; Mannor, S.; Rosario,
B.; and Shah, N. 2007. Adaptive timeout policies for fast fine-
grained power management. InProceedings of the 22nd National
Conference on Artificial Intelligence, 1795–1800.
Littlestone, N., and Warmuth, M. 1994. The weighted majority
algorithm. Information and Computation108(2):212–261.
Mannor, S., and Tsitsiklis, J. 2006. Online learning with con-
straints. InProceedings of 19th Annual Conference on Learning
Theory, 529–543.
Zinkevich, M. 2003. Online convex programming and gener-
alized infinitesimal gradient ascent. InProceedings of the 20th
International Conference on Machine Learning, 928–936.

336




